Progress on the Regulation of the Host Immune Response by Parasite-Derived Exosomes
Abstract
:1. Introduction
2. Formation and Function of Parasite-Derived Exosomes
3. Regulation of the Host Immune Response by Parasite-Derived Exosomes
3.1. Protozoa
3.1.1. Plasmodium Exosomes Regulate Host Immune Response
3.1.2. Toxoplasma gondii Exosomes Regulate Host Immune Response
3.1.3. Leishmania Exosomes Regulate Host Immune Response
3.1.4. Trypanosoma Exosomes Regulate Host Immune Response
3.1.5. Trichomonas vaginalis Exosomes Regulate Host Immune Response
3.2. Helminths
3.2.1. Schistosomes Exosomes Regulate Host Immune Response
3.2.2. Echinococcus granulosus Exosomes Regulate Host Immune Response
3.2.3. Clonorchis sinensis Exosomes Regulate Host Immune Response
3.2.4. Trichinella spiralis Exosomes Regulate Host Immune Response
3.3. Arthropods
3.3.1. Mosquito Exosomes Regulate Host Immune Response
3.3.2. Tick Exosomes Regulate Host Immune Response
4. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schorey, J.S.; Cheng, Y.; Singh, P.P.; Smith, V.L. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep. 2015, 16, 24–43. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R.; Lebleu, V.S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef]
- Pegtel, D.M.; Gould, S.J. Exosomes. Annu. Rev. Biochem. 2019, 88, 487–514. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Patters, B.J.; Kodidela, S.; Kumar, S. Extracellular vesicles: Intercellular mediators in alcohol-induced pathologies. J. Neuroimmune Pharm. 2020, 15, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (misev2018): A position statement of the international society for extracellular vesicles and update of the misev2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, Á.M.; Galué-Parra, A.; Pereira, W.; Pedersen, K.W.; Da, S.E. Leishmania 360°: Guidelines for exosomal research. Microorganisms 2021, 9, 2081. [Google Scholar] [CrossRef] [PubMed]
- Morelli, A.E.; Larregina, A.T.; Shufesky, W.J.; Sullivan, M.L.; Stolz, D.B.; Papworth, G.D.; Zahorchak, A.F.; Logar, A.J.; Wang, Z.; Watkins, S.C.; et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 2004, 104, 3257–3266. [Google Scholar] [CrossRef] [PubMed]
- Record, M.; Subra, C.; Silvente-Poirot, S.; Poirot, M. Exosomes as intercellular signalosomes and pharmacological effectors. Biochem. Pharmacol. 2011, 81, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- Lenassi, M.; Cagney, G.; Liao, M.; Vaupotic, T.; Bartholomeeusen, K.; Cheng, Y.; Krogan, N.J.; Plemenitas, A.; Peterlin, B.M. Hiv nef is secreted in exosomes and triggers apoptosis in bystander CD4+ t cells. Traffic 2010, 11, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Mckerrow, J.H.; Caffrey, C.; Kelly, B.; Loke, P.; Sajid, M. Proteases in parasitic diseases. Annu. Rev. Pathol. 2006, 1, 497–536. [Google Scholar] [CrossRef] [PubMed]
- Noonin, C.; Thongboonkerd, V. Exosome-inflammasome crosstalk and their roles in inflammatory responses. Theranostics 2021, 11, 4436–4451. [Google Scholar] [CrossRef] [PubMed]
- Brossa, A.; Tapparo, M.; Fonsato, V.; Papadimitriou, E.; Delena, M.; Camussi, G.; Bussolati, B. Coincubation as mir-loading strategy to improve the anti-tumor effect of stem cell-derived EVs. Pharmaceutics 2021, 13, 76. [Google Scholar] [CrossRef] [PubMed]
- Andreu, Z.; Yáñez-Mó, M. Tetraspanins in extracellular vesicle formation and function. Front. Immunol. 2014, 5, 442. [Google Scholar] [CrossRef] [PubMed]
- Szempruch, A.J.; Sykes, S.E.; Kieft, R.; Dennison, L.; Becker, A.C.; Gartrell, A.; Martin, W.J.; Nakayasu, E.S.; Almeida, I.C.; Hajduk, S.L.; et al. Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell 2016, 164, 246–257. [Google Scholar] [CrossRef] [PubMed]
- Abrami, L.; Brandi, L.; Moayeri, M.; Brown, M.J.; Krantz, B.A.; Leppla, S.H.; van der Goot, F.G. Hijacking multivesicular bodies enables long-term and exosome-mediated long-distance action of anthrax toxin. Cell Rep. 2013, 5, 986–996. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, K.G.; Luna-Gomes, T.; Mesquita-Santos, F.; Corrêa, R.; Assunção, L.S.; Atella, G.C.; Weller, P.F.; Bandeira-Melo, C.; Bozza, P.T. Schistosomal lipids activate human eosinophils via toll-like receptor 2 and PGD2 receptors: 15-lo role in cytokine secretion. Front. Immunol. 2018, 9, 3161. [Google Scholar] [CrossRef] [PubMed]
- Kua, K.P.; Lee, S.; Chongmelaxme, B. The impact of home-based management of malaria on clinical outcomes in sub-saharan African populations: A systematic review and meta-analysis. Trop. Med. Health 2024, 52, 7. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Jiang, L.; Miller, L.H. Decoding infection and transmission: Deciphering the mystery of infectious diseases from data-based research. Decod. Infect. Transm. 2023, 1, 100001. [Google Scholar] [CrossRef]
- Khowawisetsut, L.; Vimonpatranon, S.; Lekmanee, K.; Sawasdipokin, H.; Srimark, N.; Chotivanich, K.; Pattanapanyasat, K. Differential effect of extracellular vesicles derived from Plasmodium falciparum-infected red blood cells on monocyte polarization. Int. J. Mol. Sci. 2023, 24, 2631. [Google Scholar] [CrossRef] [PubMed]
- Couper, K.N.; Barnes, T.; Hafalla, J.C.; Combes, V.; Ryffel, B.; Secher, T.; Grau, G.E.; Riley, E.M.; de Souza, J.B. Parasite-derived plasma microparticles contribute significantly to malaria infection-induced inflammation through potent macrophage stimulation. PLoS Pathog. 2010, 6, e1000744. [Google Scholar] [CrossRef]
- Maier, A.G.; Rug, M.; O’Neill, M.T.; Beeson, J.G.; Marti, M.; Reeder, J.; Cowman, A.F. Skeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic pfemp1 to the Plasmodium falciparum-infected erythrocyte surface. Blood 2007, 109, 1289–1297. [Google Scholar] [CrossRef]
- Nantakomol, D.; Dondorp, A.M.; Krudsood, S.; Udomsangpetch, R.; Pattanapanyasat, K.; Combes, V.; Grau, G.E.; White, N.J.; Viriyavejakul, P.; Day, N.P.; et al. Circulating red cell-derived microparticles in human malaria. J. Infect. Dis. 2011, 203, 700–706. [Google Scholar] [CrossRef]
- Sisquella, X.; Ofir-Birin, Y.; Pimentel, M.A.; Cheng, L.; Abou, K.P.; Sampaio, N.G.; Penington, J.S.; Connolly, D.; Giladi, T.; Scicluna, B.J.; et al. Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors. Nat. Commun. 2017, 8, 1985. [Google Scholar] [CrossRef] [PubMed]
- Diner, E.J.; Burdette, D.L.; Wilson, S.C.; Monroe, K.M.; Kellenberger, C.A.; Hyodo, M.; Hayakawa, Y.; Hammond, M.C.; Vance, R.E. The innate immune DNA sensor cgas produces a noncanonical cyclic dinucleotide that activates human sting. Cell Rep. 2013, 3, 1355–1361. [Google Scholar] [CrossRef] [PubMed]
- Montes, D.O.M.; Kumar, R.; Rivera, F.L.; Amante, F.H.; Sheel, M.; Faleiro, R.J.; Bunn, P.T.; Best, S.E.; Beattie, L.; Ng, S.S.; et al. Type i interferons regulate immune responses in humans with blood-stage Plasmodium falciparum infection. Cell Rep. 2016, 17, 399–412. [Google Scholar]
- Freitas, D.R.A.; Lamb, T.; Spence, P.; Stephens, R.; Lang, A.; Roers, A.; Muller, W.; O’Garra, A.; Langhorne, J. Il-27 promotes il-10 production by effector th1 cd4+ t cells: A critical mechanism for protection from severe immunopathology during malaria infection. J. Immunol. 2012, 188, 1178–1190. [Google Scholar] [CrossRef] [PubMed]
- Mbagwu, S.I.; Lannes, N.; Walch, M.; Filgueira, L.; Mantel, P.Y. Human microglia respond to malaria-induced extracellular vesicles. Pathogens 2019, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, M.; Wang, Q.R.; Hou, X.; Zhou, T.; Liu, J.; Wang, Q.; Liu, W.; Liu, X.; Jin, X.; et al. Malaria-derived exosomes exacerbate liver injury during blood stage of Plasmodium berghei infection. Acta Trop. 2023, 239, 106815. [Google Scholar] [CrossRef] [PubMed]
- Regev-Rudzki, N.; Wilson, D.W.; Carvalho, T.G.; Sisquella, X.; Coleman, B.M.; Rug, M.; Bursac, D.; Angrisano, F.; Gee, M.; Hill, A.F.; et al. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell 2013, 153, 1120–1133. [Google Scholar] [CrossRef] [PubMed]
- Martin-Jaular, L.; Nakayasu, E.S.; Ferrer, M.; Almeida, I.C.; Del, P.H. Exosomes from Plasmodium yoelii-infected reticulocytes protect mice from lethal infections. PLoS ONE 2011, 6, e26588. [Google Scholar] [CrossRef] [PubMed]
- Montoya, J.G.; Liesenfeld, O. Toxoplasmosis. Lancet 2004, 363, 1965–1976. [Google Scholar] [CrossRef] [PubMed]
- Wowk, P.F.; Zardo, M.L.; Miot, H.T.; Goldenberg, S.; Carvalho, P.C.; Mörking, P.A. Proteomic profiling of extracellular vesicles secreted from Toxoplasma gondii. Proteomics 2017, 17, 1600477. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Y.; Xiu, F.; Wang, J.; Cong, H.; He, S.; Shi, Y.; Wang, X.; Li, X.; Zhou, H. Characterization of exosomes derived from Toxoplasma gondii and their functions in modulating immune responses. Int. J. Nanomed. 2018, 13, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Cannella, D.; Brenier-Pinchart, M.P.; Braun, L.; van Rooyen, J.M.; Bougdour, A.; Bastien, O.; Behnke, M.S.; Curt, R.L.; Curt, A.; Saeij, J.P.; et al. Mir-146a and mir-155 delineate a microRNA fingerprint associated with Toxoplasma persistence in the host brain. Cell Rep. 2014, 6, 928–937. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Dong, Y.; Fang, T.; Wang, X.; Chen, L.; Zheng, C.; Kang, Y.; Jiang, L.; You, X.; Gai, S.; et al. Circulating microRNA-423-3p improves the prediction of coronary artery disease in a general population—Six-year follow-up results from the China-cardiovascular disease study. Circ. J. 2020, 84, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Quiarim, T.M.; Maia, M.M.; Da, C.A.; Taniwaki, N.N.; Namiyama, G.M.; Pereira-Chioccola, V.L. Characterization of extracellular vesicles isolated from types i, ii and iii strains of Toxoplasma gondii. Acta Trop. 2021, 219, 105915. [Google Scholar] [CrossRef] [PubMed]
- Pace, D. Leishmaniasis. J. Infect. 2014, 69 (Suppl. S1), S10–S18. [Google Scholar] [CrossRef] [PubMed]
- Atayde, V.D.; Hassani, K.; Da, S.L.F.A.; Borges, A.R.; Adhikari, A.; Martel, C.; Olivier, M. Leishmania exosomes and other virulence factors: Impact on innate immune response and macrophage functions. Cell. Immunol. 2016, 309, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Silverman, J.M.; Clos, J.; Horakova, E.; Wang, A.Y.; Wiesgigl, M.; Kelly, I.; Lynn, M.A.; Mcmaster, W.R.; Foster, L.J.; Levings, M.K.; et al. Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells. J. Immunol. 2010, 185, 5011–5022. [Google Scholar] [CrossRef] [PubMed]
- Hassani, K.; Shio, M.T.; Martel, C.; Faubert, D.; Olivier, M. Absence of metalloprotease gp63 alters the protein content of Leishmania exosomes. PLoS ONE 2014, 9, e95007. [Google Scholar] [CrossRef] [PubMed]
- Silverman, J.M.; Reiner, N.E. Leishmania exosomes deliver preemptive strikes to create an environment permissive for early infection. Front. Cell. Infect. Microbiol. 2011, 1, 26. [Google Scholar] [CrossRef] [PubMed]
- Hassani, K.; Olivier, M. Immunomodulatory impact of Leishmania-induced macrophage exosomes: A comparative proteomic and functional analysis. PLoS Neglect. Trop. Dis. 2013, 7, e2185. [Google Scholar] [CrossRef] [PubMed]
- Koutsoni, O.; Barhoumi, M.; Guizani, I.; Dotsika, E. Leishmania eukaryotic initiation factor (leif) inhibits parasite growth in murine macrophages. PLoS ONE 2014, 9, e97319. [Google Scholar] [CrossRef] [PubMed]
- Coakley, G.; Maizels, R.M.; Buck, A.H. Exosomes and other extracellular vesicles: The new communicators in parasite infections. Trends Parasitol. 2015, 31, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Bayer-Santos, E.; Aguilar-Bonavides, C.; Rodrigues, S.P.; Cordero, E.M.; Marques, A.F.; Varela-Ramirez, A.; Choi, H.; Yoshida, N.; Da, S.J.; Almeida, I.C. Proteomic analysis of Trypanosoma cruzi secretome: Characterization of two populations of extracellular vesicles and soluble proteins. J. Proteome Res. 2013, 12, 883–897. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Silva, M.R.; Cabrera-Cabrera, F.; Das, N.R.; Souto-Padrón, T.; de Souza, W.; Cayota, A. Gene expression changes induced by Trypanosoma cruzi shed microvesicles in mammalian host cells: Relevance of tRNA-derived halves. Biomed. Res. Int. 2014, 2014, 305239. [Google Scholar] [CrossRef]
- Barrett, M.P.; Burchmore, R.J.; Stich, A.; Lazzari, J.O.; Frasch, A.C.; Cazzulo, J.J.; Krishna, S. The trypanosomiases. Lancet 2003, 362, 1469–1480. [Google Scholar] [CrossRef] [PubMed]
- Twu, O.; de Miguel, N.; Lustig, G.; Stevens, G.C.; Vashisht, A.A.; Wohlschlegel, J.A.; Johnson, P.J. Trichomonas vaginalis exosomes deliver cargo to host cells and mediate host: Parasite interactions. PLoS Pathog. 2013, 9, e1003482. [Google Scholar] [CrossRef] [PubMed]
- Olmos-Ortiz, L.M.; Barajas-Mendiola, M.A.; Barrios-Rodiles, M.; Castellano, L.E.; Arias-Negrete, S.; Avila, E.E.; Cuéllar-Mata, P. Trichomonas vaginalis exosome-like vesicles modify the cytokine profile and reduce inflammation in parasite-infected mice. Parasite Immunol. 2017, 39, e12426. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, L.; Liang, Y.; Lu, L. Pathology and molecular mechanisms of Schistosoma japonicum-associated liver fibrosis. Front. Cell. Infect. Microbiol. 2022, 12, 1035765. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Liu, J.; Dao, J.; Lu, K.; Li, H.; Gu, H.; Liu, J.; Feng, X.; Cheng, G. Molecular characterization of S. japonicum exosome-like vesicles reveals their regulatory roles in parasite-host interactions. Sci. Rep. 2016, 6, 25885. [Google Scholar] [CrossRef] [PubMed]
- Abbas, W.; Kumar, A.; Herbein, G. The eef1a proteins: At the crossroads of oncogenesis, apoptosis, and viral infections. Front. Oncol. 2015, 5, 75. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.G.; Brindley, P.J.; Wang, S.Y.; Chen, Z. Schistosoma genomics: New perspectives on schistosome biology and host-parasite interaction. Annu. Rev. Genom. Hum. Genet. 2009, 10, 211–240. [Google Scholar] [CrossRef] [PubMed]
- Rojo, J.U.; Melkus, M.W.; Kottapalli, K.R.; Okiya, O.E.; Sudduth, J.; Zhang, W.; Molehin, A.J.; Carter, D.; Siddiqui, A.A. Sm-p80-based schistosomiasis vaccine mediated epistatic interactions identified potential immune signatures for vaccine efficacy in mice and baboons. PLoS ONE 2017, 12, e171677. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Schulte, L.; Loukas, A.; Pickering, D.; Pearson, M.; Mobli, M.; Jones, A.; Rosengren, K.J.; Daly, N.L.; Gobert, G.N.; et al. Solution structure, membrane interactions, and protein binding partners of the tetraspanin sm-tsp-2, a vaccine antigen from the human blood fluke Schistosoma mansoni. J. Biol. Chem. 2014, 289, 7151–7163. [Google Scholar] [CrossRef] [PubMed]
- Pooe, K.; Thulo, M.; Makumbe, H.; Akumadu, B.; Otun, O.; Aloke, C.; Achilonu, I. Biophysical description of bromosulfophthalein interaction with the 28-kda glutathione transferase from Schistosoma japonicum. Mol. Biochem. Parasitol. 2022, 252, 111524. [Google Scholar] [CrossRef] [PubMed]
- Samoil, V.; Dagenais, M.; Ganapathy, V.; Aldridge, J.; Glebov, A.; Jardim, A.; Ribeiro, P. Vesicle-based secretion in schistosomes: Analysis of protein and microRNA (miRNA) content of exosome-like vesicles derived from Schistosoma mansoni. Sci. Rep. 2018, 8, 3286. [Google Scholar] [CrossRef] [PubMed]
- Hamway, Y.; Zimmermann, K.; Blommers, M.; Sousa, M.V.; Häberli, C.; Kulkarni, S.; Skalicky, S.; Hackl, M.; Götte, M.; Keiser, J.; et al. Modulation of host-parasite interactions with small molecules targeting Schistosoma mansoni microRNAs. ACS Infect. Dis. 2022, 8, 2028–2034. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Wang, Y.; Fan, X.; Lei, N.; Tian, Y.; Zhang, D.; Pan, W. A schistosome miRNA promotes host hepatic fibrosis by targeting transforming growth factor beta receptor iii. J. Hepatol. 2020, 72, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Dong, B.; Zhu, D.; Fu, Z.; Liu, J.; Jin, Y. Sja-let-7 suppresses the development of liver fibrosis via Schistosoma japonicum extracellular vesicles. PLoS Pathog. 2024, 20, e1012153. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gong, W.; Zhou, H.; Hu, Y.; Wang, L.; Shen, Y.; Yu, G.; Cao, J. A novel miRNA from egg-derived exosomes of Schistosoma japonicum promotes liver fibrosis in murine schistosomiasis. Front. Immunol. 2022, 13, 860807. [Google Scholar] [CrossRef] [PubMed]
- Buratta, S.; Urbanelli, L.; Sagini, K.; Giovagnoli, S.; Caponi, S.; Fioretto, D.; Mitro, N.; Caruso, D.; Emiliani, C. Extracellular vesicles released by fibroblasts undergoing h-ras induced senescence show changes in lipid profile. PLoS ONE 2017, 12, e188840. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liao, Y.; Yang, R.; Yu, Z.; Zhang, L.; Zhu, Z.; Wu, X.; Shen, J.; Liu, J.; Xu, L.; et al. Sja-mir-71a in Schistosome egg-derived extracellular vesicles suppresses liver fibrosis caused by Schistosomiasis via targeting semaphorin 4d. J. Extracell. Vesicles 2020, 9, 1785738. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Zhu, Z.; Liu, Y.; Wu, J.; Li, D.; Li, Z.; Xu, J.; Yang, R.; Wang, L. Schistosome egg-derived extracellular vesicles deliver sja-mir-71a inhibits host macrophage and neutrophil extracellular traps via targeting sema4d. Cell Commun. Signal. 2023, 21, 366. [Google Scholar] [CrossRef] [PubMed]
- Coakley, G.; Wright, M.D.; Borger, J.G. Schistosoma mansoni-derived lipids in extracellular vesicles: Potential agonists for eosinophillic tissue repair. Front. Immunol. 2019, 10, 1010. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Li, Y.; Li, R.; Liu, M.; He, X.; Yang, X.; Cho, W.C.; Ayaz, M.; Kandil, O.M.; Yang, Y.; et al. Comparative characterization of microRNA-71 of echinococcus granulosus exosomes. Parasite 2023, 30, 55. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wu, J.; Fu, Y.; Yan, L.; Li, Y.; Guo, X.; Zhang, Y.; Wang, X.; Shen, Y.; Cho, W.C.; et al. Identification of different extracellular vesicles in the hydatid fluid of Echinococcus granulosus and immunomodulatory effects of 110 k EVs on sheep pbmcs. Front. Immunol. 2021, 12, 602717. [Google Scholar] [CrossRef] [PubMed]
- Nicolao, M.C.; Rodrigues, C.R.; Coccimiglio, M.B.; Ledo, C.; Docena, G.H.; Cumino, A.C. Characterization of protein cargo of Echinococcus granulosus extracellular vesicles in drug response and its influence on immune response. Parasites Vectors 2023, 16, 255. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, W.; Cui, F.; Shi, C.; Ma, Y.; Yu, Y.; Zhao, W.; Zhao, J. Extracellular vesicles derived from Echinococcus granulosus hydatid cyst fluid from patients: Isolation, characterization and evaluation of immunomodulatory functions on t cells. Int. J. Parasitol. 2019, 49, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Zakeri, A.; Hansen, E.P.; Andersen, S.D.; Williams, A.R.; Nejsum, P. Immunomodulation by helminths: Intracellular pathways and extracellular vesicles. Front. Immunol. 2018, 9, 2349. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Chai, L.; Che, Y.; Min, S.; Yang, R. Identification and characterization of a unique leucine-rich repeat protein (lrrc33) that inhibits toll-like receptor-mediated NF-κB activation. Biochem. Biophys. Res. Commun. 2013, 434, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Nono, J.K.; Lutz, M.B.; Brehm, K. Emtip, a t-cell immunomodulatory protein secreted by the tapeworm Echinococcus multilocularis is important for early metacestode development. PLoS Neglect. Trop. Dis. 2014, 8, e2632. [Google Scholar] [CrossRef] [PubMed]
- Siles-Lucas, M.; Sánchez-Ovejero, C.; González-Sánchez, M.; González, E.; Falcón-Pérez, J.M.; Boufana, B.; Fratini, F.; Casulli, A.; Manzano-Román, R. Isolation and characterization of exosomes derived from fertile sheep hydatid cysts. Vet. Parasitol. 2017, 236, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Nicolao, M.C.; Rodriguez, R.C.; Cumino, A.C. Extracellular vesicles from Echinococcus granulosus larval stage: Isolation, characterization and uptake by dendritic cells. PLoS Neglect. Trop. Dis. 2019, 13, e7032. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gong, W.; Cao, S.; Yin, J.; Zhang, J.; Cao, J.; Shen, Y. Comprehensive analysis of non-coding RNA profiles of exosome-like vesicles from the protoscoleces and hydatid cyst fluid of Echinococcus granulosus. Front. Cell. Infect. Microbiol. 2020, 10, 316. [Google Scholar] [CrossRef]
- Zhang, X.; Gong, W.; Duan, C.; Cai, H.; Shen, Y.; Cao, J. Echinococcus granulosus protoscoleces-derived exosome-like vesicles and egr-mir-277a-3p promote dendritic cell maturation and differentiation. Cells 2022, 11, 3220. [Google Scholar] [CrossRef]
- Mehmood, K.; Zhang, H.; Sabir, A.J.; Abbas, R.Z.; Ijaz, M.; Durrani, A.Z.; Saleem, M.H.; Ur, R.M.; Iqbal, M.K.; Wang, Y.; et al. A review on epidemiology, global prevalence and economical losses of fasciolosis in ruminants. Microb. Pathog. 2017, 109, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Cwiklinski, K.; de la Torre-Escudero, E.; Trelis, M.; Bernal, D.; Dufresne, P.J.; Brennan, G.P.; O’Neill, S.; Tort, J.; Paterson, S.; Marcilla, A.; et al. The extracellular vesicles of the helminth pathogen, fasciola hepatica: Biogenesis pathways and cargo molecules involved in parasite pathogenesis. Mol. Cell. Proteom. 2015, 14, 3258–3273. [Google Scholar] [CrossRef] [PubMed]
- Fromm, B.; Ovchinnikov, V.; Høye, E.; Bernal, D.; Hackenberg, M.; Marcilla, A. On the presence and immunoregulatory functions of extracellular microRNAs in the trematode Fasciola hepatica. Parasite Immunol. 2017, 39, e12399. [Google Scholar] [CrossRef] [PubMed]
- Trelis, M.; Sánchez-López, C.M.; Sánchez-Palencia, L.F.; Ramírez-Toledo, V.; Marcilla, A.; Bernal, D. Proteomic analysis of extracellular vesicles from fasciola hepatica hatching eggs and juveniles in culture. Front. Cell. Infect. Microbiol. 2022, 12, 903602. [Google Scholar] [CrossRef]
- Crisóstomo-Jorquera, V.; Landaeta-Aqueveque, C. The genus Trichinella and its presence in wildlife worldwide: A review. Transbound. Emerg. Dis. 2022, 69, e1269–e1279. [Google Scholar] [CrossRef]
- Kosanović, M.; Cvetković, J.; Gruden-Movsesijan, A.; Vasilev, S.; Svetlana, M.; Ilić, N.; Sofronić-Milosavljević, L. Trichinella spiralis muscle larvae release extracellular vesicles with immunomodulatory properties. Parasite Immunol. 2019, 41, e12665. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, Y.; Zhen, J.; Zhang, J.; Pang, Z.; Song, X.; Lin, L.; Sun, F.; Lu, Y. Effects of exosomes derived from Trichinella spiralis infective larvae on intestinal epithelial barrier function. Vet. Res. 2022, 53, 87. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Lin, L.; Han, Y.; Li, Z.; Zhen, J.; Zhang, Y.; Sun, F.; Lu, Y. Exosome-delivered mir-153 from Trichinella spiralis promotes apoptosis of intestinal epithelial cells by downregulating bcl2. Vet. Res. 2023, 54, 52. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Woodson, M.; Neupane, B.; Bai, F.; Sherman, M.B.; Choi, K.H.; Neelakanta, G.; Sultana, H. Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. PLoS Pathog. 2018, 14, e1006764. [Google Scholar] [CrossRef] [PubMed]
- Vora, A.; Zhou, W.; Londono-Renteria, B.; Woodson, M.; Sherman, M.B.; Colpitts, T.M.; Neelakanta, G.; Sultana, H. Arthropod EVs mediate dengue virus transmission through interaction with a tetraspanin domain containing glycoprotein tsp29fb. Proc. Natl. Acad. Sci. USA 2018, 115, E6604–E6613. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Ruiz, J.M.; Osuna-Ramos, J.F.; De Jesús-González, L.A.; Hurtado-Monzón, A.M.; Farfan-Morales, C.N.; Cervantes-Salazar, M.; Bolaños, J.; Cigarroa-Mayorga, O.E.; Martín-Martínez, E.S.; Medina, F.; et al. Isolation and characterization of exosomes released from mosquito cells infected with dengue virus. Virus Res. 2019, 266, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Guzman, M.G.; Vazquez, S. The complexity of antibody-dependent enhancement of dengue virus infection. Viruses 2010, 2, 2649–2662. [Google Scholar] [CrossRef] [PubMed]
- Arcà, B.; Colantoni, A.; Fiorillo, C.; Severini, F.; Benes, V.; Di Luca, M.; Calogero, R.A.; Lombardo, F. MicroRNAs from saliva of anopheline mosquitoes mimic human endogenous miRNAs and may contribute to vector-host-pathogen interactions. Sci. Rep. 2019, 9, 2955. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, C.; Yen, P.S.; Colantoni, A.; Mariconti, M.; Azevedo, N.; Lombardo, F.; Failloux, A.B.; Arcà, B. MicroRNAs and other small RNAs in Aedes aegypti saliva and salivary glands following chikungunya virus infection. Sci. Rep. 2022, 12, 9536. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.P.; Wang, Y.X.; Fan, Z.W.; Ji, Y.; Liu, M.J.; Zhang, W.H.; Li, X.L.; Zhou, S.X.; Li, H.; Liang, S.; et al. Mapping ticks and tick-borne pathogens in China. Nat. Commun. 2021, 12, 1075. [Google Scholar] [CrossRef] [PubMed]
- Oliva, C.A.; Wang, X.; Marnin, L.; Archer, N.K.; Hammond, H.L.; Carroll, E.; Shaw, D.K.; Tully, B.G.; Buskirk, A.D.; Ford, S.L.; et al. Tick extracellular vesicles enable arthropod feeding and promote distinct outcomes of bacterial infection. Nat. Commun. 2021, 12, 3696. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Sahay, B.; Russell, J.Q.; Fortner, K.A.; Hardin, N.; Sellati, T.J.; Budd, R.C. Reduced immune response to Borrelia burgdorferi in the absence of γδ t cells. Infect. Immun. 2011, 79, 3940–3946. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Tahir, F.; Wang, J.C.; Woodson, M.; Sherman, M.B.; Karim, S.; Neelakanta, G.; Sultana, H. Discovery of exosomes from tick saliva and salivary glands reveals therapeutic roles for cxcl12 and il-8 in wound healing at the tick-human skin interface. Front. Cell. Dev. Biol. 2020, 8, 554. [Google Scholar] [CrossRef] [PubMed]
- Koppers-Lalic, D.; Hackenberg, M.; Bijnsdorp, I.V.; van Eijndhoven, M.; Sadek, P.; Sie, D.; Zini, N.; Middeldorp, J.M.; Ylstra, B.; de Menezes, R.X.; et al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 2014, 8, 1649–1658. [Google Scholar] [CrossRef] [PubMed]
- Hackenberg, M.; Langenberger, D.; Schwarz, A.; Erhart, J.; Kotsyfakis, M. In silico target network analysis of de novo-discovered, tick saliva-specific microRNAs reveals important combinatorial effects in their interference with vertebrate host physiology. RNA 2017, 23, 1259–1269. [Google Scholar] [CrossRef]
- Cano-Argüelles, A.L.; Pérez-Sánchez, R.; Oleaga, A. A microRNA profile of the saliva in the argasid ticks Ornithodoros erraticus and Ornithodoros moubata and prediction of specific target genes. Ticks Tick.-Borne Dis. 2023, 14, 102249. [Google Scholar] [CrossRef] [PubMed]
- Mcsorley, H.J.; Maizels, R.M. Helminth infections and host immune regulation. Clin. Microbiol. Rev. 2012, 25, 585–608. [Google Scholar] [CrossRef] [PubMed]
- Abou-El-Naga, I.F. Emerging roles for extracellular vesicles in schistosoma infection. Acta Trop. 2022, 232, 106467. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, K.P.; Potriquet, J.; Mulvenna, J.; Sotillo, J.; Groves, P.L.; Loukas, A.; Apte, S.H.; Doolan, D.L. Proteomic identification of the contents of small extracellular vesicles from in vivo Plasmodium yoelii infection. Int. J. Parasitol. 2022, 52, 35–45. [Google Scholar] [CrossRef]
- Tawfeek, G.M.; Abou-El-Naga, I.F.; Hassan, E.; Sabry, D.; Meselhey, R.A.; Younis, S.S. Protective efficacy of Toxoplasma gondii infected cells-derived exosomes against chronic murine toxoplasmosis. Acta Trop. 2023, 248, 107041. [Google Scholar] [CrossRef] [PubMed]
- Kifle, D.W.; Chaiyadet, S.; Waardenberg, A.J.; Wise, I.; Cooper, M.; Becker, L.; Doolan, D.L.; Laha, T.; Sotillo, J.; Pearson, M.S.; et al. Uptake of Schistosoma mansoni extracellular vesicles by human endothelial and monocytic cell lines and impact on vascular endothelial cell gene expression. Int. J. Parasitol. 2020, 50, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Qadeer, A.; Giri, B.R.; Ullah, H.; Cheng, G. Transcriptional profiles of genes potentially involved in extracellular vesicle biogenesis in Schistosoma japonicum. Acta Trop. 2021, 217, 105851. [Google Scholar] [CrossRef] [PubMed]
miRNA | Source | Target Gene | Function |
---|---|---|---|
sma-miRNA-10 | S. mansoni adult worms | MAP3K7 | Downregulating MAP3K7 expression and subsequently lowering NF-κB activity [58] |
miRNA-33 | S. japonicum eggs | TGF-β receptor I (TGF-βRI) | Upregulating the expression of TGF-β RI, promoting the activity of the TGF-β/Smad signaling pathway [61] |
sja-miR-71a | S. japonicum eggs | Sema4D | Downregulating Sema4D expression, inhibiting the TGF-β/Smad and IL-13/STAT6 signaling pathways [63] |
Inhibiting the Sema4D/PPAR-γ/IL-10 axis, downregulating the formation of METs and NETs [64] | |||
sja-miR-2162 | S. japonicum eggs | TGF-β receptor III (TGF-βR3) | Downregulating TGF-βR3 expression, TGF-β signal transduction [59] |
sja-let-7 | S. japonicum adult worms | Col1α2 | Downregulating the activity of the TGF-β/Smad signaling pathway, thus reducing HSC activation and alleviating liver fibrosis [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Yu, C.; Song, L. Progress on the Regulation of the Host Immune Response by Parasite-Derived Exosomes. Pathogens 2024, 13, 623. https://doi.org/10.3390/pathogens13080623
Zhang X, Yu C, Song L. Progress on the Regulation of the Host Immune Response by Parasite-Derived Exosomes. Pathogens. 2024; 13(8):623. https://doi.org/10.3390/pathogens13080623
Chicago/Turabian StyleZhang, Xinyue, Chuanxin Yu, and Lijun Song. 2024. "Progress on the Regulation of the Host Immune Response by Parasite-Derived Exosomes" Pathogens 13, no. 8: 623. https://doi.org/10.3390/pathogens13080623
APA StyleZhang, X., Yu, C., & Song, L. (2024). Progress on the Regulation of the Host Immune Response by Parasite-Derived Exosomes. Pathogens, 13(8), 623. https://doi.org/10.3390/pathogens13080623