Comparative Performance of Ante-Mortem Diagnostic Assays for the Identification of Mycobacterium bovis-Infected Domestic Dogs (Canis lupus familiaris)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Dog Samples
2.2. IGRA Using Isolated PBMC
2.3. TNF-α Assay Using PBMC
2.4. IGRA Using Whole Blood
2.5. Serum Antibody Testing
2.6. Serum IFN-γ and TNF-α ELISA
2.7. Haematology and Serum Biochemistry
3. Results
3.1. IGRA and TNF-α PBMC Stimulation Assays
3.2. Serum Antibody Assays
3.3. Serum IFN-γ ELISA & TNF-α ELISA Assays
3.4. Haematology and Serum Biochemistry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Snider, W.R. Tuberculosis in canine and feline populations. Review of the literature. Am. Rev. Respir. Dis. 1971, 104, 877–887. [Google Scholar] [PubMed]
- Ellis, M.D.; Davies, S.; McCandlish, A.P.; Monies, R.; Jahans, K.; de la Rua-Domenech, R. Mycobacterium bovis infection in a dog. Vet. Rec. 2006, 159, 46–48. [Google Scholar] [CrossRef]
- Broughan, J.M.; Downs, S.H.; Crawshaw, T.R.; Upton, P.A.; Brewer, J.; Clifton-Hadley, R.S. Mycobacterium bovis infections in domesticated non-bovine mammalian species. Part 1: Review of epidemiology and laboratory submissions in Great Britain 2004–2010. Vet. J. 2013, 198, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Broughan, J.M.; Crawshaw, T.R.; Downs, S.H.; Brewer, J.; Clifton-Hadley, R.S. Mycobacterium bovis infections in domesticated non-bovine mammalian species. Part 2: A review of diagnostic methods. Vet. J. 2013, 198, 346–351. [Google Scholar] [CrossRef] [PubMed]
- O’Halloran, C.; Hope, J.C.; Dobromylskyj Burr, P.; McDonald, K.; Rhodes, S.; Roberts, T.; Dampney, R.; de la Rua-Domenech, R.; Robinson, N.; Dunn-Moore, D.A. An outbreak of tuberculosis due to Mycobacterium bovis infection in a pack of English foxhounds (2016–2017). Transbound. Emerg. Dis. 2018, 65, 1872–1884. [Google Scholar] [CrossRef]
- Adams, L.G. In vivo and in vitro diagnosis of Mycobacterium bovis infection. Rev. Sci. Tech. 2001, 20, 304–324. [Google Scholar] [CrossRef] [PubMed]
- De la Rua-Domenech, R.; Goodchild, A.T.; Vordermeier, H.M.; Hewinson, R.G.; Christiansen, K.H.; Clifton-Hadley, R.S. Ante mortem diagnosis of tuberculosis in cattle: A review of the tuberculin tests, gamma-interferon assay and other ancillary diagnostic techniques. Res. Vet. Sci. 2006, 81, 190–210. [Google Scholar] [CrossRef]
- Schiller, I.; Waters, R.W.; Vordermeier, H.M.; Nonnecke, B.; Welsh, M.; Keck, N.; Whelan, A.; Sigafoose, T.; Stamm, C.; Palmer, M.; et al. Optimization of a whole-blood gamma interferon assay for detection of Mycobacterium bovis-infected cattle. Clin. Vaccine Immunol. 2009, 16, 1196–1202. [Google Scholar] [CrossRef] [PubMed]
- Wood, P.R.; Jones, S.L. BOVIGAM™: An in vitro cellular diagnostic test for bovine tuberculosis. Tuberculosis 2001, 81, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Vordermeier, M.; Whelan, A.; Ewer, K.; Goodchild, T.; Clifton-Hadley, R.; Williams, J.; Hewinson, R.G. The BOVIGAM assay as an ancillary test to the tuberculin skin test. Gov. Vet. J. 2006, 16, 72–80. [Google Scholar]
- Kim, Y.Y.; Lee, J.; Lee, Y.J.; Lee, S.Y.; Lee, Y.H.; Choi, K.J.; Hwangbo, Y.; Seung, I.C.; Park, J.D.; Jung, T.H.; et al. Sensitivity of whole-blood interferon-gamma release assay according to the severity and the location of disease in patients with active tuberculosis. Tuberc. Respir. Dis. 2011, 70, 125–131. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, Y.-Q.; Qin, S.-M.; Tao, X.-N.; Xin, J.-B.; Shi, H.-Z. Diagnostic accuracy of T-cell interferon-γ release assays in tuberculous pleurisy: A meta-analysis. Respirology 2011, 16, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Eisenhut, M. The evidence for greater sensitivity of interferon-γ release assays compared to tuberculin skin test in diagnosing latent mycobacterium tuberculosis infection. Clin. Pediatr. 2014, 53, 1413. [Google Scholar] [CrossRef] [PubMed]
- Thillai, M.; Pollock, K.; Pareek, M.; Lalvani, A. Interferon-gamma release assays for tuberculosis: Current and future applications. Expert Rev. Respir. Med. 2014, 8, 67–78. [Google Scholar] [CrossRef]
- Mitchell, J.; Stanley, P.; McDonald, K.; Burr, P.; Rhodes, S.G.; Gunn-Moore, D.A.; Hope, J.C. Diagnostic accuracy of the interferon-gamma release assay (IGRA) for cases of feline mycobacteriosis. J. Prev. Vet. Med. 2021, 193, 105409. [Google Scholar] [CrossRef]
- Parsons, S.D.C.; Warren, R.M.; Ottenhoff, T.H.M.; Gey van Pittius, C.; Van Helden, P.D. Detection of Mycobacterium tuberculosis infection in dogs in a high-risk setting. Res. Vet. Sci. 2012, 92, 414–419. [Google Scholar] [CrossRef]
- Vordermeier, H.M.; Jones, G.J.; Buddle, B.M.; Hewinson, R.G. Development of immunological reagents to diagnose bovine tuberculosis in cattle. Vet. Immunol. Immunopathol. 2016, 181, 10–14. [Google Scholar] [CrossRef]
- Buddle, B.M.; Ryan, T.J.; Pollock, J.M.; Andersen, P.; de Lisle, G.W. Use of ESAT-6 in the interferon-gamma test for diagnosis of bovine tuberculosis following skin testing. Vet. Microbiol. 2001, 80, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Brosch, R.; Gordon, S.V.; Marmiesse, M.; Brodin, P.; Buchrieser, C.; Eiglmeier, K.; Gernier, T.; Gutierrez, C.; Hewinson, G.; Kremer, K.; et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl. Acad. Sci. USA 2002, 99, 3684–3689. [Google Scholar] [CrossRef]
- Elnaggar, M.M.; Abdellrazeq, G.S.; Elsisy, A.; Mahmoud, A.H.; Shyboub, A.; Sester MKhaliel, A.A.; Singh, M.; Torky, H.A.; Davis, W.C. Evaluation of antigen specific interleukin-1β as a biomarker to detect cattle infected with Mycobacterium bovis. Tuberculosis 2017, 105, 53–59. [Google Scholar] [CrossRef]
- Leem, A.Y.; Song, J.H.; Lee, E.H.; Lee, H.; Sim, B.; Kim, S.Y.; Chung, K.S.; Kim, E.Y.; Jung, J.Y.; Park, M.S.; et al. Changes in cytokine responses to TB antigens ESAT-6, CFP-10 and TB 7.7 and inflammatory markers in peripheral blood during therapy. Sci. Rep. 2018, 8, 1159. [Google Scholar] [CrossRef]
- Hesketh, J.B.; Mackintosh, C.G.; Griffin, J.F. Development of a diagnostic blood test for tuberculosis in alpacas (Lama pacos). N. Z. Vet. J. 1994, 42, 104–109. [Google Scholar] [CrossRef]
- Gutierrez, M.; Tellechea, J.; Marin, J.F.C. Evaluation of cellular and serological diagnostic tests for the detection of Mycobacterium bovis infected goats. Vet. Microbiol. 1998, 62, 281–290. [Google Scholar] [CrossRef]
- Vordermeier, M.; Chambersw, M.A.; Cockle, P.J.; Whelan, A.O.; Simmons, J.; Hewison, R.G. Correlation of ESAT-6-specific gamma interferon production with pathology in cattle following Mycobacterium bovis BCG vaccination against experimental bovine tuberculosis. Infect. Immunol. 2002, 70, 3026–3032. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, S.G.; Gruffyd-Jones, T.; Gunn-Moore, D.A.; Jahans, K. Adaptation of IFN-gamma ELISA and ELISPOT tests for feline tuberculosis. Vet. Immunol. Immunopathol. 2008, 124, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Bezos, J.; Casal, C.; Romero, B.; Schroeder, B.; Hargegger, R.; Raeber, A.J.; Lopez, L.; Rueda, P.; Cominguez, L. Current ante-mortem techniques for diagnosis of bovine tuberculosis. Res. Vet. Sci. 2014, 97, S44–S52. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, S.; Holder, T.; Clifford, D.; Dexter, I.; Brewer, J.; Smith, N.; Waring, L.; Crawshaw, T.; Gillgan, S.; Lyashchenko, K.; et al. Evaluation of gamma interferon and antibody tuberculosis tests in alpacas. Clin. Vaccine Immunol. 2012, 19, 1677–1683. [Google Scholar] [CrossRef] [PubMed]
- El-Seedy, F.R.; Radwan, I.A.; Hassan, W.D.; Moussa, I.M.I. The correlation between M. bovis isolation and ELISA using PPD-B and ESAT6-CFP10 mixture on the sera of tuberculin reactor cattle and buffaloes. J. Food Agric. Environ. 2013, 11, 489–494. [Google Scholar]
- Casal, C.; Diez-Guerrier, A.D.; Alvarez, J.; Rodriguez-Campos, S.; Mateos, A.; Linscott, R.; Martel, E.; Lawrence, J.C.; Whelan, C.; Clarke, J. Strategic use of serology for the diagnosis of bovine tuberculosis after intradermal skin testing. Vet. Microbiol. 2014, 170, 342–351. [Google Scholar] [CrossRef]
- Roos, E.O.; Buss, P.; Klerk-Lorist, L.-M.; Hewlett, J.; Hauseler, G.A.; Rossouw, L.; McCall, A.J.; Cooper, D.; van Hleden, P.D.; Parsons, S.D.C.; et al. Test performance of three serological assays for the detection of Mycobacterium bovis infection in common warthogs (Phacochoerus africanus). Vet. Immunol. Immunopathol. 2016, 182, 79–84. [Google Scholar] [CrossRef]
- Barton, P.; Robinson, N.; Middleton, S.; O’Brien, A.; Clarke, J.; Dominguez, M.; Gillgan, S.; Selmes, J.; Rhodes, S. Evaluation of Antibody Tests for Mycobacterium bovis Infection in Pigs and Deer. Vet. Sci. 2023, 10, 489. [Google Scholar] [CrossRef]
- Bezos, J.; Roy, A.; Infentes-Lorenzo, J.A.; Goncalez, I.; Venteo, A.; Romero, B.; Grau, A.; Minguez, O.; Dominguez, L.; de Juan, L. The use of serological tests in combination with the intradermal tuberculin test maximizes the detection of tuberculosis infected goats. Vet. Immunol. Immunopathol. 2018, 199, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Department for the Environment, Farming and Rural Affairs [DEFRA]. 2024. Available online: https://www.gov.uk/government/statistics/incidence-of-tuberculosis-tb-in-cattle-in-great-britain (accessed on 28 November 2024).
- Buddle, B.M.; Skinner, M.A.; Chambers, M.A. Immunological approaches to the control of tuberculosis in wildlife reservoirs. Vet. Immunol. Immunopathol. 2000, 74, 1–16. [Google Scholar] [CrossRef]
- Delahay, R.J.; De Leeuw, A.N.S.; Barlow, A.M.; Clifton-Hadley, R.S.; Cheeseman, C.L. The status of Mycobacterium bovis infection in UK wild mammals: A review. Vet. J. 2002, 164, 90–105. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.L.; Wilson, C.; Alexander, J.E.; Rhodes, S.G.; Gunn-Moore, D.A.; Hope, J.C. Development of an enzyme-linked immunosorbent assay for the diagnosis of feline tuberculosis. Vet. Immunol. Immunopathol. 2023, 255, 110538. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Weitzman, I.; Johnson, G.G. Canine tuberculosis. J. Am. Vet. Med. Assoc. 1980, 177, 164–167. [Google Scholar]
- Gay, G.; Burbidge, H.M.; Bennett, P.; Fenwick, S.G.; Dupont, C.; Murray, A.; Alley, M.R. Pulmonary Mycobacterium bovis infection in a dog. N. Z. Vet. J. 2000, 48, 78–81. [Google Scholar] [CrossRef]
- Ayele, W.Y.; Neill, S.D.; Zinsstag, J.; Weiss, M.G.; Pavlik, I. Bovine tuberculosis: An old disease but a new threat to Africa. Int. J. Tuberc. Lung Dis. 2004, 8, 924–937. [Google Scholar]
- Shrikrishna, D.; de la Rua-Domenech, R.; Smith, N.H.; Colloff, A.; Coutts, I. Human and canine pulmonary Mycobacterium bovis infection in the same household: Re-emergence of an old zoonotic threat? Thorax 2009, 64, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Posthaus, H.; Bodmer, T.; Alves, L.; Oevermann, A.; Schiller, I.; Rhodes, S.G.; Zimmerli, S. Accidental infection of veterinary personnel with Mycobacterium tuberculosis at necropsy: A case study. Vet. Microbiol. 2011, 149, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Pesciaroli, M.; Alverez, J.; Boniotti, M.B.; Cagiola, M.; Di Marco, V.; Marianelli, C.; Pacciarini, M.; Pasquali, P. Tuberculosis in domestic animal species. Res. Vet. Sci. 2014, 97, S78–S85. [Google Scholar] [CrossRef] [PubMed]
- Park, H.A.; Lim, J.H.; Kwon, Y.H.; Bae, J.H.; Park, H.M. Pulmonary Mycobacterium tuberculosis infection with giant tubercle formation in a dog: A case report. Vet. Med. 2016, 61, 102–109. [Google Scholar] [CrossRef]
- Szaluś-Jordanow, O.; Augustynowicz-Kopeć, E.; Czopowicz, M.; Olkowski, A.; Łobaczewski, A.; Rzewuska, M.; Sapierzyński, R.; Waitr, E.; Garncarz, M.; Frymus, T. Intracardiac tuberculomas caused by Mycobacterium tuberculosis in a dog. BMC Vet. Res. 2016, 12, 109. [Google Scholar] [CrossRef] [PubMed]
- O’Halloran, C.; Barker, E.N.; Hope, J.C.; Gunn-Moore, D.A. Canine tuberculosis: A review of 18 new and 565 previously reported confirmed cases. Vet. J. 2024, 304, 106089. [Google Scholar] [CrossRef] [PubMed]
- Barker, E.; O’Halloran, C.; Gunn-Moore, D.A. Review: Canine tuberculosis—An emerging concern. Vet. J. 2024, 305, 106111. [Google Scholar] [CrossRef]
- Delahay, R.J.; Cheeseman, C.L.; Clifton-Hadley, R.S. Wildlife disease reservoirs: The epidemiology of Mycobacterium bovis infection in the European badger (Meles meles) and other British mammals. Tuberculosis 2001, 81, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Delahay, R.J.; Wilson, G.J.; Smith, G.C.; Cheeseman, C.L. Vaccinating badgers (Meles meles) against Mycobacterium bovis: The ecological considerations. Vet. J. 2003, 166, 43–51. [Google Scholar] [CrossRef]
- Cousins, D.V.; Florisson, N. A review of tests available for the use in the diagnosis of tuberculosis in non-bovine species. Rev. Sci. Tech. 2005, 24, 1039–1059. [Google Scholar] [CrossRef]
- Rhodes, S.G.; Gruffydd-Jones, T.; Gunn-Moore DAJahans, K. Interferon-γ test for feline tuberculosis. Vet. Rec. 2008, 162, 453–455. [Google Scholar] [CrossRef]
- Wood, P.R.; Corner, L.A.; Plackett, P. Development of a simple, rapid in vitro cellular assay for bovine tuberculosis based on the production of γ-interferon. Res. Vet. Sci. 1990, 49, 46–49. [Google Scholar] [CrossRef]
- Harari, A.; Rozot, V.; Bellutti-Enders, F.; Perreau, M.; Stalder, J.M.; Nicod, L.P.; Cavassini, M.; Calandra, T.; Blanchet, C.L.; Jaton, K.; et al. Dominant TNF-alpha+ Mycobacterium tuberculosis-specific CD4+ T cell responses discriminate between latent infection and active disease. Nat. Med. 2010, 17, 372–376. [Google Scholar] [CrossRef]
- Wang, F.; Hou, H.; Xu, L.; Jane, M.; Peng, J.; Lu, Y.; Zhu, Y.; Sun, Z. Mycobacterium tuberculosis-specific TNF-α is a potential biomarker for the rapid diagnosis of active tuberculosis disease in Chinese population. PLoS ONE 2013, 8, e79431. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.Y.; Guo, S.; McLaughlin, B.; Morisaki, H.; Engel, J.N.; Brown, E.J. A mycobacterial virulence gene cluster extending RD1 is required for cytolysis, bacterial spreading and ESAT-6 secretion. Mol. Microbiol. 2004, 53, 1677–1693. [Google Scholar] [CrossRef]
- Ruhwald, M.; Ravn, P. Biomarkers of latent TB infection. Expert Rev. Respir. Med. 2009, 3, 387–401. [Google Scholar] [CrossRef]
- Hasan, Z.; Jamil, B.; Khan, J.; Ali, R.; Khan, M.A.; m Nasir, N.; Yusuf, M.S.; Jamil, S.; Irfan, M.; Hussain, R. Relationship between circulating levels of IFN-γ, IL-10, CXCL9 and CCL2 in pulmonary and extrapulmonary tuberculosis is dependent on disease severity. Clin. Immunol. 2009, 69, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Jonnalagadda, S.R.; Brown, E.; Lohman-Payne, B.; Wamalwa, D.; Farquhar, C.; John-Stewart, G.C. Predictive value of interferon-gamma release assays for postpartum active tuberculosis in HIV-1-infected women. Int. J. Tuberc. Lung Dis. 2013, 17, 1552–1557+i–iv. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.-C.; Li, Z.-Y.; Chen, X.-N.; Shi, C.-L.; Wu, M.-Y.; Chen, H.; Zhu, X.-Y.; Song, H.-F.; Wu, M.-J.; Xu, P. More significance of TB-IGRA except for the diagnose of tuberculosis. J. Clin. Lab. Anal. 2018, 32, e22183. [Google Scholar] [CrossRef]
Risk Status for M. bovis Infection | Source | Total Number | Number of Serum Samples | Number of PBMC Samples |
---|---|---|---|---|
High risk | Kennel foxhounds where an M. bovis outbreak occurred | 164 | 163 * | 164 |
TB-free ** | Canine patients at the HfSA, University of Edinburgh | 45 | 45 | 0 |
TB-free ** | Blood-donor dogs at the HfSA, University of Edinburgh | 24 | 0 | 24 |
TB-free ** | Canine geriatric health screen patients, HfSA University of Edinburgh | 8 | 0 | 8 |
Low risk | Pet dogs in contact with a household (animal) case of mycobacterial disease | 10 | 0 | 10 |
Low risk | Pet dogs of kennel staff where a previous M. bovis outbreak occurred | 32 | 0 | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Halloran, C.; Burr, P.; Gunn-Moore, D.A.; Hope, J.C. Comparative Performance of Ante-Mortem Diagnostic Assays for the Identification of Mycobacterium bovis-Infected Domestic Dogs (Canis lupus familiaris). Pathogens 2025, 14, 28. https://doi.org/10.3390/pathogens14010028
O’Halloran C, Burr P, Gunn-Moore DA, Hope JC. Comparative Performance of Ante-Mortem Diagnostic Assays for the Identification of Mycobacterium bovis-Infected Domestic Dogs (Canis lupus familiaris). Pathogens. 2025; 14(1):28. https://doi.org/10.3390/pathogens14010028
Chicago/Turabian StyleO’Halloran, Conor, Paul Burr, Danielle A. Gunn-Moore, and Jayne C. Hope. 2025. "Comparative Performance of Ante-Mortem Diagnostic Assays for the Identification of Mycobacterium bovis-Infected Domestic Dogs (Canis lupus familiaris)" Pathogens 14, no. 1: 28. https://doi.org/10.3390/pathogens14010028
APA StyleO’Halloran, C., Burr, P., Gunn-Moore, D. A., & Hope, J. C. (2025). Comparative Performance of Ante-Mortem Diagnostic Assays for the Identification of Mycobacterium bovis-Infected Domestic Dogs (Canis lupus familiaris). Pathogens, 14(1), 28. https://doi.org/10.3390/pathogens14010028