Scrub Typhus and Influenza A Co-Infection: A Case Report
Abstract
:1. Introduction
2. Case Report
3. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peter, J.V.; Sudarsan, T.I.; Prakash, J.A.J.; Varghese, G.M. Severe scrub typhus infection: Clinical features, diagnostic challenges and management. World J. Crit. Care. Med. 2015, 4, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Devasagayam, E.; Dayanand, D.; Kundu, D.; Kamath, M.S.; Kirubakaran, R.; Varghese, G.M. The burden of scrub typhus in India: A systematic review. PLoS Negl. Trop. Dis. 2021, 15, e0009619. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Walker, D.H.; Jupiter, D.; Melby, P.C.; Arcari, C.M. A review of the global epidemiology of scrub typhus. PLoS Negl. Trop. Dis. 2017, 11, e0006062. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Tsuzuki, S.; Ohbe, H.; Matsui, H.; Fushimi, K.; Yasunaga, H.; Kutsuna, S. Analysis of differences in characteristics of high-risk endemic areas for contracting Japanese spotted fever, tsutsugamushi disease, and severe fever with thrombocytopenia syndrome. Open Forum. Infect. Dis. 2024, 11, ofae025. [Google Scholar] [CrossRef] [PubMed]
- Moron, C.G.; Popov, V.L.; Feng, H.M.; Wear, D.; Walker, D.H. Identification of the target cells of Orientia tsutsugamushi in human cases of scrub typhus. Mod. Pathol. 2001, 14, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.S.; Yun, J.H.; Seong, S.Y.; Choi, M.S.; Kim, I.S. Chemokine and cytokine production during Orientia tsutsugamushi infection in mice. Microb. Pathog. 2004, 36, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Varghese, G.M.; Janardhanan, J.; Trowbridge, P.; Peter, J.V.; Prakash, J.A.J.; Sathyendra, S.; Thomas, K.; David, T.S.; Kavitha, M.L.; Abraham, O.C.; et al. Scrub typhus in South India: Clinical and laboratory manifestations, genetic variability, and outcome. Int. J. Infect Dis. 2013, 17, e981–e987. [Google Scholar] [CrossRef] [PubMed]
- Griffith, M.; Peter, J.V.; Karthik, G.; Ramakrishna, K.; Prakash, J.A.J.; Kalki, R.C.; Varghese, G.M.; Chrispal, A.; Pichamuthu, K.; Iyyadurai, R.; et al. Profile of organ dysfunction and predictors of mortality in severe scrub typhus infection requiring intensive care admission. Indian J. Crit. Care Med. 2014, 18, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, Y.; Togashi, A.; Hirakawa, S.; Yamamoto, M.; Fukumura, S.; Nawa, T.; Honjo, S.; Kunizaki, J.; Nishino, K.; Tanaka, T.; et al. Resurgence of human metapneumovirus infection and influenza after three seasons of inactivity in the post-COVID-19 era in Hokkaido, Japan, 2022–2023. J. Med. Virol. 2023, 95, e29299. [Google Scholar] [CrossRef] [PubMed]
- Prakash, J.A.J. Scrub typhus: Risks, diagnostic issues, and management challenges. Res. Rep. Trop. Med. 2017, 8, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Das, D.S.; Mohanty, R.R.; Behera, A.; Behera, S. Purpura fulminans complicating scrub typhus and acute hepatitis E co-infection. BMJ Case Rep. 2023, 16, e255790. [Google Scholar] [CrossRef] [PubMed]
- Seow, C.W.X.; Logarajah, V.; Tan, N.W.H. Typhoid and scrub typhus co-infection in a returned traveler. Glob. Pediatr. Health 2017, 4, 2333794X17726941. [Google Scholar] [CrossRef] [PubMed]
- Dey, R.K.; Imad, H.A.; Aung, P.L.; Faisham, M.; Moosa, M.; Hasna, M.; Afaa, A.; Ngamprasertchai, T.; Matsee, W.; Nguitragool, W.; et al. Concurrent infection with SARS-CoV-2 and Orientia tsutsugamushi during the COVID-19 pandemic in the Maldives. Trop. Med. Infect. Dis. 2023, 8, 82. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Luo, L.; Chen, T.; Li, L.; Xu, X.; Zhang, Y.; Cao, W.; Yue, P.; Bao, F.; Liu, A. Efficacy and safety of antibiotics for treatment of scrub typhus: A network meta-analysis. JAMA Netw. Open 2020, 3, e2014487. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Dhar, M.; Mittal, G.; Bhat, N.K.; Shirazi, N.; Kalra, V.A.; Sati, H.C.; Gupta, V. A Comparative hospital-based observational study of mono- and co-infections of malaria, dengue virus and scrub typhus causing acute undifferentiated fever. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S.; Chaudhary, N.; Dhakal, P.; Yadav, S.R.; Gupta, B.K.; Kurmi, O.P. Comparative study of chikungunya only and chikungunya-scrub typhus co-infection in children: Findings from a hospital-based observational study from central Nepal. Int. J. Pediatr. 2021, 2021, 6613564. [Google Scholar] [CrossRef] [PubMed]
- Jhuria, L.; Muthu, V.; Gupta, S.; Singh, M.P.; Biswal, M.; Goyal, K.; Pannu, A.K.; Kumari, S.; Bhalla, A.; Mohindra, R.; et al. Co-infection of H1N1 influenza and scrub typhus-a review. QJM 2020, 113, 465–468. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Hwang, J.Y.; Kim, Y.S.; Kim, J.H.; Cho, O.H.; Lim, C.M.; Woo, J.H. A case of co-infection with pandemic (H1N1) 2009 influenza and scrub typhus with abnormal liver function test. Tuberc. Respir. Dis. 2011, 70, 247–250. [Google Scholar] [CrossRef]
- Kinoshita, H.; Arima, Y.; Shigematsu, M.; Sunagawa, T.; Saijo, M.; Oishi, K.; Ando, S. Descriptive epidemiology of rickettsial infections in Japan: Scrub typhus and Japanese spotted fever, 2007–2016. Int. J. Infect. Dis. 2021, 105, 560–566. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Infectious Diseases, 2024 [Home Page]. Available online: https://www.niid.go.jp/niid/ja/diseases/a/flu.html (accessed on 3 November 2024).
Parameter (Units) | Value | Reference Range |
---|---|---|
WBC (cells/µL) | 18,300 | 4500–11,000 |
Neutrophils (%) | 86.4 | 40–80 |
Lymphocytes (%) | 11.3 | 20–40 |
Monocytes (%) | 2.0 | 2–8 |
Eosinophils (%) | 0.1 | 1–4 |
Basophils (%) | 0.2 | <1 |
RBC (×104 cells/µL) | 399 | 380–520 |
Hemoglobin (g/dL) | 10.8 | 12–15 |
Hematocrit (%) | 42.0 | 36–48 |
MCV (fL) | 81.5 | 80–100 |
MCH (pg) | 27.1 | 27–33 |
MCHC (%) | 33.2 | 32–36 |
Platelets (×104 /µL) | 24.4 | 15.7–37.1 |
Total protein (g/dL) | 5.6 | 6–8 |
Albumin (g/dL) | 2 | 3.4–5.4 |
Total bilirubin (mg/dL) | 0.2 | 0.2–1.3 |
AST (U/L) | 64 | 10–36 |
ALT (U/L) | 41 | 5–38 |
LDH (U/L) | 234 | 135–214 |
ALP (U/L) | 105 | 44–147 |
γ-GTP (U/L) | 45 | 8–38 |
BUN (mg/dL) | 27 | 8–23 |
Creatinine (mg/dL) | 1.71 | 0.6–1.1 |
Na (mEq/L) | 130 | 135–145 |
K (mEq/L) | 3.3 | 3.6–5.2 |
Cl (mEq/L) | 96 | 96–106 |
CRP (mg/dL) | 29.3 | <0.3 |
Glucose * (mg/dL) | 111 | 70–99 |
HbA1c (%) | 6.0 | <5.7 |
PT (s) | 15.8 | 11–13.5 |
PT-INR | 1.24 | 0.8–1.1 |
APTT (s) | 43.8 | 25–35 |
FDP (µg/mL) | 6.2 | <10 |
BNP (pg/mL) | 433.2 | <100 |
No. | Author (Year) [Ref.] | Country | Type of Influenza | Age (Years) Sex | Underlying Conditions | Clinical Features | Investigations | Organ Dysfunction | Therapy | Outcome | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fever Duration (Days) | Rash | Eschar | Headache | Cough | SOB | Plt × 104 /µL | AST U/L | ALT U/L | CXR | PaO2/ FiO2 | Hypo- Tension | GCS | SOFA Score | ||||||||
1 | Jhuria et al. 2020 [17] | India | H1N1 | 30 F | NA | 7 | − | + | + | + | + | 13.5 | 104 | 56 | Bilateral infiltrates | 110 | No | 15 | 8 | NPPV OTV (5 d) CTRX + AZM (7 d) | Recovered |
2 | Jhuria et al. 2020 [17] | India | H1N1 | 23 M | NA | 5 | − | − | + | + | + | 11.8 | 148 | 41 | Bilateral infiltrates | 200 | No | 15 | 10 | IPPV OTV (5 d) CTRX + DOXY (7 d) | Recovered |
3 | Jhuria et al. 2020 [17] | India | H1N1 | 28 F | Pregnancy | 5 | − | − | − | + | − | 15.4 | 123 | 134 | Normal | 414 | No | 15 | 4 | OTV (5 d) CTRX + AZM (7 d) | Recovered |
4 | Ahn et al. 2011 [18] | South Korea | H1N1 | 53 F | Bronchi- ectasis | 5 | − | + | − | + | − | 13.1 | 635 | 788 | Normal | NA | No | 15 | NA | OTV zanamivir DOXY | Recovered |
5 | This case | Japan | Type A | 74 F | CHF, HT Dyslipidemia | 10 | + | + | + | + | + | 24.4 | 64 | 41 | Bilateral infiltrates | 281 | No | 14 | 4 | OTV CTRX (5 d) MINO (10 d) | Recovered |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamamoto, C.; Maruyama, A.; Munakata, J.; Matsuyama, T.; Furukawa, K.; Hamashima, R.; Ogawa, M.; Hashimoto, Y.; Fukuda, A.; Inaba, T.; et al. Scrub Typhus and Influenza A Co-Infection: A Case Report. Pathogens 2025, 14, 64. https://doi.org/10.3390/pathogens14010064
Yamamoto C, Maruyama A, Munakata J, Matsuyama T, Furukawa K, Hamashima R, Ogawa M, Hashimoto Y, Fukuda A, Inaba T, et al. Scrub Typhus and Influenza A Co-Infection: A Case Report. Pathogens. 2025; 14(1):64. https://doi.org/10.3390/pathogens14010064
Chicago/Turabian StyleYamamoto, Chie, Ayano Maruyama, Jun Munakata, Tasuku Matsuyama, Keitaro Furukawa, Ryosuke Hamashima, Motohiko Ogawa, Yuki Hashimoto, Akiko Fukuda, Tohru Inaba, and et al. 2025. "Scrub Typhus and Influenza A Co-Infection: A Case Report" Pathogens 14, no. 1: 64. https://doi.org/10.3390/pathogens14010064
APA StyleYamamoto, C., Maruyama, A., Munakata, J., Matsuyama, T., Furukawa, K., Hamashima, R., Ogawa, M., Hashimoto, Y., Fukuda, A., Inaba, T., & Nukui, Y. (2025). Scrub Typhus and Influenza A Co-Infection: A Case Report. Pathogens, 14(1), 64. https://doi.org/10.3390/pathogens14010064