Cross-Sectional Study on Zoonotic Bacteria Carriage by Small Ruminants from Portugal’s Central Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Size
2.3. Herd Selection and Sample Collection
2.4. Questionnaire
2.5. Microbiologycal Assays
2.6. Ethics
2.7. Statistical Analysis
3. Results
3.1. Farm Demographic Characterization
3.2. Individual-Level Prevalence of Zoonotic Enteric Bacteria
3.3. Farm-Level Prevalence of Presumptive Methicillin-Resistant S. aureus
3.4. Characterization of Positive Farms
3.5. Cluster Analysis
3.6. Multinomial Logistic Regression Model
3.6.1. Odds of “Campylobacter” Cluster Compared to “Resistant” Cluster
3.6.2. Odds of “Salmonella” Cluster Compared to “Resistant” Cluster
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cabo, P.; Matos, A.; Fernandes, A.; Ribeiro, M. Evolução da produção e comercialização de produtos tradicionais qualificados de ovinos e caprinos (2003–2012). Rev. Ciências Agrárias 2017, 40, 329–344. [Google Scholar] [CrossRef]
- Turismo Centro Portugal. Available online: https://storymaps.arcgis.com/stories/ff003b4d9ced4a37b4f252df035255e1 (accessed on 1 April 2025).
- Antunes, P.; Novais, C.; Peixe, L. Food-to-Humans Bacterial Transmission. Microbiol. Spectr. 2020, 8. [Google Scholar] [CrossRef]
- Griffin, S.; Falzon, O.; Camilleri, K.; Valdramidis, V.P. Bacterial and fungal contaminants in caprine and ovine cheese: A meta-analysis assessment. Food Res. Int. 2020, 137, 109445. [Google Scholar] [CrossRef]
- De Buyser, M.L.; Dufour, B.; Maire, M.; Lafarge, V. Implication of milk and milk products in food-borne diseases in France and in different industrialised countries. Int. J. Food Microbiol. 2001, 67, 1–17. [Google Scholar] [CrossRef]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Pathogens in Cheese and Foodborne Illnesses. In Fundamentals of Cheese Science; Springer: Boston, MA, USA, 2017. [Google Scholar] [CrossRef]
- Allos, B.M. Campylobacter jejuni Infections: Update on emerging issues and trends. Clin. Infect. Dis. 2001, 32, 1201–1206. [Google Scholar] [CrossRef]
- Sahin, O.; Yaeger, M.; Wu, Z.; Zhang, Q. Campylobacter-Associated Diseases in Animals. Annu. Rev. Anim. Biosci. 2017, 5, 21–42. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, S.K.; Dallas, J.F.; Strachan, N.J.; MacRae, M.; McCarthy, N.D.; Wilson, D.J.; Gormley, F.J.; Falush, D.; Ogden, I.D.; Maiden, M.C.; et al. Campylobacter genotyping to determine the source of human infection. Clin. Infect. Dis. 2009, 48, 1072–1078. [Google Scholar] [CrossRef]
- Roux, F.; Sproston, E.; Rotariu, O.; Macrae, M.; Sheppard, S.K.; Bessell, P.; Smith-Palmer, A.; Cowden, J.; Maiden, M.C.; Forbes, K.J.; et al. Elucidating the aetiology of human Campylobacter coli infections. PLoS ONE 2013, 8, e64504. [Google Scholar] [CrossRef]
- ECDC. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2021. Stockholm. 2022. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/AER-EARS-Net-2021_2022-final.pdf (accessed on 30 December 2024).
- EFSA; ECDC. The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e8442. [Google Scholar] [PubMed]
- Eng, S.K.; Pusparajah, P.; Ab Mutalib, N.S.; Ser, H.L.; Chan, K.G.; Lee, L.H. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci. 2015, 8, 284–293. [Google Scholar] [CrossRef]
- Ehuwa, O.; Jaiswal, A.K.; Jaiswal, S. Salmonella, food safety and food handling practices. Foods 2021, 10, 907. [Google Scholar] [CrossRef]
- Hanlon, K.E.; Miller, M.F.; Guillen, L.M.; Brashears, M.M. Salmonella Presence in Mandibular, Mesenteric, and Subiliac Lymph Nodes Collected from Sheep and Goats in the United States. J. Food Prot. 2016, 79, 1977–1981. [Google Scholar] [CrossRef] [PubMed]
- Hawwas, H.A.E.H.; Aboueisha, A.K.M.; Fadel, H.M.; El-Mahallawy, H.S. Salmonella serovars in sheep and goats and their probable zoonotic potential to hu-mans in Suez Canal Area, Egypt. Acta Vet. Scand. 2022, 64, 17. [Google Scholar] [CrossRef] [PubMed]
- Hwang, K.; Al, S.; Campbell, R.E.; Glass, K.; Vogel, K.D.; Claus, J.R. An Experimental Infection Model in Sheep and Goats to Evaluate Salmonella Colonization in Deep Tissue Lymph Nodes and after Carcass Vascular Rinsing with Bacteriophages in Goats. J. Food Prot. 2024, 87, 100312. [Google Scholar] [CrossRef] [PubMed]
- Kadaka, J.; Itokazy, K.; Nakamura, M.; Taira, K.; Asato, R. An outbreak of Salmonella Weltevreden food poisoning after eating goat meat. Infect. Agents Surveill. Rep. 2000, 21, 164. [Google Scholar]
- Silva, V.; Araújo, S.; Monteiro, A.; Eira, J.; Pereira, J.E.; Maltez, L.; Igrejas, G.; Lemsaddek, T.S.; Poeta, P. Staphylococcus aureus and MRSA in Livestock: Antimicrobial Resistance and Genetic Lineages. Microorganisms 2023, 11, 124. [Google Scholar] [CrossRef]
- Peton, V.; Le Loir, Y. Staphylococcus aureus in veterinary medicine. Infect. Genet. Evol. 2014, 21, 602–615. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Le Van, P.; Le Huy, C.; Gia, K.N.; Weintraub, A. Detection and characterization of diarrheagenic Escherichia coli from young children in Hanoi, Vietnam. J. Clin. Microbiol. 2005, 43, 755–760. [Google Scholar] [CrossRef]
- Poirel, L.; Madec, J.Y.; Lupo, A.; Schink, A.K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, 10-1128. [Google Scholar] [CrossRef]
- Haenni, M.; Châtre, P.; Métayer, V.; Bour, M.; Signol, E.; Madec, J.Y.; Gay, E. Comparative prevalence and characterization of ESBL-producing Enterobacteriaceae in dominant versus subdominant enteric flora in veal calves at slaughterhouse, France. Vet. Microbiol. 2014, 171, 321–327. [Google Scholar] [CrossRef]
- Obaidat, M.M.; Gharaibeh, W.A. Sheep and goat milk in Jordan is a reservoir of multidrug resistant extended spectrum and AmpC beta-lactamases Escherichia coli. Int. J. Food Microbiol. 2022, 377, 109834. [Google Scholar] [CrossRef]
- Ramatla, T.; Tutubala, M.; Motlhaping, T.; de Wet, L.; Mokgokong, P.; Thekisoe, O.; Lekota, K. Molecular detection of Shiga toxin and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolates from sheep and goats. Mol. Biol. Rep. 2024, 51, 57. [Google Scholar] [CrossRef] [PubMed]
- Atlaw, N.A.; Keelara, S.; Correa, M.; Foster, D.; Gebreyes, W.; Aidara-Kane, A.; Harden, L.; Thakur, S.; Fedorka-Cray, P.J. Evidence of sheep and abattoir environment as important reservoirs of multidrug resistant Salmonella and extended-spectrum beta-lactamase Escherichia coli. Int. J. Food Microbiol. 2022, 363, 109516. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Pal, S.; Goswami, P.; Batabyal, K.; Joardar, S.N.; Dey, S.; Isore, D.P.; Dutta, T.K.; Bandyopadhyay, S.; Samanta, I. Docking analysis of circulating CTX-M variants in multi-drug resistant, beta-lactamase and biofilm-producing E. coli isolated from pet animals and backyard livestock. Microb. Pathog. 2022, 170, 105700. [Google Scholar] [CrossRef]
- WHO—World Health Organization. WHO Integrated Global Surveillance on ESBL-Producing E. coli Using a “One Health” Approach: Implementation and Opportunities. Available online: https://www.who.int/publications/i/item/9789240021402 (accessed on 21 December 2024).
- Fishovitz, J.; Hermoso, J.A.; Chang, M.; Mobashery, S. Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life 2014, 66, 572–577. [Google Scholar] [CrossRef]
- Abdullahi, I.N.; Lozano, C.; Saidenberg, A.B.S.; Latorre-Fernández, J.; Zarazaga, M.; Torres, C. Comparative review of the nasal carriage and genetic characteristics of Staphylococcus aureus in healthy livestock: Insight into zoonotic and anthroponotic clones. Infect. Genet. Evol. 2023, 109, 105408. [Google Scholar] [CrossRef]
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. Lancet Planet. Health 2017, 1, e316–e327. [Google Scholar] [CrossRef]
- Sharma, C.; Rokana, N.; Chandra, M.; Singh, B.P.; Gulhane, R.D.; Gill, J.P.S.; Ray, P.; Puniya, A.K.; Panwar, H. Antimicrobial Resistance: Its Surveillance, Impact, and Alternative Management Strategies in Dairy Animals. Front. Vet. Sci. 2018, 4, 237. [Google Scholar] [CrossRef] [PubMed]
- Courtenay, M.; Castro-Sanchez, E.; Fitzpatrick, M.; Gallagher, R.; Lim, R.; Morris, G. Tackling antimicrobial resistance 2019–2024—The UK’s five-year national action plan. J. Hosp. Infect. 2019, 101, 426–427. [Google Scholar] [CrossRef]
- Llanos-Soto, S.G.; Vezeau, N.; Wemette, M.; Bulut, E.; Greiner Safi, A.; Moroni, P.; Shapiro, M.A.; Ivanek, R. Survey of perceptions and attitudes of an international group of veterinarians regarding antibiotic use and resistance on dairy cattle farms. Prev. Vet. Med. 2021, 188, 105253. [Google Scholar] [CrossRef]
- CE—Comissão Europeia. Regulamento delegado (UE) 2023/674 da Comissão, de 26 de Dezembro de 2022, que Altera os Anexos do Regulamento (CE) nº 1059/2003 do Parlamento Europeu e do Conselho Relativo à Instituição de uma Nomenclatura Comum das Unidades Territoriais Estatísticas (NUTS). J. Of. União Eur. 2023. Available online: https://eur-lex.europa.eu/legal-content/PT/TXT/?uri=CELEX%3A32023R0674 (accessed on 20 December 2024).
- CCDR Centro—Comissão de Coordenação e Desenvolvimento Regional do Centro, I.P. Available online: https://www.ccdrc.pt/pt/regiao-centro/sobre-a-regiao-centro/ (accessed on 15 December 2024).
- DGAV—Direção-Geral de Alimentação e Veterinária. Dados Nacionais: Animais e Explorações—Dezembro 2022. Available online: https://www.dgav.pt/wp-content/uploads/2023/02/Dados.Nacionais.Animais.Exploracoes.dez2022.pdf (accessed on 5 January 2025).
- INE—Instituto Nacional de Estatística. Available online: https://www.ine.pt/xportal/xmain?xpgid=ine_main&xpid=INE&xlang=pt (accessed on 13 October 2025).
- Laboratory Protocol. Isolation of ESBL-, AmpC- and Carbapenemase-Producing E. coli from Caecal Samples December 2024 Version. Available online: https://www.food.dtu.dk/english/-/media/institutter/foedevareinstituttet/temaer/antibiotikaresistens/eurl-ar/protocols/esbl-ampc-and-camrbapenemase-producing-e-coli/esbl_ampc_cpeprotocol_version_caecal_v9_17122024.pdf (accessed on 1 March 2024).
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping Salmonella. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 10272-1:2017/Amd 1:2023; Microbiology of the Food Chain—Horizontal Method for Detection and Enumeration of Campylobacter spp. International Organization for Standardization: Geneva, Switzerland, 2023.
- Laboratory Protocol. Isolation of Methicillin-Resistant Staphylococcus aureus (MRSA) from Food-Producing Animals and Farm Environment. Available online: https://www.food.dtu.dk/english/-/media/institutter/foedevareinstituttet/temaer/antibiotikaresistens/eurl-ar/protocols/mrsa/4_675_mrsa-protocol-isolation-2023-04-11.pdf (accessed on 1 March 2014).
- Almeida, G.; Figueiredo, A.; Rôla, M.; Barros, R.M.; Gibbs, P.; Hogg, T.; Teixeira, P. Microbiological characterization of randomly selected Portuguese raw milk cheeses with reference to food safety. J. Food Prot. 2007, 70, 1710–1716. [Google Scholar] [CrossRef] [PubMed]
- Hanlon, K.E.; Miller, M.F.; Guillen, L.M.; Echeverry, A.; Dormedy, E.; Cemo, B.; Branham, L.A.; Sanders, S.; Brashears, M.M. Presence of Salmonella and Escherichia coli O157 on the hide, and presence of Salmonella, Escherichia coli O157 and Campylobacter in feces from small-ruminant (goat and lamb) samples collected in the United States, Bahamas and Mexico. Meat Sci. 2018, 135, 1–5. [Google Scholar] [CrossRef]
- Tadesse, G.; Tessema, T.S. A meta-analysis of the prevalence of Salmonella in food animals in Ethiopia. BMC Microbiol. 2014, 14, 270. [Google Scholar] [CrossRef] [PubMed]
- Adesiyun, A.A.; Kaminjolo, J.S.; Loregnard, R.; Kitson-Piggott, W. Campylobacter infections in calves, piglets, lambs and kids in Trinidad. Bangladesh Vet. J. 1992, 148, 547–556. [Google Scholar] [CrossRef]
- Garcia, A.B.; Steele, W.B.; Taylor, D.J. Prevalence and Carcass Contamination with Campylobacter in Sheep Sent for Slaughter in Scotland. J. Food Saf. 2010, 30, 237–250. [Google Scholar] [CrossRef]
- Salihu, M.D.; Junaidu, A.U.; Oboegbulem, S.I.; Egwu, G.O. Prevalence and Biotypes of Campylobacter Species Isolated from Sheep in Sokoto State, Nigeria. Int. J. Anim. Vet. Adv. 2009, 1, 6–9. [Google Scholar]
- Stone, D.M.; Chander, Y.; Bekele, A.Z.; Goyal, S.M.; Hariharan, H.; Tiwari, K.; Chikweto, A.; Sharma, R. Genotypes, Antibiotic Resistance, and ST-8 Genetic Clone in Campylobacter Isolates from Sheep and Goats in Grenada. Vet. Med. Int. 2014, 212864. [Google Scholar] [CrossRef]
- Thomas, K.M.; de Glanville, W.A.; Barker, G.C.; Benschop, J.; Buza, J.J.; Cleaveland, S.; Davis, M.A.; French, N.P.; Mmbaga, B.T.; Prinsen, G.; et al. Prevalence of Campylobacter and Salmonella in African food animals and meat: A systematic review and meta-analysis. Int. J. Food Microbiol. 2020, 315, 108382. [Google Scholar] [CrossRef]
- Zenebe, T.; Zegeye, N.; Eguale, T. Prevalence of Campylobacter species in human, animal and food of animal origin and their antimicrobial susceptibility in Ethiopia: A systematic review and meta-analysis. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 61. [Google Scholar] [CrossRef]
- Kaakoush, N.O.; Castaño-Rodríguez, N.; Mitchell, H.M.; Man, S.M. Global Epidemiology of Campylobacter Infection. Clin. Microbiol. Rev. 2015, 28, 687–720. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, e06406. [Google Scholar] [CrossRef] [PubMed]
- García-Díez, J.; Moura, D.; Grispoldi, L.; Cenci-Goga, B.; Saraiva, S.; Silva, F.; Saraiva, C.; Ausina, J. Salmonella spp. in Domestic Ruminants, Evaluation of Antimicrobial Resistance Based on the One Health Approach-A Systematic Review and Meta-Analysis. Vet. Sci. 2024, 11, 315. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- EC. Commission implementing decision of 12 November 2013 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria. Off. J. Eur. Union 2013, 303, 26–39. [Google Scholar]
- Ramos, S.; Igrejas, G.; Silva, N.; Jones-Dias, D.; Capelo-Martinez, J.-L.; Caniça, M.; Poeta, P. First report of CTX-M producing Escherichia coli, including the new ST2526, isolated from beef cattle and sheep in Portugal. Food Control. 2013, 31, 208–210. [Google Scholar] [CrossRef]
- Dantas Palmeira, J.; Haenni, M.; Madec, J.Y.; Ferreira, H.M.N. First Global Report of Plasmid-Mediated mcr-1 and Extended-Spectrum Beta-Lactamase-Producing Escherichia coli from Sheep in Portugal. Antibiotics 2021, 10, 1403. [Google Scholar] [CrossRef]
- Hille, K.; Ruddat, I.; Schmid, A.; Hering, J.; Hartmann, M.; von Münchhausen, C.; Schneider, B.; Messelhäusser, U.; Friese, A.; Mansfeld, R.; et al. Cefotaxime-resistant E. coli in dairy and beef cattle farms-Joint analyses of two cross-sectional investigations in Germany. Prev. Vet. Med. 2017, 142, 39–45. [Google Scholar] [CrossRef]
- Seni, J.; Falgenhauer, L.; Simeo, N.; Mirambo, M.M.; Imirzalioglu, C.; Matee, M.; Rweyemamu, M.; Chakraborty, T.; Mshana, S.E. Multiple ESBL-Producing Escherichia coli Sequence Types Carrying Quinolone and Aminoglycoside Resistance Genes Circulating in Companion and Domestic Farm Animals in Mwanza, Tanzania, Harbor Commonly Occurring Plasmids. Front. Microbiol. 2016, 7, 142. [Google Scholar] [CrossRef]
- Geser, N.; Stephan, R.; Hächler, H. Occurrence and characteristics of extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw milk. BMC Vet. Res. 2012, 8, 21. [Google Scholar] [CrossRef]
- Snow, L.C.; Wearing, H.; Stephenson, B.; Teale, C.J.; Coldham, N.G. Investigation of the presence of ESBL-producing Escherichia coli in the North Wales and West Midlands areas of the UK in 2007 to 2008 using scanning surveillance. Vet Rec. 2011, 169, 656. [Google Scholar] [CrossRef]
- Benavides, J.A.; Salgado-Caxito, M.; Opazo-Capurro, A.; González Muñoz, P.; Piñeiro, A.; Otto Medina, M.; Rivas, L.; Munita, J.; Millán, J. ESBL-Producing Escherichia coli Carrying CTX-M Genes Circulating among Livestock, Dogs, and Wild Mammals in Small-Scale Farms of Central Chile. Antibiotics 2021, 10, 510. [Google Scholar] [CrossRef] [PubMed]
- Pehlivanoglu, F.; Sababoglu, E. Characterisation of AmpC/ESBL genes in some pathogen gram-negatives isolated from clinical cases of livestock and companion animals. Acta Vet. 2021, 71, 435–450. [Google Scholar] [CrossRef]
- Mehmood, A.S.Q. Phenotypic and molecular characterization of esblproducing the enterobacteriaceae from animal fecal samples in southern punjab, pakistan. Sci. Int. 2021, 33, 45–48. [Google Scholar]
- Omoshaba, E.O.; Ojo, O.E.; Oyekunle, M.A.; Sonibare, A.O.; Adebayo, A.O. Methicillin-resistant Staphylococcus aureus (MRSA) isolated from raw milk and nasal swabs of small ruminants in Abeokuta, Nigeria. Trop. Anim. Health Prod. 2020, 52, 2599–2608. [Google Scholar] [CrossRef]
- Rao, R.T.; Madhavan, V.; Kumar, P.; Muniraj, G.; Sivakumar, N.; Kannan, J. Epidemiology and zoonotic potential of Livestock-associated Staphylococcus aureus isolated at Tamil Nadu, India. BMC Microbiol. 2023, 23, 326. [Google Scholar] [CrossRef]
- Abdel-Moein, K.A.; Zaher, H.M. Occurrence of multidrug-resistant methicillin-resistant Staphylococcus aureus among healthy farm animals: A public health concern. Int. J. Vet. Sci. Med. 2019, 7, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Graveland, H.; Wagenaar, J.A.; Bergs, K.; Heesterbeek, H.; Heederik, D. Persistence of livestock associated MRSA CC398 in humans is dependent on intensity of animal contact. PLoS ONE 2011, 6, e16830. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Randad, P.R.; Larsen, J.; Kaya, H.; Pisanic, N.; Ordak, C.; Price, L.B.; Aziz, M.; Nadimpalli, M.L.; Rhodes, S.; Stewart, J.R.; et al. Transmission of Antimicrobial-Resistant Staphylococcus aureus Clonal Complex 9 between Pigs and Humans, United States. Emerg. Infect. Dis. 2021, 27, 740–748. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lakhundi, S.; Zhang, K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Wamel, W.J.B.; Rooijakkers, S.H.M.; Ruyken, M.; van Kessel, K.P.M.; van Strijp, J.A.G. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J. Bacteriol. 2006, 188, 1310–1315. [Google Scholar] [CrossRef]
- Alba, D.F.; da Rosa, G.; Hanauer, D.; Saldanha, T.F.; Souza, C.F.; Baldissera, M.D.; da Silva Dos Santos, D.; Piovezan, A.P.; Girardini, L.K.; Schafer Da Silva, A. Subclinical mastitis in Lacaune sheep: Causative agents, impacts on milk production, milk quality, oxidative profiles and treatment efficacy of ceftiofur. Microb. Pathog. 2019, 137, 103732. [Google Scholar] [CrossRef]
- Vasileiou, N.G.C.; Fthenakis, G.C.; Mavrogianni, V.S. Comparison of the Efficacy of Intramammary or Injectable Antibiotic Administration against Staphylococcal Mastitis in Ewes. Pathogens 2022, 11, 1164. [Google Scholar] [CrossRef] [PubMed]
- Bergonier, D.; de Crémoux, R.; Rupp, R.; Lagriffoul, G.; Berthelot, X. Mastitis of dairy small ruminants. Vet. Res. 2003, 34, 689–716. [Google Scholar] [CrossRef] [PubMed]
- Olechnowicz, J.; Jaśkowski, J.M. Mastitis in small ruminants. Med. Weter. 2014, 70, 67–72. [Google Scholar]
- Barrero-Domínguez, B.; Luque, I.; Galán-Relaño, Á.; Vega-Pla, J.L.; Huerta, B.; Román, F.; Astorga, R.J. Antimicrobial resistance and distribution of Staphylococcus spp. pulsotypes isolated from goat and sheep bulk tank milk in Southern Spain. Foodborne Pathog. Dis. 2019, 16, 723–730. [Google Scholar] [CrossRef]
- Virdis, S.; Scarano, C.; Cossu, F.; Spanu, V.; Spanu, C.; De Santis, E.P. Antibiotic Resistance in Staphylococcus aureus and Coagulase Negative Staphylococci Isolated from Goats with Subclinical Mastitis. Vet. Med. Int. 2010, 2010, 517060. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef]
- Bradley, A.J.; Leach, K.A.; Breen, J.E.; Green, L.E.; Green, M.J. Survey of the incidence and aetiology of mastitis on dairy farms in England and Wales. Vet. Rec. 2007, 160, 253–257. [Google Scholar] [CrossRef]
- Knuth, R.M.; Woodruff, K.L.; Hummel, G.L.; Williams, J.D.; Austin, K.J.; Stewart, W.C.; Cunningham-Hollinger, H.C.; Bisha, B. Effects of management strategies during early lactation and weaning on etiological agents of ovine subclinical mastitis and antimicrobial susceptibility of milk-derived bacterial isolates. J. Anim. Sci. 2022, 100, skac171. [Google Scholar] [CrossRef] [PubMed]
- Quintas, H.; Lacasta, D.; Ferrer, L.M. Differential Diagnosis in Sheep; Doctor Herriot: Manhattan, NY, USA, 2022; ISBN 978-8409387571. [Google Scholar]
- Parveen, S.; Garzon-Orjuela, N.; Amin, D.; McHugh, P.; Vellinga, A. Public Health Interventions to Improve Antimicrobial Resistance Awareness and Behavioural Change Associated with Antimicrobial Use: A Systematic Review Exploring the Use of Social Media. Antibiotics 2022, 11, 669. [Google Scholar] [CrossRef]
- Pham-Duc, P.; Cook, M.A.; Cong-Hong, H.; Nguyen-Thuy, H.; Padungtod, P.; Nguyen-Thi, H.; Dang-Xuan, S. Knowledge, attitudes and practices of livestock and aquaculture producers regarding antimicrobial use and resistance in Vietnam. PLoS ONE 2019, 14, e0223115. [Google Scholar] [CrossRef]

| Characteristics | Category | Sheep (n = 72) n (%) | 95% CI | Goats (n = 50) n (%) | 95% CI | Total (n = 122) n (%) | 95% CI |
|---|---|---|---|---|---|---|---|
| District | Castelo Branco | 14 (19.4) | 0.1020–0.2859 | 7 (14.0) | 0.0438–0.2362 | 21 (17.2) | 0.1052–0.2391 |
| Coimbra | 7 (9.7) | 0.0288–0.1656 | 4 (8.0) | 0.0048–0.1552 | 11 (9.0) | 0.0393–0.140 | |
| Guarda | 26 (36.1) | 0.2502–0.4721 | 19 (38.0) | 0.2455–0.5145 | 45 (36.9) | 0.2832–0.4545 | |
| Leiria | 8 (11.1) | 0.03852–0.1837 | 5 (10.0) | 0.0168–0.1831 | 13 (10.7) | 0.0518–0.1613 | |
| Viseu | 17 (23.6) | 0.1380–0.3342 | 15 (30.0) | 0.1730–0.4270 | 32 (26.2) | 0.1842–0.3403 | |
| Production purpose | Milk | 11 (15.3) | 0.0697–0.2359 | 18 (36.0) | 0.2270–0.4930 | 29 (23.8) | 0.1622–0.3132 |
| Meat | 44 (61.1) | 0.4985–0.7237 | 18 (36.0) | 0.2270–0.4930 | 62 (50.8) | 0.4195–0.5969 | |
| Milk + Meat | 17 (23.6) | 0.1380–0.3342 | 12 (24.0) | 0.1216–0.3584 | 29 (23.8) | 0.1622–0.3132 | |
| Other * | 2 (2.8%) | 0.000–0.0657 | 2 (4.0) | 0.000–0.0943 | 2 (1.6) | 0.0000–0.0389 | |
| Production type | Conventional | 65 (90.3) | 0.8343–0.9712 | 44 (88.0) | 0.7899–0.9701 | 109 (89.3) | 0.8387–0.9482 |
| Biological/organic | 7 (9.7) | 0.0288–0.1656 | 6 (12.0) | 0.0299–0.2101 | 13 (10.7) | 0.0518–0.1613 | |
| Production system | Intensive + Semi-intensive | 0 | 8 (16.0) | 0.0584–0.2616 | 8 (6.6) | 0.0216–0.1095 | |
| Extensive | 12 (16.7) | 0.0806–0.2527 | 7 (14.0) | 0.0438–0.2362 | 19 (15.6) | 0.0914–0.2201 | |
| Semi-extensive | 60 (83.3) | 0.7472–0.9194 | 35 (70.0) | 0.5730–0.8270 | 95 (77.9) | 0.7050–0.8523 |
| Characteristics | Category | Sheep (n = 432) n (%) | 95% CI | Goat (n = 300) n (%) | 95% CI | Total (n = 732) n (%) | 95% CI |
|---|---|---|---|---|---|---|---|
| Sex | Female | 424 (98.1) | 0.96–0.99 | 292 (97.3) | 0.96–0.99 | 716 (97.8) | 0.97–0.99 |
| Male | 8 (1.9) | 0.005–0.03 | 8 (2.7) | 0.008–0.04 | 16 (2.2) | 0.01–0.03 | |
| Age (months) | 0–9 | 12 (2.8) | 0.012–0.043 | 18 (6.0) | 0.033–0.0879 | 30 (4.1) | 0.0266–0.0553 |
| 10–24 | 76 (17.6) | 0.14–0.21 | 75 (25.0) | 0.201–0.299 | 151 (20.6) | 0.1770–0.2356 | |
| 25–72 | 382 (51.4) | 0.85–0.91 | 160 (53.3) | 0.477–0.590 | 382 (52.2) | 0.4857–0.5580 | |
| 73–120 | 110 (25.5) | 0.21–0.29 | 42 (14.0) | 0.1007–0.1793 | 152 (20.8) | 0.1783–0.2370 | |
| >120 | 12 (2.8) | 0.012–0.043 | 5 (1.7) | 0.0022–0.0311 | 17 (2.3) | 0.0123–0.0341 | |
| Breed | No defined breed | 269 (62.3) | 0.577–0.668 | 236 (78.7) | 0.7403–0.8330 | 505 (69.0) | 0.6563–0.7234 |
| Serra da Estrela | 135 (31.3) | 0.269–0.356 | - | 135 (18.4) | 0.2563–0.2125 | ||
| Suffolk | 6 (1.4) | 0.0028–0.0249 | - | 6 (0.8) | 0.0017–0.0147 | ||
| Charolês x Suffolk | 6 (1.4) | 0.0028–0.0249 | - | 6 (0.8) | 0.0017–0.0147 | ||
| Merino Preto | 12 (2.8) | 0.012–0.043 | - | 12 (1.6) | 0.0072–0.0256 | ||
| Churra do Campo | 4 (0.9) | 0.0002–0.0183 | - | 4 (0.5) | 0.0001–0.0108 | ||
| Saanen | - | 8 (2.7) | 0.008–0.04 | 8 (1.3) | 0.0034–0.0185 | ||
| Serpentina | - | 6 (2.0) | 0.0042–0.0358 | 6 (0.8) | 0.0017–0.0147 | ||
| Murciana | - | 16 (5.3) | 0.0279–0.0788 | 16 (2.2) | 0.0113–0.0324 | ||
| Crossed Serrana | - | 16 (5.3) | 0.0279–0.0788 | 16 (2.2 | 0.0113–0.0324 | ||
| Jarmelista | - | 6 (2.0) | 0.0042–0.0358 | 6 (0.8) | 0.0017–0.0147 | ||
| Alpina | - | 6 (2.0) | 0.0042–0.0358 | 6 (0.8) | 0.0017–0.0147 | ||
| Charnequeira | - | 6 (2.0) | 0.0042–0.0358 | 6 (0.8) | 0.0017–0.0147 |
| Bacteria | Sheep (n = 432) n (%) | 95% CI | Goats (n = 300) n (%) | 95% CI | p 2 | Total (n = 732) n (%) | 95% CI |
|---|---|---|---|---|---|---|---|
| Campylobacter spp. | 82 (19.0) | 0.1528–0.2268 | 32 (10.7) | 0.0717–0.1416 | 0.001 | 114 (15.6) | 0.1295–0.1821 |
| C. jejuni | 60 (13.8) | 0.1063–0.1715 | 16 (5.3) | 0.0279–0.0788 | - | 76 (10.4) | 0.0817–0.1259 |
| C. coli | 21 (4.9) | 0.0283–0.0689 | 8 (2.6) | 0.0084–0.0449 | - | 29 (4.0) | 0.0255–0.0537 |
| C. fetus | 1 (0.3) | 0.0000–0.0068 | - | - | 1 (0.1) | 0.0000–0.0040 | |
| Salmonella spp. | 55 (12.7) | 0.0959–0.1587 | 6 (2.0) | 0.0042–0.0358 | <0.001 | 61 (8.3) | 0.0633–0.1034 |
| ESBL E. coli 1 | 23 (5.3) | 0.0321–0.0744 | 15 (5.0) | 0.0253–0.0745 | - | 38 (5.2) | 0.0358–0.0680 |
| Bacteria | Sheep (n = 72) n (%) | 95% CI | Goats (n = 50) n (%) | 95% CI | Total (n = 122) n (%) | 95% CI |
|---|---|---|---|---|---|---|
| Presumptive MRSA 1 | 3 (4.2) | 0.0000–0.0878 | 4 (8.0) | 0.0048–0.1552 | 7 (5.7) | 0.0161–0.0986 |
| mecA 2 | 1 (1.4) | 0.0000–0.0409 | 0 | 1 (0.8) | 0.0000–0.0242 | |
| mecC 2 | 1 (1.4) | 0.0000–0.0409 | 1 (2.0) | 0.0000–0.0588 | 2 (1.6) | 0.0000–0.389 |
| spa 2 | 1 (1.4) | 0.0000–0.0409 | 3 (6.0) | 0.0000–0.1258 | 4 (3.3) | 0.0012–0.0644 |
| scn 2 | 0 | 0 | 0 | |||
| CC398 2 | 0 | 0 | 0 | |||
| PVL 2 | 0 | 0 | 0 |
| Characteristics | Campylobacter spp. | Salmonella spp. | Presumptive E. coli ESBL | Presumptive MRSA | |||||
|---|---|---|---|---|---|---|---|---|---|
| Negative | Positive | Negative | Positive | Negative | Positive | Negative | Positive | ||
| (n = 67) n (%) | (n = 55) n (%) | (n = 87) n (%) | (n = 35) n (%) | (n = 103) n (%) | (n = 19) n (%) | (n = 115) n (%) | (n = 7) n (%) | ||
| Species | p | 0.031 | <0.001 | >0.05 | >0.05 | ||||
| Sheep | 34 (50.7) | 38 (69.1) | 42 (48.3) | 30 (85.7) | 60 (58.3) | 12 (63.2) | 69 (60.0) | 3 (42.9) | |
| Goat | 33 (49.3) | 17 (30.9) | 45 (51.7) | 5 (14.3) | 43 (41.7) | 7 (36.8) | 46 (40.0) | 4 (57.1) | |
| Species association | p | >0.05 | 0.015 | >0.05 | >0.05 | ||||
| Only sheep | 27 (40.3) | 31 (56.3) | 36 (41.4) | 22 (62.9) | 48 (46.6) | 10 (52.6) | 55 (47.8) | 3 (42.9) | |
| Only goat | 23 (34.3) | 12 (21.8) | 32 (36.8) | 3 (8.6) | 29 (28.2) | 6 (31.6) | 31 (27.0) | 4 (57.1) | |
| Sheep + goat | 17 (25.4) | 11 (20.0) | 18 (20.7) | 10 (28.6) | 25 (24.3) | 4 (21.1) | 28 (24.3) | 0 | |
| Other | 0 | 1 (1.8) | 1 (1.1) | 0 | 1 (1.0) | 0 | 1 (0.9) | 0 | |
| District | p | >0.05 | >0.05 | <0.001 | <0.001 | ||||
| Castelo Branco | 15 (22.4) | 6 (10.9) | 19 (21.8) | 2 (5.7) | 16 (15.5) | 5 (26.3) | 20 (17.4) | 1 (14.3) | |
| Coimbra | 6 (9.0) | 5 (9.1) | 6 (6.9) | 5 (14.3) | 11 (10.7) | 0 | 8 (7.0) | 3 (42.9) | |
| Guarda | 22 (32.8) | 23 (41.8) | 31 (35.6) | 14 (40.0) | 41 (39.8) | 4 (21.1) | 45 (39.7) | 0 | |
| Leiria | 10 (14.9) | 3 (5.5) | 9 (10.3) | 4 (11.4) | 6 (5.8) | 7 (36.8) | 10 (8.7) | 3 (42.9) | |
| Viseu | 14 (20.9) | 18 (32.7) | 22 (25.3) | 10 (28.6) | 29 (28.2) | 3 (15.8) | 32 (27.8) | 0 | |
| Production purpose | p | >0.05 | >0.05 | >0.05 | >0.05 | ||||
| Milk | 20 (29.9) | 9 (16.4) | 20 (23.0) | 9 (25.7) | 27 (26.2) | 2 (10.5) | 26 (22.6) | 3 (42.9) | |
| Meat | 31 (46.3) | 31 (56.4) | 47 (54.0) | 15 (42.9) | 50 (48.5) | 12 (63.2) | 59 (51.3) | 3 (42.9) | |
| Milk + Meat | 14 (20.9) | 15 (27.3) | 18 (20.7) | 11 (31.4) | 24 (23.3) | 5 (26.3) | 28 (24.3) | 1 (14.3) | |
| Other * | 0 | 2 (2.3) | 0 | 2 (1.9) | 0 | 2 (1.7) | 0 | ||
| Production type | p | >0.05 | >0.05 | >0.05 | >0.05 | ||||
| Conventional | 57 (85.1) | 52 (94.5) | 76 (87.4) | 33 (94.3) | 92 (89.3) | 17 (89.5) | 103 (89.6) | 6 (85.7) | |
| Biological/organic | 10 (14.9) | 3 (5.4) | 11 (12.6) | 2 (5.7) | 11 (10.7) | 2 (10.5) | 12 (10.4) | 1 (14.3) | |
| Production system | p | <0.001 | >0.05 | 0.014 | <0.001 | ||||
| Intensive/Semi-intensive | 8 (11.9) | 0 | 8 (9.2) | 0 | 5 (4.8) | 3 (15.8) | 6 (5.2) | 2 (28.6) | |
| Extensive | 15 (22.4) | 4 (7.3) | 16 (18.4) | 3 (8.6) | 13 (12.6) | 6 (31.6) | 17 (14.8) | 2 (28.6) | |
| Semi-extensive | 44 (65.7) | 51(92.7) | 63 (72.4) | 32 (91.4) | 85 (82.5) | 10 (52.6) | 92 (80.0) | 3 (42.9) | |
| Bacteria | Cluster 1 (n = 49) (“Resistant”) | Cluster 2 (n = 38) (“Campylobacter”) | Cluster 3 (n = 35) (“Salmonella”) | p | |
|---|---|---|---|---|---|
| E. coli ESBL | Non detected | 81.6 (40) | 92.1 (35) | 80.0 (28) | 0.142 |
| Detected | 18.4 (9) | 7.9 (3) | 20.0 (7) | ||
| Salmonella spp. | Non detected | 100 (49) | 100 (38) | 0 (0) | <0.001 |
| Detected | 0 (0) | 0 (0) | 100.0 (35) | ||
| Campylobacter spp. | Non detected | 100 (49) | 0 (0) | 51.4 (18) | <0.001 |
| Detected | 0 (0) | 100 (38) | 48.6 (17) | ||
| MRSA | Negative | 87.8 (43) | 97.4 (37) | 100 (35) | 0.018 |
| Presumptive positive | 12.2 (6) | 2.6 (1) | 0 (90) | ||
| Clusters | Category | Significance | OR | OR (%) | |
|---|---|---|---|---|---|
| “Campylobacter” versus “Resistant” cluster | Animal species (compared to sheep) | Goat | 0.028 | 0.331 | 66.9 |
| District (compared to Viseu) | Castelo Branco | 0.007 | 0.123 | 87.7 | |
| District (compared to Viseu) | Coimbra | 0.163 | 0.181 | 81.9 | |
| District (compared to Viseu) | Guarda | 0.762 | 0.835 | 16.5 | |
| District (compared to Viseu) | Leiria | 0.149 | 0.283 | 71.7 | |
| Farmer’s practices | - | 0.017 | 0.704 | 29.6 | |
| “Salmonella” versus “Resistant” cluster | Animal species (compared to sheep) | Goat | <0.001 | 0.075 | 92.5 |
| District (compared to sheep) | Castelo Branco | 0.004 | 0.060 | 94.0 | |
| District (compared to sheep) | Coimbra | 0.901 | 0.892 | 10.8 | |
| District (compared to sheep) | Guarda | 0.781 | 0.833 | 16.7 | |
| District (compared to sheep) | Leiria | 0.294 | 0.389 | 61.1 | |
| Farmer’s practices | - | 0.60 | 0.737 | 26.3 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, M.A.; Baptista, A.L.; Cruz, R.; Esteves, F.; Amaro, A.; Mesquita, J.R.; Almeida, E.; Braguez, J.; Malva, M.; Pires, A.F.A. Cross-Sectional Study on Zoonotic Bacteria Carriage by Small Ruminants from Portugal’s Central Region. Pathogens 2025, 14, 1081. https://doi.org/10.3390/pathogens14111081
Pereira MA, Baptista AL, Cruz R, Esteves F, Amaro A, Mesquita JR, Almeida E, Braguez J, Malva M, Pires AFA. Cross-Sectional Study on Zoonotic Bacteria Carriage by Small Ruminants from Portugal’s Central Region. Pathogens. 2025; 14(11):1081. https://doi.org/10.3390/pathogens14111081
Chicago/Turabian StylePereira, Maria Aires, Alexandra Lameira Baptista, Rita Cruz, Fernando Esteves, Ana Amaro, João R. Mesquita, Elizabete Almeida, Joana Braguez, Madalena Malva, and Alda F. A. Pires. 2025. "Cross-Sectional Study on Zoonotic Bacteria Carriage by Small Ruminants from Portugal’s Central Region" Pathogens 14, no. 11: 1081. https://doi.org/10.3390/pathogens14111081
APA StylePereira, M. A., Baptista, A. L., Cruz, R., Esteves, F., Amaro, A., Mesquita, J. R., Almeida, E., Braguez, J., Malva, M., & Pires, A. F. A. (2025). Cross-Sectional Study on Zoonotic Bacteria Carriage by Small Ruminants from Portugal’s Central Region. Pathogens, 14(11), 1081. https://doi.org/10.3390/pathogens14111081

