In Vitro Characterization of Vaccine Strain-like Porcine Reproductive and Respiratory Syndrome Virus Strains Isolated from Weaned Pigs Exhibiting Respiratory Symptoms
Abstract
1. Introduction
2. Materials and Methods
2.1. Cells and Viruses
2.2. Samples
2.3. Virus Isolation
2.4. Plaque Formation Assays with Immunostaining
2.5. Virus Titration
2.6. Virus Replication Kinetics
2.7. RNA Extraction
2.8. Nanopore Sequencing
2.9. Determination of the 5′ Terminal Sequence of PRRSV Genome
2.10. Determination of the 3′ Terminal Sequence of PRRSV Genome
3. Results
3.1. Cytopathic Effect by the Field Isolates
3.2. Replication Kinetics of the Field Isolates
3.3. Genome Analysis of the Field Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lunney, J.K.; Fang, Y.; Ladinig, A.; Chen, N.; Li, Y.; Rowland, B.; Renukaradhya, G.J. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): Pathogenesis and Interaction with the Immune System. Annu. Rev. Anim. Biosci. 2016, 4, 129–154. [Google Scholar] [CrossRef]
- Wills, R.W.; Zimmerman, J.J.; Yoon, K.J.; Swenson, S.L.; Hoffman, L.J.; McGinley, M.J.; Hill, H.T.; Platt, K.B. Porcine reproductive and respiratory syndrome virus: Routes of excretion. Vet. Microbiol. 1997, 57, 69–81. [Google Scholar] [CrossRef]
- Wills, R.W.; Doster, A.R.; Galeota, J.A.; Sur, J.H.; Osorio, F.A. Duration of infection and proportion of pigs persistently infected with porcine reproductive and respiratory syndrome virus. J. Clin. Microbiol. 2003, 41, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Karniychuk, U.U.; Geldhof, M.; Vanhee, M.; Van Doorsselaere, J.; Saveleva, T.A.; Nauwynck, H.J. Pathogenesis and antigenic characterization of a new East European subtype 3 porcine reproductive and respiratory syndrome virus isolate. BMC Vet. Res. 2010, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zeng, J.; Li, X.; Zhang, Z.; Din, A.U.; Zhao, K.; Zhou, Y. High incidence and characteristic of PRRSV and resistant bacterial Co-Infection in pig farms. Microb. Pathog. 2020, 149, 104536. [Google Scholar] [CrossRef] [PubMed]
- Nathues, H.; Alarcon, P.; Rushton, J.; Jolie, R.; Fiebig, K.; Jimenez, M.; Geurts, V.; Nathues, C. Cost of porcine reproductive and respiratory syndrome virus at individual farm level—An economic disease model. Prev. Vet. Med. 2017, 142, 16–29. [Google Scholar] [CrossRef]
- Wensvoort, G.; de Kluyver, E.P.; Pol, J.M.; Wagenaar, F.; Moormann, R.J.; Hulst, M.M.; Bloemraad, R.; den Besten, A.; Zetstra, T.; Terpstra, C. Lelystad virus, the cause of porcine epidemic abortion and respiratory syndrome: A review of mystery swine disease research at Lelystad. Vet. Microbiol. 1992, 33, 185–193. [Google Scholar] [CrossRef]
- Mardassi, H.; Mounir, S.; Dea, S. Identification of major differences in the nucleocapsid protein genes of a Quebec strain and European strains of porcine reproductive and respiratory syndrome virus. J. Gen. Virol. 1994, 75 Pt 3, 681–685. [Google Scholar] [CrossRef]
- Morozov, I.; Meng, X.J.; Paul, P.S. Sequence analysis of open reading frames (ORFs) 2 to 4 of a U.S. isolate of porcine reproductive and respiratory syndrome virus. Arch. Virol. 1995, 140, 1313–1319. [Google Scholar] [CrossRef]
- Nelsen, C.J.; Murtaugh, M.P.; Faaberg, K.S. Porcine reproductive and respiratory syndrome virus comparison: Divergent evolution on two continents. J. Virol. 1999, 73, 270–280. [Google Scholar] [CrossRef]
- Kuhn, J.H.; Lauck, M.; Bailey, A.L.; Shchetinin, A.M.; Vishnevskaya, T.V.; Bao, Y.; Ng, T.F.; LeBreton, M.; Schneider, B.S.; Gillis, A.; et al. Reorganization and expansion of the nidoviral family Arteriviridae. Arch. Virol. 2016, 161, 755–768. [Google Scholar] [CrossRef] [PubMed]
- Dokland, T. The structural biology of PRRSV. Virus Res. 2010, 154, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Van Doorsselaere, J.; Brar, M.S.; Shi, M.; Karniychuk, U.; Leung, F.C.; Nauwynck, H.J. Complete genome characterization of a East European Type 1 subtype 3 porcine reproductive and respiratory syndrome virus. Virus Genes 2012, 44, 51–54. [Google Scholar] [CrossRef]
- Goldberg, T.L.; Hahn, E.C.; Weigel, R.M.; Scherba, G. Genetic, geographical and temporal variation of porcine reproductive and respiratory syndrome virus in Illinois. J. Gen. Virol. 2000, 81, 171–179. [Google Scholar] [CrossRef]
- Key, K.F.; Haqshenas, G.; Guenette, D.K.; Swenson, S.L.; Toth, T.E.; Meng, X.J. Genetic variation and phylogenetic analyses of the ORF5 gene of acute porcine reproductive and respiratory syndrome virus isolates. Vet. Microbiol. 2001, 83, 249–263. [Google Scholar] [CrossRef]
- Gagnon, C.A.; Dea, S. Differentiation between porcine reproductive and respiratory syndrome virus isolates by restriction fragment length polymorphism of their ORFs 6 and 7 genes. Can. J. Vet. Res. 1998, 62, 110–116. [Google Scholar]
- Le Gall, A.; Legeay, O.; Bourhy, H.; Arnauld, C.; Albina, E.; Jestin, A. Molecular variation in the nucleoprotein gene (ORF7) of the porcine reproductive and respiratory syndrome virus (PRRSV). Virus Res. 1998, 54, 9–21. [Google Scholar] [CrossRef]
- Murtaugh, M.P.; Stadejek, T.; Abrahante, J.E.; Lam, T.T.; Leung, F.C. The ever-expanding diversity of porcine reproductive and respiratory syndrome virus. Virus Res. 2010, 154, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Fang, L.; Xu, Z.; Liu, S.; Gao, J.; Jiang, Y.; Chen, H.; Xiao, S. Recombination in vaccine and circulating strains of porcine reproductive and respiratory syndrome viruses. Emerg. Infect. Dis. 2009, 15, 2032–2035. [Google Scholar] [CrossRef]
- Martin-Valls, G.E.; Kvisgaard, L.K.; Tello, M.; Darwich, L.; Cortey, M.; Burgara-Estrella, A.J.; Hernandez, J.; Larsen, L.E.; Mateu, E. Analysis of ORF5 and full-length genome sequences of porcine reproductive and respiratory syndrome virus isolates of genotypes 1 and 2 retrieved worldwide provides evidence that recombination is a common phenomenon and may produce mosaic isolates. J. Virol. 2014, 88, 3170–3181. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, X.; Zhai, J.; Wei, C.; Dai, A.; Yang, X.; Luo, M. Recombination in JXA1-R vaccine and NADC30-like strain of porcine reproductive and respiratory syndrome viruses. Vet. Microbiol. 2017, 204, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Chen, Q.; Wang, L.; Madson, D.; Harmon, K.; Gauger, P.; Zhang, J.; Li, G. Recombination between Vaccine and Field Strains of Porcine Reproductive and Respiratory Syndrome Virus. Emerg. Infect. Dis. 2019, 25, 2335–2337. [Google Scholar] [CrossRef] [PubMed]
- Wesley, R.D.; Mengeling, W.L.; Lager, K.M.; Clouser, D.F.; Landgraf, J.G.; Frey, M.L. Differentiation of a porcine reproductive and respiratory syndrome virus vaccine strain from North American field strains by restriction fragment length polymorphism analysis of ORF 5. J. Vet. Diagn. Investig. 1998, 10, 140–144. [Google Scholar] [CrossRef]
- Cha, S.H.; Chang, C.C.; Yoon, K.J. Instability of the restriction fragment length polymorphism pattern of open reading frame 5 of porcine reproductive and respiratory syndrome virus during sequential pig-to-pig passages. J. Clin. Microbiol. 2004, 42, 4462–4467. [Google Scholar] [CrossRef]
- Lu, Z.H.; Archibald, A.L.; Ait-Ali, T. Beyond the whole genome consensus: Unravelling of PRRSV phylogenomics using next generation sequencing technologies. Virus Res. 2014, 194, 167–174. [Google Scholar] [CrossRef]
- Frias-De-Diego, A.; Jara, M.; Pecoraro, B.M.; Crisci, E. Whole Genome or Single Genes? A Phylodynamic and Bibliometric Analysis of PRRSV. Front. Vet. Sci. 2021, 8, 658512. [Google Scholar] [CrossRef]
- Diep, N.V.; Hayakawa-Sugaya, Y.; Ishikawa, S.; Kawaguchi, H.; Suda, Y.; Esaki, M.; Okuya, K.; Ozawa, M. Establishment of an Immortalized Porcine Alveolar Macrophage Cell Line That Supports Efficient Replication of Porcine Reproductive and Respiratory Syndrome Viruses. Pathogens 2024, 13, 1026. [Google Scholar] [CrossRef]
- Fukunaga, W.; Hayakawa-Sugaya, Y.; Koike, F.; Van Diep, N.; Kojima, I.; Yoshida, Y.; Suda, Y.; Masatani, T.; Ozawa, M. Newly-designed primer pairs for the detection of type 2 porcine reproductive and respiratory syndrome virus genes. J. Virol. Methods 2021, 291, 114071. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Tillett, D.; Burns, B.P.; Neilan, B.A. Optimized rapid amplification of cDNA ends (RACE) for mapping bacterial mRNA transcripts. BioTechniques 2000, 28, 448–456. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Gao, P.; Liu, Y.; Wang, H.; Chai, Y.; Weng, W.; Zhang, Y.; Zhou, L.; Ge, X.; Guo, X.; Han, J.; et al. Viral evasion of PKR restriction by reprogramming cellular stress granules. Proc. Natl. Acad. Sci. USA 2022, 119, e2201169119. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Luo, Q.; Zheng, Y.; Kong, W.; Huang, L.; Zhao, M. Variations in NSP1 of Porcine Reproductive and Respiratory Syndrome Virus Isolated in China from 1996 to 2022. Genes 2023, 14, 1435. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Li, K.; Li, T.; Zhao, G.; Zhou, S.; Li, H.; Li, J.; Weng, C. Screening of PRRSV- and ASFV-encoded proteins involved in the inflammatory response using a porcine iGLuc reporter. J. Virol. Methods 2020, 285, 113958. [Google Scholar] [CrossRef]
- Pang, Y.; Zhou, Y.; Wang, Y.; Sun, Z.; Liu, J.; Li, C.; Xiao, S.; Fang, L. Porcine Reproductive and Respiratory Syndrome Virus nsp1beta Stabilizes HIF-1alpha to Enhance Viral Replication. Microbiol. Spectr. 2022, 10, e0317322. [Google Scholar] [CrossRef]
- Fang, Y.; Treffers, E.E.; Li, Y.; Tas, A.; Sun, Z.; van der Meer, Y.; de Ru, A.H.; van Veelen, P.A.; Atkins, J.F.; Snijder, E.J.; et al. Efficient -2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein. Proc. Natl. Acad. Sci. USA 2012, 109, E2920–E2928. [Google Scholar] [CrossRef]
- Li, Y.; Treffers, E.E.; Napthine, S.; Tas, A.; Zhu, L.; Sun, Z.; Bell, S.; Mark, B.L.; van Veelen, P.A.; van Hemert, M.J.; et al. Transactivation of programmed ribosomal frameshifting by a viral protein. Proc. Natl. Acad. Sci. USA 2014, 111, E2172–E2181. [Google Scholar] [CrossRef]
- Li, Y.; Shang, P.; Shyu, D.; Carrillo, C.; Naraghi-Arani, P.; Jaing, C.J.; Renukaradhya, G.J.; Firth, A.E.; Snijder, E.J.; Fang, Y. Nonstructural proteins nsp2TF and nsp2N of porcine reproductive and respiratory syndrome virus (PRRSV) play important roles in suppressing host innate immune responses. Virology 2018, 517, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Kim, D.Y.; Ropp, S.; Steen, P.; Christopher-Hennings, J.; Nelson, E.A.; Rowland, R.R. Heterogeneity in Nsp2 of European-like porcine reproductive and respiratory syndrome viruses isolated in the United States. Virus Res. 2004, 100, 229–235. [Google Scholar] [CrossRef]
- Yu, F.; Yan, Y.; Shi, M.; Liu, H.Z.; Zhang, H.L.; Yang, Y.B.; Huang, X.Y.; Gauger, P.C.; Zhang, J.; Zhang, Y.H.; et al. Phylogenetics, Genomic Recombination, and NSP2 Polymorphic Patterns of Porcine Reproductive and Respiratory Syndrome Virus in China and the United States in 2014–2018. J. Virol. 2020, 94, e01813-19. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Rutherford, M.S.; Faaberg, K.S. The porcine reproductive and respiratory syndrome virus nsp2 cysteine protease domain possesses both trans- and cis-cleavage activities. J. Virol. 2009, 83, 9449–9463. [Google Scholar] [CrossRef]
- Wissink, E.H.J.; Kroese, M.V.; Maneschijn-Bonsing, J.G.; Meulenberg, J.J.M.; van Rijn, P.A.; Rijsewijk, F.A.M.; Rottier, P.J.M. Significance of the oligosaccharides of the porcine reproductive and respiratory syndrome virus glycoproteins GP2a and GP5 for infectious virus production. J. Gen. Virol. 2004, 85, 3715–3723. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Zhang, Q.; Chen, Y.; Shen, H.; Yang, G.; Jiang, P.; Chen, J.L.; Lin, L. The emergence of a novel recombinant porcine reproductive and respiratory syndrome virus with an amino acid insertion in GP5 protein. Microb. Pathog. 2020, 149, 104573. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, J.; Leme, R.A.; Durazo-Martinez, K.; Sillman, S.; Workman, A.M.; Vu, H.L.X. A Single Amino Acid Substitution in Porcine Reproductive and Respiratory Syndrome Virus Glycoprotein 2 Significantly Impairs Its Infectivity in Macrophages. Viruses 2022, 14, 2822. [Google Scholar] [CrossRef] [PubMed]
- Shin, G.E.; Park, J.Y.; Lee, K.K.; Ko, M.K.; Ku, B.K.; Park, C.K.; Jeoung, H.Y. Genetic diversity of porcine reproductive and respiratory syndrome virus and evaluation of three one-step real-time RT-PCR assays in Korea. BMC Vet. Res. 2022, 18, 327. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, Z.; Xu, T.; Zhou, Y.; Li, J.; Deng, H.; Li, F.; Xu, L.; Sun, X.; Zhu, L. Molecular Characterization of the Nsp2 and ORF5s of PRRSV Strains in Sichuan China during 2012–2020. Animals 2022, 12, 3309. [Google Scholar] [CrossRef]
- Luo, Q.; Zheng, Y.; He, Y.; Li, G.; Zhang, H.; Sha, H.; Zhang, Z.; Huang, L.; Zhao, M. Genetic variation and recombination analysis of the GP5 (GP5a) gene of PRRSV-2 strains in China from 1996 to 2022. Front. Microbiol. 2023, 14, 1238766. [Google Scholar] [CrossRef]
- Luo, Q.; Zheng, Y.; Zhang, H.; Yang, Z.; Sha, H.; Kong, W.; Zhao, M.; Wang, N. Research Progress on Glycoprotein 5 of Porcine Reproductive and Respiratory Syndrome Virus. Animals 2023, 13, 813. [Google Scholar] [CrossRef]
- Bai, W.; Wang, Z.; Sun, P.; Zhang, J.; Bao, H.; Cao, Y.; Chang, Y.; Liu, Z.; Li, D.; Lu, Z. The molecular characteristic analysis of PRRSV GSWW/2015 strain and its pathogenicity to pigs. BMC Vet. Res. 2018, 14, 240. [Google Scholar] [CrossRef]
- Benfield, D.A.; Nelson, E.; Collins, J.E.; Harris, L.; Goyal, S.M.; Robison, D.; Christianson, W.T.; Morrison, R.B.; Gorcyca, D.; Chladek, D. Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332). J. Vet. Diagn. Investig. 1992, 4, 127–133. [Google Scholar] [CrossRef]
- Mardassi, H.; Mounir, S.; Dea, S. Molecular analysis of the ORFs 3 to 7 of porcine reproductive and respiratory syndrome virus, Quebec reference strain. Arch. Virol. 1995, 140, 1405–1418. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, J.; Peng, J.; An, T.; Leng, C.; Sun, Y.; Guo, X.; Ge, X.; Tian, Z.; Yang, H. Characterisation of novel linear antigen epitopes on North American-type porcine reproductive and respiratory syndrome virus M protein. Arch. Virol. 2014, 159, 3021–3028. [Google Scholar] [CrossRef]
- Garcia-Nicolas, O.; Baumann, A.; Vielle, N.J.; Gomez-Laguna, J.; Quereda, J.J.; Pallares, F.J.; Ramis, G.; Carrasco, L.; Summerfield, A. Virulence and genotype-associated infectivity of interferon-treated macrophages by porcine reproductive and respiratory syndrome viruses. Virus Res. 2014, 179, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Ogno, G.; Sautter, C.A.; Canelli, E.; Garcia-Nicolas, O.; Stadejek, T.; Martelli, P.; Borghetti, P.; Summerfield, A. In vitro characterization of PRRSV isolates with different in vivo virulence using monocyte-derived macrophages. Vet. Microbiol. 2019, 231, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, T.; Zhang, X.; Liu, X.; Ren, L. Co-Infection of Swine with Porcine Circovirus Type 2 and Other Swine Viruses. Viruses 2019, 11, 185. [Google Scholar] [CrossRef] [PubMed]
- Obradovic, M.R.; Segura, M.; Segales, J.; Gottschalk, M. Review of the speculative role of co-infections in Streptococcus suis-associated diseases in pigs. Vet. Res. 2021, 52, 49. [Google Scholar] [CrossRef]
- Kristensen, C.S.; Kvisgaard, L.K.; Pawlowski, M.; Holmgaard Carlsen, S.; Hjulsager, C.K.; Heegaard, P.M.H.; Botner, A.; Stadejek, T.; Haugegaard, S.; Larsen, L.E. Efficacy and safety of simultaneous vaccination with two modified live virus vaccines against porcine reproductive and respiratory syndrome virus types 1 and 2 in pigs. Vaccine 2018, 36, 227–236. [Google Scholar] [CrossRef]
Name | Nucleotide Sequence (5′ to 3′) | Position * | Reference |
---|---|---|---|
PRRSV-846R | GAGCCGGTTCGCAATCAACT | 865 to 846 | This study |
PRRSV-687R | GTCTTCAGGCTTGGGTCTCT | 706 to 687 | This study |
PRRSV-M-F | TTGTGCTTGCTAGGCCGCA | 14,676 to 14,694 | This study |
DT88 | GAAGAGAAGGTGGAAATGGCGTTTTGG | (adaptor oligonucleotide) | [30] |
DT89 | CCAAAACGCCATTTCCACCTTCTCTTC | (adaptor oligonucleotide) | [30] |
Gene | Sequence Similarity to the Counterpart from the Vaccine Strain of: | |||
---|---|---|---|---|
KU-IG21-1 Strain in: | KU-IG23-1 Strain in: | |||
Nucleotide | Amino Acid | Nucleotide | Amino Acid | |
5′-UTR | 98.95 | - * | 100.0 | - |
ORF1a gene | 99.79 | 99.76 | 99.73 | 99.56 |
ORF1b gene | 99.91 | 99.93 | 99.89 | 99.86 |
ORF2 gene | 99.61 | 99.22 | 99.48 | 98.83 |
ORF3 gene | 99.48 | 98.82 | 99.22 | 98.04 |
ORF4 gene | 99.63 | 100.0 | 99.63 | 100.0 |
ORF5 gene | 99.34 | 99.00 | 99.34 | 99.00 |
ORF6 gene | 99.62 | 98.86 | 99.81 | 99.43 |
ORF7 gene | 99.73 | 100.0 | 100.0 | 100.0 |
3′-UTR | 100.0 | - | 99.34 | - |
Entire gene | 99.70% | 99.77% | 99.66% | 99.61% |
Protein | Position | Amino Acid From: | ||
---|---|---|---|---|
Vaccine Strain | KU-IG21-1 Strain | KU-IG23-1 Strain | ||
Nsp1β | 103 | Q | R | - |
141 | L | - * | P | |
151 | F | S | S | |
169 | S | - | P | |
Nsp2 | 27 | R | W | - |
63 | A | - | V | |
353 | T | I | - | |
361 | K | - | T | |
558 | S | - | N | |
632 | I | - | F | |
723 | N | D | D | |
827 | G | - | (deletion) | |
985 | I | V | - | |
1122 | K | - | E | |
Nsp4 | 279 | I | - | M |
Nsp9 | 108 | H | - | Y |
Nsp10 | 306 | H | Y | Y |
GP2 | 10 | F | - | L |
122 | A | - | S | |
188 | N | S | - | |
237 | I | - | M | |
252 | L | P | - | |
GP3 | 30 | T | - | A |
63 | T | A | - | |
85 | D | - | N | |
94 | I | V | V | |
176 | G | - | D | |
215 | I | T | T | |
GP5 | 10 | C | - | Y |
58 | N | D | - | |
151 | G | I | I | |
M | 10 | H | R | - |
16 | E | Q | Q |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goda, I.; Inoue, A.; Kojima, I.; Esaki, M.; Hasegawa, T.; Okuya, K.; Ozawa, M. In Vitro Characterization of Vaccine Strain-like Porcine Reproductive and Respiratory Syndrome Virus Strains Isolated from Weaned Pigs Exhibiting Respiratory Symptoms. Pathogens 2025, 14, 990. https://doi.org/10.3390/pathogens14100990
Goda I, Inoue A, Kojima I, Esaki M, Hasegawa T, Okuya K, Ozawa M. In Vitro Characterization of Vaccine Strain-like Porcine Reproductive and Respiratory Syndrome Virus Strains Isolated from Weaned Pigs Exhibiting Respiratory Symptoms. Pathogens. 2025; 14(10):990. https://doi.org/10.3390/pathogens14100990
Chicago/Turabian StyleGoda, Inori, Akiha Inoue, Isshu Kojima, Mana Esaki, Taichi Hasegawa, Kosuke Okuya, and Makoto Ozawa. 2025. "In Vitro Characterization of Vaccine Strain-like Porcine Reproductive and Respiratory Syndrome Virus Strains Isolated from Weaned Pigs Exhibiting Respiratory Symptoms" Pathogens 14, no. 10: 990. https://doi.org/10.3390/pathogens14100990
APA StyleGoda, I., Inoue, A., Kojima, I., Esaki, M., Hasegawa, T., Okuya, K., & Ozawa, M. (2025). In Vitro Characterization of Vaccine Strain-like Porcine Reproductive and Respiratory Syndrome Virus Strains Isolated from Weaned Pigs Exhibiting Respiratory Symptoms. Pathogens, 14(10), 990. https://doi.org/10.3390/pathogens14100990