Genomic Surveillance of Plasmodium falciparum Drug Resistance Markers Between October 2021 and June 2023 in Kigali, Rwanda
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and DNA Extraction
2.2. Amplicon Generation and Sequencing
2.3. Bioinformatics Processing and Analysis
2.4. Sequencing Validation Using Sanger Method
3. Results
3.1. Molecular Markers Associated with Aminoquinolines Drug Resistance
3.2. Molecular Markers Associated with Antifolate Drug Resistance
3.3. Identification of SNPs in the kelch13 Gene
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACT | Artemisinin-based combination therapy |
| AL | Artemeter–Lumefantrine |
| BTB/POZ | Broad-complex, Tramtrack, and Bric-à-brac/POxvirus and Zinc finger |
| CCC | Coiled-coil containing |
| CQ | Chloroquine |
| CRT | Chloroquine resistance transporter |
| DHFR | Dihydrofolate Reductase |
| DHPS | Dihydropteroate Synthase |
| MDR1 | Multidrug resistance 1 |
| ONT | Oxford Nanopore technology |
| PCR | Polymerase chain reaction |
| SNP | Single nucleotide polymorphism |
| SP | Sulfadoxine-pyrimethamine |
References
- WHO. World Malaria Report. 2024. Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2024 (accessed on 18 March 2025).
- Karema, C.; Wen, S.; Sidibe, A.; Smith, J.L.; Gosling, R.; Hakizimana, E.; Tanner, M.; Noor, A.M.; Tatarsky, A. History of malaria control in Rwanda: Implications for future elimination in Rwanda and other malaria-endemic countries. Malar. J. 2020, 19, 356. [Google Scholar] [CrossRef] [PubMed]
- Umugwaneza, A.; Mutsaers, M.; Ngabonziza, J.C.S.; Kattenberg, J.H.; Uwimana, A.; Ahmed, A.; Remera, E.; Kubahoniyesu, T.; Nsanzabaganwa, C.; Mugabo, H.; et al. Half-decade of scaling up malaria control: Malaria trends and impact of interventions from 2018 to 2023 in Rwanda. Malar. J. 2025, 24, 40. [Google Scholar] [CrossRef]
- Mbabazi, J. Rwanda rolls out new malaria strategy after recording 87,000 cases in March. The New Times, 7 October 2025. [Google Scholar]
- Sipilanyambe, N.; Simon, J.L.; Chanda, P.; Olumese, P.; Snow, R.W.; Hamer, D.H. From chloroquine to artemether-lumefantrine: The process of drug policy change in Zambia. Malar. J. 2008, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Roux, A.T.; Maharaj, L.; Oyegoke, O.; Akoniyon, O.P.; Adeleke, M.A.; Maharaj, R.; Okpeku, M. Chloroquine and Sulfadoxine–Pyrimethamine Resistance in Sub-Saharan Africa—A Review. Front. Genet. 2021, 12, 668574. [Google Scholar] [CrossRef]
- Rwagacondo, C.E.; Niyitegeka, F.; Sarushi, J.; Karema, C.; Mugisha, V.; Dujardin, J.-C.; Van Overmeir, C.; van den Ende, J.; D’Alessandro, U. Efficacy of amodiaquine alone and combined with sulfadoxine-pyrimethamine and of sulfadoxine pyrimethamine combined with artesunate. Am. J. Trop. Med. Hyg. 2003, 68, 743–747. [Google Scholar] [CrossRef]
- Karema, C.; Aregawi, M.W.; Rukundo, A.; Kabayiza, A.; Mulindahabi, M.; Fall, I.S.; Gausi, K.; Williams, R.O.; Lynch, M.; Cibulskis, R.; et al. Trends in malaria cases, hospital admissions and deaths following scale-up of anti-malarial interventions, 2000-2010, Rwanda. Malar. J. 2012, 11, 236. [Google Scholar] [CrossRef]
- Gesase, S.; Gosling, R.D.; Hashim, R.; Ord, R.; Naidoo, I.; Madebe, R.; Mosha, J.F.; Joho, A.; Mandia, V.; Mrema, H.; et al. High Resistance of Plasmodium falciparum to Sulphadoxine/Pyrimethamine in Northern Tanzania and the Emergence of dhps Resistance Mutation at Codon 581. PLoS ONE 2009, 4, e4569. [Google Scholar] [CrossRef]
- Sendagire, H.; Kaddumukasa, M.; Ndagire, D.; Aguttu, C.; Nassejje, M.; Pettersson, M.; Swedberg, G.; Kironde, F. Rapid increase in resistance of Plasmodium falciparum to chloroquine-Fansidar in Uganda and the potential of amodiaquine-Fansidar as a better alternative. Acta Trop. 2005, 95, 172–182. [Google Scholar] [CrossRef]
- Sidhu, A.B.S.; Verdier-Pinard, D.; Fidock, D.A. Chloroquine Resistance in Plasmodium falciparum Malaria Parasites Conferred by pfcrt Mutations. Science 2002, 298, 210–213. [Google Scholar] [CrossRef]
- Venkatesan, M.; Gadalla, N.B.; Stepniewska, K.; Dahal, P.; Nsanzabana, C.; Moriera, C.; Price, R.N.; Mårtensson, A.; Rosenthal, P.J.; Dorsey, G.; et al. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: Parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine. Am. J. Trop. Med. Hyg. 2014, 91, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Plowe, C.V.; Kublin, J.G.; Doumbo, O.K.P. falciparum dihydrofolate reductase and dihydropteroate synthase mutations: Epidemiology and role in clinical resistance to antifolates. Drug Resist. Updates 1998, 1, 389–396. [Google Scholar] [CrossRef]
- Naidoo, I.; Roper, C. Mapping “partially resistant”, “fully resistant”, and “super resistant” malaria. Trends Parasitol. 2013, 29, 505–515. [Google Scholar] [CrossRef]
- WHO. WHO Policy Brief for the Implementation of Intermittent Preventive Treatment of Malaria in Pregnancy Using Sulfadoxine-Pyrimethamine (IPTp-SP). Global Malaria Programme. 2013. Available online: https://www.who.int/publications/i/item/WHO-HTM-GMP-2014.4 (accessed on 5 August 2025).
- Balikagala, B.; Fukuda, N.; Ikeda, M.; Katuro, O.T.; Tachibana, S.-I.; Yamauchi, M.; Opio, W.; Emoto, S.; Anywar, D.A.; Kimura, E.; et al. Evidence of Artemisinin-Resistant Malaria in Africa. N. Engl. J. Med. 2021, 385, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Uwimana, A.; Legrand, E.; Stokes, B.H.; Ndikumana, J.-L.M.; Warsame, M.; Umulisa, N.; Ngamije, D.; Munyaneza, T.; Mazarati, J.-B.; Munguti, K.; et al. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat. Med. 2020, 26, 1602–1608. [Google Scholar] [CrossRef]
- Uwimana, A.; Umulisa, N.; Venkatesan, M.; Svigel, S.S.; Zhou, Z.; Munyaneza, T.; Habimana, R.M.; Rucogoza, A.; Moriarty, L.F.; Sandford, R.; et al. Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: An open-label, single-arm, multicentre, therapeutic efficacy study. Lancet Infect. Dis. 2021, 21, 1120–1128. [Google Scholar] [CrossRef]
- Paloque, L.; Coppée, R.; Stokes, B.H.; Gnädig, N.F.; Niaré, K.; Augereau, J.-M.; Fidock, D.A.; Clain, J.; Benoit-Vical, F. Mutation in the Plasmodium falciparum BTB/POZ Domain of K13 Protein Confers Artemisinin Resistance. Antimicrob. Agents Chemother. 2022, 66, e0132021. [Google Scholar] [CrossRef]
- Girgis, S.T.; Adika, E.; Nenyewodey, F.E.; Senoo Jnr, D.K.; Ngoi, J.M.; Bandoh, K.; Lorenz, O.; van de Steeg, G.; Harrott, A.J.R.; Nsoh, S.; et al. Drug resistance and vaccine target surveillance of Plasmodium falciparum using nanopore sequencing in Ghana. Nat. Microbiol. 2023, 8, 2365–2377. [Google Scholar] [CrossRef]
- Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 2021, 37, 4572–4574. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Okonechnikov, K.; Conesa, A.; García-Alcalde, F. Qualimap 2: Advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 2016, 32, 292–294. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative genomics viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Li, S.; Su, J.; Leung, A.W.-S.; Lam, T.-W.; Luo, R. Symphonizing pileup and full-alignment for deep learning-based long-read variant calling. Nat. Comput. Sci. 2022, 2, 797–803. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef]
- Hildenwall, H.; Amos, B.; Mtove, G.; Muro, F.; Cederlund, K.; Reyburn, H. Causes of non-malarial febrile illness in outpatients in Tanzania. Trop. Med. Int. Health 2016, 21, 149–156. [Google Scholar] [CrossRef]
- Amaka, J.I.; MacLeod, E.; Picozzi, K.; Fyfe, J.; Ezenyi, I.C.; Ijaiya, I.S.; Attah, D.D.; Godwin, B.A.; Obisike, V.U.; Galamaji, M.M. Issues associated with malaria self-medication in sub-Saharan Africa: A systematic literature review and meta-analysis. Malariaworld J. 2025, 16, 16. [Google Scholar] [CrossRef]
- Menard, D.; Dondorp, A. Antimalarial Drug Resistance: A Threat to Malaria Elimination. Cold Spring Harb. Perspect. Med. 2017, 7, a025619. [Google Scholar] [CrossRef]
- Mwai, L.; Ochong, E.; Abdirahman, A.; Kiara, S.M.; Ward, S.; Kokwaro, G.; Sasi, P.; Marsh, K.; Borrmann, S.; Mackinnon, M.; et al. Chloroquine resistance before and after its withdrawal in Kenya. Malar. J. 2009, 8, 106. [Google Scholar] [CrossRef]
- Ebong, C.; Sserwanga, A.; Namuganga, J.F.; Kapisi, J.; Mpimbaza, A.; Gonahasa, S.; Asua, V.; Gudoi, S.; Kigozi, R.; Tibenderana, J.; et al. Efficacy and safety of artemether-lumefantrine and dihydroartemisinin-piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria and prevalence of molecular markers associated with artemisinin and partner drug resistance in Uganda. Malar. J. 2021, 20, 484. [Google Scholar] [CrossRef] [PubMed]
- Zeile, I.; Gahutu, J.-B.; Shyirambere, C.; Steininger, C.; Musemakweri, A.; Sebahungu, F.; Karema, C.; Harms, G.; Eggelte, T.A.; Mockenhaupt, F.P. Molecular markers of Plasmodium falciparum drug resistance in southern highland Rwanda. Acta Trop. 2012, 121, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Chebore, W.; Zhou, Z.; Westercamp, N.; Otieno, K.; Shi, Y.P.; Sergent, S.B.; Rondini, K.A.; Svigel, S.S.; Guyah, B.; Udhayakumar, V.; et al. Assessment of molecular markers of anti-malarial drug resistance among children participating in a therapeutic efficacy study in western Kenya. Malar. J. 2020, 19, 291. [Google Scholar] [CrossRef]
- Kamya, M.R.; Nankabirwa, J.I.; Ebong, C.; Asua, V.; Kiggundu, M.; Orena, S.; Okitwi, M.; Tukwasibwe, S.; Agaba, B.; Kyabayinze, D.; et al. Efficacies of artemether-lumefantrine, artesunate-amodiaquine, dihydroartemisinin-piperaquine, and artesunate-pyronaridine for the treatment of uncomplicated Plasmodium falciparum malaria in children aged 6 months to 10 years in Uganda: A randomised, open-label, phase 4 clinical trial. Lancet Infect. Dis. 2025. [Google Scholar] [CrossRef]
- Conrad, M.D.; Rosenthal, P.J. Antimalarial drug resistance in Africa: The calm before the storm? Lancet Infect. Dis. 2019, 19, e338–e351. [Google Scholar] [CrossRef]
- Kateera, F.; Nsobya, S.L.; Tukwasibwe, S.; Hakizimana, E.; Mutesa, L.; Mens, P.F.; Grobusch, M.P.; van Vugt, M.; Kumar, N. Molecular surveillance of Plasmodium falciparum drug resistance markers reveals partial recovery of chloroquine susceptibility but sustained sulfadoxine-pyrimethamine resistance at two sites of different malaria transmission intensities in Rwanda. Acta Trop. 2016, 164, 329–336. [Google Scholar] [CrossRef]
- Tumwebaze, P.K.; Conrad, M.D.; Okitwi, M.; Orena, S.; Byaruhanga, O.; Katairo, T.; Legac, J.; Garg, S.; Giesbrecht, D.; Smith, S.R.; et al. Decreased susceptibility of Plasmodium falciparum to both dihydroartemisinin and lumefantrine in northern Uganda. Nat. Commun. 2022, 13, 6353. [Google Scholar] [CrossRef]
- Harrington, W.E.; Mutabingwa, T.K.; Muehlenbachs, A.; Sorensen, B.; Bolla, M.C.; Fried, M.; Duffy, P.E. Competitive facilitation of drug-resistant Plasmodium falciparum malaria parasites in pregnant women who receive preventive treatment. Proc. Natl. Acad. Sci. USA 2009, 106, 9027–9032. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, C.; van Loon, W.; Habarugira, F.; Tacoli, C.; Jäger, J.C.; Savelsberg, D.; Nshimiyimana, F.; Rwamugema, E.; Mbarushimana, D.; Ndoli, J.; et al. Increase in Kelch 13 Polymorphisms in Plasmodium falciparum, Southern Rwanda. Emerg. Infect. Dis. 2021, 27, 294–296. [Google Scholar] [CrossRef] [PubMed]




| Characteristics | Frequency N (%) | |
|---|---|---|
| Gender | Male | 187 (60.32) |
| Female | 123 (39.68) | |
| Age (0–78 years) | 0–5 | 49 (15.81) |
| 6–20 | 74 (23.87) | |
| 21–50 | 149 (48.06) | |
| >50 | 38 (12.26) | |
| Parasitemia (parasites/µL of blood) | <1.000 | 127 (40.97) |
| 1.000–10.000 | 129 (41.61) | |
| >10.000 | 54 (17.42) | |
| Gene | Target Region | Mutation | Status | Prevalence % (n) |
|---|---|---|---|---|
| Kelch13 | N-terminal and CCC | K189T | Unknown | 31.2% (78/250) |
| T207K | Emerging | 0.4% (1/250) | ||
| R255K | Emerging | 0.4% (1/250) | ||
| L258M | Unknown | 2.4% (6/250) | ||
| BTB/POZ | H384R | Emerging | 6.4% (16/250) | |
| Propeller | P441L | Candidate | 2.0% (5/250) | |
| C469F | Emerging | 0.4% (1/250) | ||
| R561H | Validated | 25.6% (64/250) | ||
| A569V | Emerging | 1.2% (3/250) | ||
| P574L | Candidate | 0.4% (1/250) | ||
| A578S | Emerging | 0.4% (1/250) | ||
| P667R | Emerging | 2.0% (5/250) | ||
| A675V | Validated | 2.0% (5/250) | ||
| F699C | Emerging | 2.8% (7/250) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fankem, S.N.; Mbonimpa, J.-B.; Kalimba, E.M.; Diallo, M.T.; Teke, M.E.; Souopgui, J. Genomic Surveillance of Plasmodium falciparum Drug Resistance Markers Between October 2021 and June 2023 in Kigali, Rwanda. Pathogens 2025, 14, 1092. https://doi.org/10.3390/pathogens14111092
Fankem SN, Mbonimpa J-B, Kalimba EM, Diallo MT, Teke ME, Souopgui J. Genomic Surveillance of Plasmodium falciparum Drug Resistance Markers Between October 2021 and June 2023 in Kigali, Rwanda. Pathogens. 2025; 14(11):1092. https://doi.org/10.3390/pathogens14111092
Chicago/Turabian StyleFankem, Sandra Noukimi, Jean-Bosco Mbonimpa, Edgar Mutebwa Kalimba, Mariama Telly Diallo, Mary Efeti Teke, and Jacob Souopgui. 2025. "Genomic Surveillance of Plasmodium falciparum Drug Resistance Markers Between October 2021 and June 2023 in Kigali, Rwanda" Pathogens 14, no. 11: 1092. https://doi.org/10.3390/pathogens14111092
APA StyleFankem, S. N., Mbonimpa, J.-B., Kalimba, E. M., Diallo, M. T., Teke, M. E., & Souopgui, J. (2025). Genomic Surveillance of Plasmodium falciparum Drug Resistance Markers Between October 2021 and June 2023 in Kigali, Rwanda. Pathogens, 14(11), 1092. https://doi.org/10.3390/pathogens14111092

