Abstract
The indiscriminate use of antibiotics in food-producing animals serves as a major catalyst for the emergence of antibiotic-resistant infections. This study aimed to assess the genetic diversity and antibiotic resistance of Enterobacterales in animal-derived foods. A total of 905 animal-derived food samples, including meat, dairy, poultry, fish, and environmental sources, were collected from various locations in Pakistan. Isolates were confirmed through selective subculturing, morphological, biochemical, and MALDI-TOF analysis, followed by antibiotic susceptibility testing. Subsequently, PCR-based detection of antibiotic resistance genes and virulence-associated genes. Overall, a total of 263 (29.06%) Enterobacterales were identified, as follows: 58.55% (154/263) E. coli, 6.84% (18/263) K. pneumoniae, 21.29% (56/263) P. mirabilis, and 13.30% (35/263) Salmonella spp. Isolates showed a varying resistance pattern against different studied antibiotics, e.g., beta-lactams and inhibitors, ciprofloxacin, and tetracycline, while colistin and tigecycline remained most effective. All the isolates displayed an array of antibiotic resistance and virulence-associated genes. Particularly significant (<0.05) co-existence of blaNDM and mcr-1 was observed among the Enterobacterales isolated from various animal-derived foods. This study underscores the need to monitor Enterobacterales in animal-derived foods, especially in developing countries, to curb the spread of resistant pathogens and ensure effective food safety measures.