From Patterns to Projections: A Spatiotemporal Distribution of Drug-Resistant Tuberculosis in Paraná, Brazil (2012–2023)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Scenario
2.2. Participants and Data Sources
2.3. Data Analysis
2.3.1. Descriptive and Prevalence
2.3.2. Temporal Trend
2.3.3. Spatial
2.3.4. Spatiotemporal
2.3.5. Forecasting
2.4. Software
2.5. Ethical Statement
3. Results
3.1. Descriptive and Prevalence Analysis
3.2. Temporal Trend Analysis
3.3. Spatial Analysis
3.4. Spatiotemporal Analysis
3.5. Forecast
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DATASUS | Department of Informatics of the Brazilian Unified Health System |
DR-TB | Drug-resistant tuberculosis |
IBGE | Brazilian Institute of Geography and Statistics |
IPARDES | Paraná Institute for Economic and Social Development |
INH | Isoniazid |
INHR | Isoniazid resistance |
LACEN-PR | Central Public Health Laboratory of Paraná |
LISA | Local Indicators of Spatial Association |
LPA | Line Probe Assay |
MDR-TB | Multidrug-resistant tuberculosis |
PR | Prevalence Ratio |
pre-XDR-TB | Pre-extensively drug-resistant tuberculosis |
RR | Relative risk |
SARIMA | Seasonal Autoregressive Integrated Moving Average |
SINAN | Notifiable Diseases Information System |
SUS | Universal Public Healthcare System/Unified Health System |
TB | Tuberculosis |
RIF | Rifampicin |
RIFR | Rifampicin resistance |
XDR-TB | Extensively drug-resistant tuberculosis |
WHO | World Health Organization |
References
- Ou, Z.J.; Yu, D.F.; Liang, Y.H.; He, W.Q.; Li, Y.Z.; Meng, Y.X.; Xiong, H.S.; Zhang, M.Y.; He, H.; Gao, Y.H.; et al. Trends in burden of multidrug-resistant tuberculosis in countries, regions, and worldwide from 1990 to 2017: Results from the Global Burden of Disease study. Infect. Dis. Poverty 2021, 10, 24. [Google Scholar] [CrossRef]
- Salari, N.; Kanjoori, A.H.; Hosseinian-Far, A.; Hasheminezhad, R.; Mansouri, K.; Mohammadi, M. Global prevalence of drug-resistant tuberculosis: A systematic review and meta-analysis. Infect. Dis. Poverty 2023, 12, 57. [Google Scholar] [CrossRef]
- Bertagnolio, S.; Dobreva, Z.; Centner, C.M.; Olaru, I.D.; Donà, D.; Burzo, S.; Huttner, B.D.; Chaillon, A.; Gebreselassie, N.; Wi, T.; et al. WHO global research priorities for antimicrobial resistance in human health. Lancet Microbe 2024, 5, 100902. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report 2024; WHO: Geneva, Switzerland, 2024; p. 68. ISBN 978-92-4-010153-1. [Google Scholar]
- Brazil, Ministry of Health. Manual of Recommendations for Tuberculosis Control in Brazil, 2nd ed.; Ministry of Health: Brasília, Brazil, 2019; p. 366. [Google Scholar]
- Brazil, Ministry of Health. DATASUS—Health Information Department. Tuberculosis Cases—Since 2001 (SINAN). Available online: https://datasus.saude.gov.br/acesso-a-informacao/casos-de-tuberculose-desde-2001-sinan/ (accessed on 19 March 2025).
- Brazil, Ministry of Health. Tuberculosis Epidemiological Bulletin 2024; Ministry of Health: Brasília, Brazil, 2024; p. 72. [Google Scholar]
- Brazil, Ministry of Health. Tuberculosis Quick Diagnostic Test Network in Brazil: First Year of Implementation—2015; Ministry of Health: Brasília, Brazil, 2015; p. 63. [Google Scholar]
- Salvato, R.S. Epidemiologia Molecular e Genômica de Mycobacterium tuberculosis na Região Sul do Brasil. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2022; p. 121. [Google Scholar]
- Brazilian Institute of Geography and Statistics (IBGE). Cidades e Estados. Paraná. IBGE. 2025. Available online: https://www.ibge.gov.br/cidades-e-estados/pr (accessed on 19 March 2025).
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- Brazil, Ministry of Health. SINANWEB—Official Website. Tuberculosis. 2025. Available online: https://portalsinan.saude.gov.br/images/documentos/Agravos/Tuberculose/DICI_DADOS_Tuberculose.pdf (accessed on 1 March 2025).
- Brazil, Ministry of Health. DATASUS—Health Information Department. File Transfer—DATASUS. 2025. Available online: https://datasus.saude.gov.br/transferencia-de-arquivos/ (accessed on 1 March 2025).
- Brazil, Ministry of Health. Notifiable Diseases Information System (SINAN). Available online: https://portalsinan.saude.gov.br (accessed on 3 February 2025).
- Paraná Institute of Economic and Social Development (IPARDES). Census. 2025. Available online: https://www.ipardes.pr.gov.br/Pagina/Tabelas-Censos-Demograficos (accessed on 20 March 2025).
- Brazilian Institute of Geography and Statistics (IBGE). 2022 Census Overview; IBGE: Brasília, Brazil, 2025. Available online: https://censo2022.ibge.gov.br/panorama/ (accessed on 20 March 2025).
- Brazilian Institute of Geography and Statistics (IBGE). Continuous Cartographic Base of Brazil—1:250,000 Scale, 2023 version; IBGE: Rio de Janeiro, Brazil, 2023. Available online: https://www.ibge.gov.br/geociencias/cartas-e-mapas/bases-cartograficas-continuas/15759-brasil.html (accessed on 20 March 2025).
- Brazil, Ministry of Health. National Plan for the End of Tuberculosis as a Public Health Problem: Strategies for 2021–2025; Ministry of Health: Brasília, Brazil, 2021; p. 68. [Google Scholar]
- Brazil, Ministry of Health. Guidelines: Good Laboratory Practices for Tuberculosis and Other Mycobacteria in Brazil; Ministry of Health: Brasília, Brazil, 2022; p. 492. [Google Scholar]
- Cepheid. Enabling Access to Molecular Diagnostic Testing Everywhere. Xpert® MTB/RIF Ultra. 2025. Available online: https://www.cepheid.com/pt-PT/tests/tb-emerging-infectious-diseases/xpert-mtb-rif-ultra.html (accessed on 10 May 2025).
- Brazil, Ministry of Health. Technical Recommendations for Report and Interpretation of the Line Probe Assay—LPA for Tuberculosis; Ministry of Health: Brasília, Brazil, 2023; p. 26. [Google Scholar]
- Anselin, L. GeoDa Workbook: Chapter 6A—Local Spatial Autocorrelation. 2020. Available online: https://geodacenter.github.io/workbook/6a_local_auto/lab6a.html#references (accessed on 25 May 2025).
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An introduction to spatial data analysis. Geogr. Anal. 2006, 38, 5–22. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Kulldorff, M.; Huang, L.; Konty, K. A scan statistic for continuous data based on the normal probability model. Int. J. Health Geogr. 2009, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Kulldorff, M. SaTScan—Software for the Spatial, Temporal, and Space-Time Scan Statistics; Version 10.3.2; Information Management Services, Inc.: Rockville, MD, USA, 2025; Available online: https://www.satscan.org/ (accessed on 25 May 2025).
- Zheng, Y.; Zhang, L.; Wang, L.; Rifhat, R. Statistical methods for predicting tuberculosis incidence based on data from Guangxi, China. BMC Infect. Dis. 2020, 20, 300. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Z.; Wang, M.; Cui, H.; Wang, Y.; Wu, J.; Qi, J.; Pan, K.; Sui, D.; Liu, P.; Xu, A. Spatiotemporal characteristics and the epidemiology of tuberculosis in China from 2004 to 2017 by the nationwide surveillance system. BMC Public Health 2020, 20, 1284. [Google Scholar] [CrossRef]
- Li, Z.Q.; Pan, H.Q.; Liu, Q.; Song, H.; Wang, J.M. Comparing the performance of time series models with or without meteorological factors in predicting incident pulmonary tuberculosis in eastern China. Infect. Dis. Poverty 2020, 9, 151. [Google Scholar] [CrossRef] [PubMed]
- Yun, W.; Huijuan, C.; Long, L.; Xiaolong, L.; Aihua, Z. Time trend prediction and spatial–temporal analysis of multidrug-resistant tuberculosis in Guizhou Province, China, during 2014–2020. BMC Infect. Dis. 2022, 22, 525. [Google Scholar] [CrossRef]
- Tavares, R.B.V.; Berra, T.Z.; Alves, Y.M.; Propolin, M.A.P.; Ramos, A.C.V.; Tartaro, A.F.; de Souza, C.F.; Arcêncio, R.A. Unsuccessful tuberculosis treatment outcomes across Brazil’s geographical landscape before and during the COVID-19 pandemic: Are we truly advancing toward the sustainable development/end TB goal? Infect. Dis. Poverty 2024, 13, 17. [Google Scholar] [CrossRef]
- Santos, M.S.; Berra, T.Z.; Scholze, A.R.; Delpino, F.M.; Ramos, A.C.; Alves, Y.M.; da Costa, F.B.; de Almeida Crispim, J.D.; Giacomet, C.L.; Moura, H.S.; et al. Trend and spatial distribution of drug-resistant tuberculosis in liberty-deprived populations in the state of Paraná, Brazil. Trop. Med. Infect. Dis. 2022, 7, 266. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, J.R.A.; Pelissari, D.M.; Diaz-Quijano, F.A. How has the municipal availability of the GeneXpert®MTB/RIF system affected the detection of drug-resistant tuberculosis in Brazil? Trop. Med. Int. Health 2024, 29, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Malacarne, J.; Heirich, A.S.; Cunha, E.A.; Kolte, I.V.; Souza-Santos, R.; Basta, P.C. Performance of diagnostic tests for pulmonary tuberculosis in indigenous populations in Brazil: The contribution of Rapid Molecular Testing. J. Bras. Pneumol. 2019, 45, e20180185. [Google Scholar] [CrossRef]
- Villalva-Serra, K.; Barreto-Duarte, B.; Miguez-Pinto, J.P.; Queiroz, A.T.; Rodrigues, M.M.; Rebeiro, P.F.; Amorim, G.; Cordeiro-Santos, M.; Sterling, T.R.; Araújo-Pereira, M.; et al. Impact of Xpert MTB/RIF implementation in tuberculosis case detection and control in Brazil: A nationwide intervention time-series analysis (2011–2022). Lancet Reg. Health Am. 2024, 36, 100804. [Google Scholar] [CrossRef] [PubMed]
- Naves, E.F.; Andrade, R.L.; Faria, M.G.; Magnabosco, G.T.; Bonfim, R.O.; Ferreira, M.R.; Bollela, V.R.; Monroe, A.A. Use of the rapid molecular test for tuberculosis among people deprived of liberty: A scoping review. Text Context Nurs. 2024, 33, e20230288. [Google Scholar] [CrossRef]
- Berra, T.Z.; Bruce, A.T.; Alves, Y.M.; Ramos, A.C.; Giacomet, C.L.; Arcêncio, R.A. Impact of the GeneXpert® MTB/RIF rapid molecular test on tuberculosis detection: Temporal trends and vulnerable territories. Rev. Lat. Am. Enfermagem. 2021, 29, e3441. [Google Scholar] [CrossRef]
- Rostamian, M.; Kooti, S.; Abiri, R.; Khazayel, S.; Kadivarian, S.; Borji, S.; Alvandi, A. Prevalence of Mycobacterium tuberculosis mutations associated with isoniazid and rifampicin resistance: A systematic review and meta-analysis. J. Clin. Tuberc. Other Mycobact. Dis. 2023, 32, 100379. [Google Scholar] [CrossRef]
- Oswaldo Cruz Foundation (Fiocruz); National School of Public Health Sergio Arouca; Professor Hélio Fraga Reference Center. Epidemiological Bulletin: Drug-Resistant Tuberculosis; No. 1; Fiocruz: Rio de Janeiro, Brazil, 2022. [Google Scholar]
- Mutayoba, B.K.; Ershova, J.; Lyamuya, E.; Hoelscher, M.; Heinrich, N.; Kilale, A.M.; Range, N.S.; Ngowi, B.J.; Ntinginya, N.E.; Mfaume, S.M.; et al. The second national anti-tuberculosis drug-resistance survey in Tanzania, 2017–2018. Trop. Med. Int. Health 2022, 27, 891–901. [Google Scholar] [CrossRef]
- Shartova, N.; Korennoy, F.; Makhazova, S. Spatial patterns of tuberculosis in Russia in the context of social determinants. Spat. Spatiotemporal Epidemiol. 2023, 45, 100580. [Google Scholar] [CrossRef]
- Oumer, N.; Atnafu, D.D.; Worku, G.T.; Tsehay, A.K. Determinants of multi-drug resistant tuberculosis in four treatment centers of Eastern Amhara, Ethiopia: A case-control study. J. Infect. Dev. Ctries. 2021, 15, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Crispim, J.D.A.; Arroyo, L.H.; Zamboni Berra, T.; Lima dos Santos, F.; Limirio Souza, L.L.; Alves, Y.M.; Vieira Ramos, A.C.; Inomata Bruce, A.T.; Yamamura, M.; Rolim Scholze, A.; et al. Risk factors associated with drug-resistant tuberculosis in prisons in Sāo Paulo State, Brazil (2006–2016). J. Infect. Dev. Ctries. 2021, 15, 1661–1669. [Google Scholar] [CrossRef]
- Fama, F.; Genovese, C.; Raviglione, M.; Gori, A. Drug resistant tuberculosis in Italy through a global health lens. New Microbiol. 2023, 46, 120–132. [Google Scholar]
- Lima, L.V.; Pavinati, G.; Ohta, A.A.; Gil, N.L.; Moura, D.R.; Magnabosco, G.T. Distribution of tuberculosis cases in the state of Paraná: An ecological study, Brazil, 2018–2021. Epidemiol. Serv. Saude 2023, 32, e2022586. [Google Scholar] [CrossRef]
- Machado, L.N.; Marcondes, N.R.; Leite, C.Q.; Santos, A.C.; Pavan, F.R.; Baldin, V.P.; Castilho, A.L.; Siqueira, V.L.; Baeza, L.C.; Berghs, H.; et al. First baseline of circulating genotypic lineages of Mycobacterium tuberculosis in patients from the Brazilian borders with Argentina and Paraguay. PLoS ONE 2014, 9, e107106. [Google Scholar] [CrossRef]
- Walter, K.S.; Tatara, M.B.; Esther da Silva, K.; Moreira, F.M.; dos Santos, P.C.; de Melo Ferrari, D.D.; Cunha, E.A.; Andrews, J.R.; Croda, J. Local and Travel-Associated Transmission of Tuberculosis at Central Western Border of Brazil, 2014–2017. Emerg. Infect. Dis. 2021, 27, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Arcêncio, R.A.; Berra, T.Z.; Terena, N.D.; Rocha, M.P.; Ferraz de Araújo Alecrim, T.; de Souza Kihara, F.M.; Mascarello, K.C.; Martins Sales, C.M.; Maciel, E.L. Spatial clustering and temporal trend analysis of international migrants diagnosed with tuberculosis in Brazil. PLoS ONE 2021, 16, e0252712. [Google Scholar] [CrossRef]
- Soares, D.A.; Placeres, A.; Arcêncio, R.A.; Fronteira, I. Evidence on tuberculosis in migrants at Brazil’s international borders: A scoping review. J. Migr. Health 2023, 7, 100167. [Google Scholar] [CrossRef]
- Hall, Q.; Sousa Filho, J.F.; Guimarães, J.M.; Malta, D.C.; Romero-Sandoval, N.C.; Hargreaves, S.; Kerr, L.; Santos, G.F.; Brickley, E.B.; Paixão, E.S.; et al. Associations of municipality-level income and racial segregation with individual-level tuberculosis treatment outcomes in Brazil: A nationwide cohort study (2010–2019). J. Epidemiol. Community Health 2025, 79, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Viana, P.V.; Redner, P.; Ramos, J.P. Factors associated with loss to follow-up and death in cases of drug-resistant tuberculosis (DR-TB) treated at a reference center in Rio de Janeiro, Brazil. Cad. Saude Publica 2018, 34, e00048217. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, M.G.; Pinto, V.L. Characterization of drug-resistant tuberculosis in Brazil, 2014. Epidemiol. Serv. Saude 2019, 28, e2018294. [Google Scholar] [CrossRef]
- Madaki, S.; Mohammed, Y.; Rogo, L.D.; Yusuf, M.; Bala, Y.G. Age and gender in drug resistance tuberculosis: A cross sectional case study at a national tuberculosis reference hospital in Nigeria. J. Glob. Antimicrob. Resist. 2024, 39, 175–183. [Google Scholar] [CrossRef]
- Lv, H.; Zhang, X.; Zhang, X.; Bai, J.; You, S.; Li, X.; Wang, Y.; Zhang, W.; Xu, Y. Global prevalence and burden of multidrug-resistant tuberculosis from 1990 to 2019. BMC Infect. Dis. 2024, 24, 243. [Google Scholar] [CrossRef]
- Aragão, F.B.; Arcêncio, R.A.; Fuentealba-Torres, M.; Carneiro, T.S.; Souza, L.L.; Alves, Y.M.; Fiorati, R.C. Impact of social protection programs on adults diagnosed with tuberculosis: Systematic review. Rev. Bras. Enferm. 2021, 74, e20190906. [Google Scholar] [CrossRef]
- Todd, H.; Hudson, M.; Grolmusova, N.; Kazibwe, J.; Pearman, J.; Skender, K.; Tran, P.B.; Boccia, D.; Shete, P.B.; Wingfield, T. Social protection interventions for TB-affected households: A Scoping Review. Am. J. Trop. Med. Hyg. 2023, 108, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Souza Júnior, P.R.; Szwarcwald, C.L.; Damacena, G.N.; Stopa, S.R.; Vieira, M.L.; Almeida, W.D.; Oliveira, M.M.; Sardinha, L.M.; Macário, E.M. Health insurance coverage in Brazil: Analyzing data from the National Health Survey, 2013 and 2019. Cienc. Saude Coletiva 2021, 26 (Suppl. 1), 2529–2541. [Google Scholar] [CrossRef] [PubMed]
- Coube, M.; Nikoloski, Z.; Mrejen, M.; Mossialos, E. Inequalities in unmet need for health care services and medications in Brazil: A decomposition analysis. Lancet Reg. Health Am. 2023, 19, 100426. [Google Scholar] [CrossRef]
- Straub, M.; Gomes, R.M.; Albuquerque, G.S. The public-private conflict in SUS: Specialized outpatient care in Paraná. Saude Debate 2021, 45, 1033–1048. [Google Scholar] [CrossRef]
- Augusto, N.A.; Fernandes, B.D.; Crochemore-Silva, I.; Loch, M.R. The inverse equity hypothesis in the implementation of NASF-AB in municipalities of Southern Brazil. Cienc. Saude Coletiva 2023, 28, 2099–2108. [Google Scholar] [CrossRef]
- Leandro, G.C.; Cicchelero, L.M.; Procopiuk, M.; Correa, F.D.; Santos, P.C.; Lopes, A.R.; Nihei, O.K. Temporal and spatial analysis of municipal dengue cases in Paraná and social and environmental indicators, 2012 to 2021: Ecological study. Rev. Bras. Epidemiol. 2022, 25, e220039. [Google Scholar] [CrossRef] [PubMed]
- Bi, K.; Zhao, Y.; Lu, S.; Xu, K.; Zhang, Y. Comments on WHO Global Tuberculosis Report 2024: Progress, challenges and Innovations for Achieving End TB Strategy by 2035. Infect. Microbes Dis. 2025, 7, 1–4. [Google Scholar] [CrossRef]
- Silva, M.S.; Arcoverde, M.A.; Andrade, R.L.; Zilly, A.; Villa, T.C.; Silva-Sobrinho, R.A. Information system on tuberculosis: Data completeness spatial analysis in the state of Paraná, Brazil. Rev. Esc. Enferm. USP 2021, 55, e20200538. [Google Scholar] [CrossRef] [PubMed]
Health Macro-Region | State of Paraná | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
East | North | Northwest | West | |||||||||||||||||
Variables | n | Pop. | Prev. | PR (95% CI) | n | Pop. | Prev. | PR (95% CI) | n | Pop. | Prev. | PR (95% CI) | n | Pop. | Prev. | PR (95% CI) | n | Pop. | Prev. | PR (95% CI) |
Sex | ||||||||||||||||||||
Female | 58 | 2,799,061 | 2.072 | Ref | 30 | 1,009,428 | 2.972 | Ref | 9 | 987,243 | 0.912 | Ref | 35 | 1,071,298 | 3.267 | Ref | 132 | 5,867,030 | 2.250 | Ref |
Male | 118 | 2,658,318 | 4.439 | 2.142 (1.564–2.933) * | 147 | 952,442 | 15.434 | 5.193 (3.507–7.691) * | 67 | 936,408 | 7.155 | 7.849 (3.914–15.739) * | 112 | 1,030,182 | 10.872 | 3.328 (2.277–4.864) * | 444 | 5,577,350 | 7.961 | 3.538 (3.224–3.883) * |
Ethnicity | ||||||||||||||||||||
White | 123 | 3,721,165 | 3.305 | Ref | 106 | 1,225,505 | 8.649 | Ref | 31 | 1,094,920 | 2.831 | Ref | 81 | 1,348,342 | 6.007 | Ref | 341 | 7,389,932 | 4.614 | Ref |
Black | 7 | 212,933 | 3.287 | 0.995 (0.464–2.130) | 18 | 102,282 | 17.598 | 2.035 (1.235–3.353) * | 13 | 97,420 | 13.344 | 4.713 (2.466–9.007) * | 9 | 73,146 | 12.304 | 2.048 (1.029–4.078) * | 47 | 485,781 | 9.675 | 2.097 (1.546–2.844) * |
Asian | 6 | 33,050 | 18.154 | 5.492 (2.420–12.463) * | 4 | 33,175 | 12.057 | 1.394 (0.514–3.783) | 1 | 26,470 | 3.778 | 1.334 (0.182–9.774) | 1 | 7549 | 13.247 | 2.205 (0.307–15.843) | 12 | 100,244 | 11.971 | 2.594 (1.459–4.613) * |
Mixed-race | 36 | 1,479,987 | 2.432 | 0.736 (0.508–1.067) | 46 | 593,168 | 7.755 | 0.897 (0.634–1.267) | 29 | 703,486 | 4.122 | 1.456 (0.878–2.416) | 52 | 663,396 | 7.838 | 1.305 (0.921–1.848) * | 163 | 3,440,037 | 4.738 | 1.027 (0.852–1.238) |
Indigenous | - | 10,025 | - | - | 0 | 7696 | - | - | 0 | 1291 | - | - | 2 | 8988 | 22.252 | 3.704 (0.911–15.063) | 2 | 28,000 | 7.143 | 1.548 (0.386–6.214) |
Not informed | 4 | 219 | - | - | 3 | 44 | - | - | 2 | 64 | - | - | 2 | 59 | - | - | 11 | 386 | - | - |
Age group | ||||||||||||||||||||
0–14 | 5 | 1,059,932 | 0.472 | Ref. | 2 | 360,890 | 0.554 | Ref. | 1 | 357,909 | 0.279 | Ref. | 0 | 416,566 | - | - | 8 | 2,195,297 | 0.364 | Ref. |
15–34 | 76 | 1,645,667 | 4.618 | 9.790 (3.961–24.198) * | 108 | 549,396 | 19.658 | 35.472 (8.759–143.658) * | 44 | 544,005 | 8.088 | 28.948 (3.988–210.115) * | 60 | 631,948 | 9.494 | 2.716 (1.299–5.679) * | 288 | 3,371,016 | 8.543 | 23.444 (11.613–47.330) * |
35–64 | 88 | 2,183,659 | 4.030 | 8.543 (3.469–21.035) * | 58 | 791,791 | 7.325 | 13.218 (3.228–54.119) * | 27 | 779,621 | 3.463 | 12.395 (1.684–91.220) * | 79 | 824,126 | 9.586 | 2.742 (1.325–5.674) * | 252 | 4,579,197 | 5.503 | 15.101 (7.470–30.528) * |
≥65 | 7 | 568,121 | 1.232 | 2.612 (0.829–8.230) | 9 | 259,793 | 3.464 | 6.251 (1.651–28.932) * | 4 | 242,116 | 1.652 | 5.913 (0.661–52.905) | 8 | 228,840 | 3.496 | Ref | 28 | 1,298,870 | 2.156 | 5.916 (2.696–12.979) * |
Health Division | n | (%) | Incidence Rates | 95% CI | Kendall τ | p-Value | Trends |
---|---|---|---|---|---|---|---|
East Macro-region | 176 | 30.56 | 3.18 | 2.71–3.65 | 0.2896 | 0.006 * | Increasing |
01 Paranaguá | 35 | 6.08 | 11.90 | 7.96–15.84 | 0.1431 | 0.197 | Stationary |
02 Curitiba | 123 | 21.35 | 3.40 | 2.80–4.00 | 0.2295 | 0.029 * | Increasing |
03 Ponta Grossa | 9 | 1.56 | 1.42 | 0.49–2.35 | 0.2001 | 0.094 | Stationary |
05 Guarapuava | 4 | 0.69 | 0.88 | 0.02–1.74 | −0.0772 | 0.536 | Stationary |
06 União da Vitória | 2 | 0.35 | 1.13 | −0.44–2.70 | 0.1304 | 0.290 | Stationary |
21 Telêmaco Borba | 3 | 0.52 | 1.60 | −0.21–3.41 | 0.1145 | 0.349 | Stationary |
West Macro-region | 147 | 25.52 | 7.47 | 6.26–8.68 | 0.2541 | 0.015 * | Increasing |
07 Pato Branco | 4 | 0.69 | 1.51 | 0.03–2.97 | 0.2940 | 0.014 * | Increasing |
08 Francisco Beltrão | 2 | 0.35 | 0.56 | −0.22–1.34 | 0.1019 | 0.409 | Stationary |
09 Foz do Iguaçu | 68 | 11.81 | 16.85 | 12.84–20.86 | 0.1193 | 0.266 | Stationary |
10 Cascavel | 15 | 2.60 | 2.74 | 1.35–4.13 | 0.1365 | 0.244 | Stationary |
20 Toledo | 58 | 10.07 | 14.69 | 10.91–18.47 | 0.0436 | 0.688 | Stationary |
Northwest Macro-region | 76 | 13.19 | 4.07 | 3.16–4.98 | 0.5546 | <0.001 * | Increasing |
11 Campo Mourão | 9 | 1.56 | 2.73 | 0.95–4.51 | 0.1332 | 0.263 | Stationary |
12 Umuarama | 6 | 1.04 | 2.18 | 0.44–3.92 | 0.2535 | 0.035 * | Increasing |
13 Cianorte | 2 | 0.35 | 1.26 | −0.48–3.00 | 0.0931 | 0.454 | Stationary |
14 Paranavaí | 2 | 0.35 | 0.73 | −0.28–1.74 | −0.0340 | 0.797 | Stationary |
15 Maringá | 57 | 9.90 | 6.88 | 5.09–8.67 | 0.4851 | <0.001 * | Increasing |
North Macro-region | 177 | 30.73 | 8.94 | 7.62–10.26 | 0.6190 | <0.001 * | Increasing |
16 Apucarana | 6 | 1.04 | 1.58 | 0.32–2.84 | 0.1950 | 0.106 | Stationary |
17 Londrina | 153 | 26.56 | 16.00 | 13.46–18.54 | 0.5767 | <0.001 * | Increasing |
18 Cornélio Procópio | 6 | 1.04 | 2.69 | 0.54–4.84 | 0.1370 | 0.252 | Stationary |
19 Jacarezinho | 11 | 1.91 | 3.81 | 1.56–6.06 | 0.0780 | 0.513 | Stationary |
22 Ivaiporã | 1 | 0.17 | 0.77 | −0.74–2.28 | 0.0651 | 0.613 | Stationary |
Paraná | 576 | 100.00 | 5.08 | 4.67–5.49 | 0.5183 | <0.001 * | Increasing |
Cluster | Health Region Included | Time Frame | Observed Cases | Expected Cases | Crude Incidence Rate | LLR | RR | Cluster Population | p-Value |
---|---|---|---|---|---|---|---|---|---|
1 | 03; 04; 05; 06; 07; 08; 10; 11; 13; 16; 21; 22 | 2012-01–2017-10 | 11 | 93.83 | 0.05 | 65.99 | 0.10 | 3,796,109 | 0.001 |
2 | 17 | 2016-01–2016-04 | 16 | 1.02 | 6.8 | 29.25 | 16.09 | 946,055 | 0.001 |
3 | 09; 20 | 2015-01–2019-04 | 81 | 14.71 | 2.4 | 75.96 | 6.24 | 807,908 | 0.001 |
4 | 15; 17 | 2017-10–2023-04 | 171 | 43.21 | 1.7 | 124.16 | 5.21 | 1,770,577 | 0.001 |
5 | 02; 03; 04; 05; 06; 07; 21; 22 | 2018-04–2018-10 | 0 | 12.31 | 0.0 | 12.43 | 0.00 | 5,577,542 | 0.017 |
6 | 02; 03; 04; 05; 06; 07; 21; 22 | 2019-04–2023-01 | 36 | 92.50 | 0.2 | 25.70 | 0.35 | 5,577,542 | 0.001 |
7 | 09; 20 | 2022-10–2023-04 | 12 | 1.86 | 2.8 | 12.30 | 6.55 | 3,796,109 | 0.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cicchelero, L.M.; Leandro, G.C.W.; Andrade, L.d.; Meneguello, J.E.; Caleffi-Ferracioli, K.R.; Cardoso, R.F.; Scodro, R.B.d.L. From Patterns to Projections: A Spatiotemporal Distribution of Drug-Resistant Tuberculosis in Paraná, Brazil (2012–2023). Pathogens 2025, 14, 1046. https://doi.org/10.3390/pathogens14101046
Cicchelero LM, Leandro GCW, Andrade Ld, Meneguello JE, Caleffi-Ferracioli KR, Cardoso RF, Scodro RBdL. From Patterns to Projections: A Spatiotemporal Distribution of Drug-Resistant Tuberculosis in Paraná, Brazil (2012–2023). Pathogens. 2025; 14(10):1046. https://doi.org/10.3390/pathogens14101046
Chicago/Turabian StyleCicchelero, Laiz Mangini, Gustavo Cezar Wagner Leandro, Luciano de Andrade, Jean Eduardo Meneguello, Katiany Rizzieri Caleffi-Ferracioli, Rosilene Fressatti Cardoso, and Regiane Bertin de Lima Scodro. 2025. "From Patterns to Projections: A Spatiotemporal Distribution of Drug-Resistant Tuberculosis in Paraná, Brazil (2012–2023)" Pathogens 14, no. 10: 1046. https://doi.org/10.3390/pathogens14101046
APA StyleCicchelero, L. M., Leandro, G. C. W., Andrade, L. d., Meneguello, J. E., Caleffi-Ferracioli, K. R., Cardoso, R. F., & Scodro, R. B. d. L. (2025). From Patterns to Projections: A Spatiotemporal Distribution of Drug-Resistant Tuberculosis in Paraná, Brazil (2012–2023). Pathogens, 14(10), 1046. https://doi.org/10.3390/pathogens14101046