Staphylococci, Reptiles, Amphibians, and Humans: What Are Their Relations?
Abstract
1. Introduction
2. Etiology
Staphylococcal Species in Reptiles and Amphibians
3. Reptiles
3.1. Sauria
3.2. Testudines
3.3. Serpentes
3.4. Crocodylia
4. Amphibians
5. Discussion
6. Conclusions
Funding
Conflicts of Interest
References
- Mitchell, M.A. Zoonotic diseases associated with reptiles and amphibians: An update. Vet. Clin. N. Am. Exot. Anim. Pract. 2011, 14, 439–456. [Google Scholar] [CrossRef] [PubMed]
- Ebani, V.V. Domestic reptiles as source of zoonotic bacteria: A mini review. Asian Pac. J. Trop. Med. 2017, 10, 723–728. [Google Scholar] [CrossRef]
- Todd, J.K. Staphylococcal infections. Pediatr. Rev. 2005, 26, 444–450. [Google Scholar] [CrossRef]
- Haag, A.F.; Fitzgerald, J.R.; Penadés, J.R. Staphylococcus aureus in Animals. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Saeed, M.M.; Yasir, J.O.A.; Hussein, A.N.; Hassan, R.M. A review of animal diseases caused by staphylococci. Rev. Latinoam. Hipertens 2022, 17, 39–45. [Google Scholar] [CrossRef]
- Silva, V.; Lopes, A.F.; Soeiro, V.; Caniça, M.; Manageiro, V.; Pereira, J.E.; Maltez, L.; Capelo, J.L.; Igrejas, G.; Poeta, P. Nocturnal Birds of Prey as Carriers of Staphylococcus aureus and Other Staphylococci: Diversity, Antimicrobial Resistance and Clonal Lineages. Antibiotics 2022, 11, 240. [Google Scholar] [CrossRef] [PubMed]
- Linz, M.S.; Mattappallil, A.; Finkel, D.; Parker, D. Clinical Impact of Staphylococcus aureus Skin and Soft Tissue Infections. Antibiotics 2023, 12, 557. [Google Scholar] [CrossRef]
- Rao, S.; Linke, L.; Magnuson, R.; Jauch, L.; Hyatt, D.R. Antimicrobial resistance and genetic diversity of Staphylococcus aureus collected from livestock, poultry and humans. One Health 2022, 15, 100407. [Google Scholar] [CrossRef]
- Bengtsson, B.; Persson, L.; Ekström, K.; Unnerstad, H.E.; Uhlhorn, H.; Börjesson, S. High occurrence of mecC-MRSA in wild hedgehogs (Erinaceus europaeus) in Sweden. Vet. Microbiol. 2017, 207, 103–107. [Google Scholar] [CrossRef]
- Larsen, J.; Raisen, C.L.; Ba, X.; Sadgrove, N.J.; Padilla-González, G.F.; Simmonds, M.S.; Loncaric, I.; Kerschner, H.; Apfalter, P.; Hartl, R.; et al. Emergence of methicillin resistance predates the clinical use of antibiotics. Nature 2022, 602, 135–141. [Google Scholar] [CrossRef]
- Martínez-Seijas, C.; Mascarós, P.; Lizana, V.; Martí-Marco, A.; Arnau-Bonachera, A.; Chillida-Martínez, E.; Cardells, J.; Selva, L.; Viana, D.; Corpa, J.M. Genomic Characterization of Staphylococcus aureus in Wildlife. Animals 2023, 13, 1064. [Google Scholar] [CrossRef] [PubMed]
- Rousham, E.K.; Unicomb, L.; Islam, M.A. Human, animal and environmental contributors to antibiotic resistance in low-resource settings: Integrating behavioural, epidemiological and One Health approaches. Proc. R. Soc. B Boil. Sci. 2018, 285, 20180332. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, I.N.; Fernández-Fernández, R.; Juárez-Fernández, G.; Martínez-Álvarez, S.; Eguizábal, P.; Zarazaga, M.; Lozano, C.; Torres, C. Wild Animals Are Reservoirs and Sentinels of Staphylococcus aureus and MRSA Clones: A Problem with “One Health” Concern. Antibiotics 2021, 10, 1556. [Google Scholar] [CrossRef] [PubMed]
- Götz, F.; Bannerman, T.; Schleifer, K.H. The Genera Staphylococcus and Macrococcus. In The Prokaryotes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 5–75. [Google Scholar] [CrossRef]
- Olajide, J.L.; Desai, D.A.; Ajibola, J.O.; Adekoya, G.J.; Daramola, O.O.; Alaneme, K.K.; Fasiku, V.O.; Sadiku, E.R. Chapter 11—Nosocomial Bacterial Infection of Orthopedic Implants and Antibiotic Hydroxyapatite/Silver-Coated Halloysite Nanotube with Improved Structural Integrity as Potential Prophylaxis; Kokkarachedu, V., Kanikireddy, V., Sadiku, R., Eds.; Antibiotic Materials in Healthcare; Academic Press: Cambridge, MA, USA, 2020; pp. 171–220. [Google Scholar] [CrossRef]
- Gherardi, G.; Di Bonaventura, G.; Savini, V. Chapter 1—Staphylococcal Taxonomy; Savini, V., Ed.; Pet-To-Man Travelling Staphylococci; Academic Press: Cambridge, MA, USA, 2018; pp. 1–10. [Google Scholar] [CrossRef]
- Dinges, M.M.; Orwin, P.M.; Schlievert, P.M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 2000, 13, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Argudin, M.A.; Mendoza, M.C.; Rodico, M.R. Food Poisoning and Staphylococcus aureus Enterotoxins. Toxins 2010, 2, 1751–1773. [Google Scholar] [CrossRef] [PubMed]
- Bukowski, M.; Wladyka, B.; Dubin, G. Exfoliative Toxins of Staphylococcus aureus. Toxins 2010, 2, 1148–1165. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, L.P.; Toledo, L.F. An overview of the Brazilian frog farming. Aquaculture 2022, 548, 737623. [Google Scholar] [CrossRef]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef]
- Liang, H.; Wang, Y.; Liu, F.; Duan, G.; Long, J.; Jin, Y.; Chen, S.; Yang, H. The Application of Rat Models in Staphylococcus aureus Infections. Pathogens 2024, 13, 434. [Google Scholar] [CrossRef]
- Dakić, I.; Morrison, D.; Vuković, D.; Savić, B.; Shittu, A.; Jezek, P.; Hauschild, T.; Stepanović, S. Isolation and molecular characterization of Staphylococcus sciuri in the hospital environment. J. Clin. Microbiol. 2005, 43, 2782–2785. [Google Scholar] [CrossRef]
- Battaglia, M.; Garrett-Sinha, L.A. Staphylococcus xylosus and Staphylococcus aureus as commensals and pathogens on murine skin. Lab. Anim. Res. 2023, 39, 18. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.Y.; Lee, H.H.; Yang, S.J. Antimicrobial resistance profiles and clonal diversity of Staphylococcus epidermidis isolates from pig farms, slaughterhouses, and retail pork. Vet. Microbiol. 2023, 282, 109753. [Google Scholar] [CrossRef] [PubMed]
- Argudín, M.A.; Vanderhaeghen, W.; Vandendriessche, S.; Vandecandelaere, I.; André, F.X.; Denis, O.; Coenye, T.; Butaye, P. Antimicrobial resistance and population structure of Staphylococcus epidermidis recovered from animals and humans. Vet. Microbiol. 2015, 178, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, L.D.; Rubin, J.E.; Deneer, H.; Kanthan, R.; Sanche, S.; Blondeau, J.M. Isolation of Staphylococcus kloosii from an Ankle Wound of an Elderly Female Patient in Rural Saskatchewan, Canada: A Case Report. Ann. Clin. Case Rep. 2021, 6, 2073. [Google Scholar]
- Schleifer, K.H.; Kilpper-Bälz, R.; Devriese, L.A. Staphylococcus arlettae sp. nov., S. equorum sp. nov. and S. k1oosii sp. nov.: Three New Coagulase-Negative, Novobiocin-Resistant Species from Animals. Syst. Appl. Microbiol. 1984, 5, 501–509. [Google Scholar] [CrossRef]
- Espino, L.; Bérmudez, R.; Fidalgo, L.E.; González, A.; Miño, N.; Quiroga, M.I. Meningoencephalitis associated with Staphylococcus warneri in a dog. J. Small Anim. Pract. 2006, 47, 598–602. [Google Scholar] [CrossRef]
- Chong, C.E.; Bengtsson, R.J.; Horsburgh, M.J. Comparative genomics of Staphylococcus capitis reveals species determinants. Front. Microbiol. 2022, 13, 1005949. [Google Scholar] [CrossRef]
- Lienen, T.; Schnitt, A.; Hammerl, J.A.; Marino, S.F.; Maurischat, S.; Tenhagen, B.A. Multidrug-resistant Staphylococcus cohnii and Staphylococcus urealyticus isolates from German dairy farms exhibit resistance to beta-lactam antibiotics and divergent penicillin-binding proteins. Sci. Rep. 2021, 11, 6075. [Google Scholar] [CrossRef]
- Yu, H.; Taniguchi, M.; Uesaka, K.; Wiseschart, A.; Pootanakit, K.; Nishitani, Y.; Murakami, Y.; Ishimori, K.; Miyazaki, K.; Kitahara, K. Complete Genome Sequence of Staphylococcus arlettae Strain P2, Isolated from a Laboratory Environment. Microbiol. Resour. Announc. 2019, 8, e00696-19. [Google Scholar] [CrossRef]
- Ruzauskas, M.; Siugzdiniene, R.; Klimiene, I.; Virgailis, M.; Mockeliunas, R.; Vaskeviciute, L.; Zienius, D. Prevalence of methicillin-resistant Staphylococcus haemolyticus in companion animals: A cross-sectional study. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 56. [Google Scholar] [CrossRef]
- The Reptile Database. Available online: https://www.reptile-database.org (accessed on 14 June 2024).
- Palmeiro, B.S.; Roberts, H. Clinical approach to dermatologic disease in exotic animals. Vet. Clin. N. Am. Exot. Anim. Pract. 2013, 16, 523–577. [Google Scholar] [CrossRef] [PubMed]
- Rutland, C.S.; Cigler, P.; Kubale, V. Reptilian skin and its special histological structures. In Veterinary Anatomy and Physiology; Rutland, C.S., Kubale, V., Eds.; IntechOpen Limited: London, UK, 2019; Available online: https://www.intechopen.com/chapters/65535 (accessed on 20 March 2024).
- Hatt, J.M. Dermatologic problems in reptiles. In Proceedings of the World Small Animal Veterinary Association World Congress Proceedings, Geneva, Switzerland, 2–5 June 2010. [Google Scholar]
- Kardong, K.V. Vertebrates, Comparative Anatomy, Function, Evolution, 3rd ed.; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Murphy, J.B.; Armstrong, B.L. Maintenance of Rattlesnakes in Captivity; University of Kansas Museum of Natural History: Lawrence, KS, USA, 1978. [Google Scholar]
- Wright, K.M. Medical management of the Solomon Island prehensile-tailed skink Corucia zebrata. Bul. Assoc. Rept. Amph. Vet. 1993, 3, 9–17. [Google Scholar] [CrossRef]
- Brockmann, M.; Aupperle-Lellbach, H.; Gentil, M.; Heusinger, A.; Müller, E.; Marschang, R.E.; Pees, M. Challenges in microbiological identification of aerobic bacteria isolated from the skin of reptiles. PLoS ONE 2020, 15, e0240085. [Google Scholar] [CrossRef] [PubMed]
- Benson, K.G. Reptilian gastrointestinal diseases. Semin. Avian Exot. Pet Med. 1999, 8, 90–97. [Google Scholar] [CrossRef]
- Schumacher, J. Respiratory diseases of reptiles. Semin. Avian Exot. Pet Med. 1997, 6, 209–215. [Google Scholar] [CrossRef]
- Lazić, M.M.; Carretero, M.A.; Mihailov-Krstev, T.; Lazarecvić-Macanović, M.; Krstić, N.; Crnobrnja-Isailović, J. Incidence patterns of ectodermic lesions in wild populations of common wall lizard (Podarcis muralis). Amphibia-Reptilia 2012, 33, 327–336. [Google Scholar] [CrossRef]
- Strompfová, V.; Štempelová, L.; Bujňáková, D.; Karahutová, L.; Nagyová, M.; Siegfried, L. Virulence determinants and antibiotic resistance in staphylococci isolated from the skin of captive bred reptiles. Vet. Res. Commun. 2024, 48, 1471–1480. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.J.; Lim, E.W.; Ishak, B. Intestinal bacterial flora of the household lizard, Gecko gecko. Res. Vet. Sci. 1978, 24, 262–263. [Google Scholar] [CrossRef]
- Al-Taii, N.A.; Khalil Hoff, N.K.; Abd Al-Rudha, A.M.H. Pathogenic bacteria isolated from Hemidactylus turcicus in Baghdad Province, Iraq. J. Entomol. Zool. Stud. 2017, 5, 1348–1350. [Google Scholar]
- Martínez-Silvestre, A.; Silveira, L.; Mateo, J.A.; Urioste, J.; Rodríguez-Domínguez, M.A.; Pether, J. Microbiología cloacal en lagartos gigantes amenazados de las Islas Canarias (género Gallotia) en cautividad. Rev. Esp. Herp. 2003, 17, 29–37. [Google Scholar]
- Abreu-Acosta, N.; Pino-Vera, R.; Izquierdo-Rodríguez, E.; Afonso, O.; Foronda, P. Zoonotic Bacteria in Anolis sp., an Invasive Species Introduced to the Canary Islands (Spain). Animals 2023, 13, 414. [Google Scholar] [CrossRef] [PubMed]
- Cercenado, E. Staphylococcus lugdunensis: Un estafilococo coagulasa negativo diferente de los demás. Enferm. Infecc. 2009, 27, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, M.; Jereb, R. Ulcerative stomatitis (Mouthrot) in reptiles. J. Wildl. Rehabil. 1995, 18, 13. [Google Scholar]
- Fritts, T.; Rodda, G. The role of introduced species in the degradation island ecosystems: A case history of Guam. Annu. Rev. Ecol. Syst. 1998, 29, 113–140. [Google Scholar] [CrossRef]
- Toda, M.; Takahashi, H.; Nakagawa, N.; Sukigara, N. Ecology and control of the green anole (Anolis carolinensis), an invasive alien species on the Ogasawara Islands. In Restoring the Oceanic Island Ecosystem; Kawakami, K., Okochi, I., Eds.; Springer: Tokyo, Japan, 2010; pp. 145–152. [Google Scholar]
- Montgomery, J.M.; Gillespie, D.; Sastrawan, P.; Fredeking, T.M.; Stewart, G.L. Aerobic salivary bacteria in wild and captive Komodo dragons. J. Wildl. Dis. 2002, 38, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Auffenberg, W. The Behavioral Ecology of the Komodo Monitor; University Press of Florida: Gainesville, FL, USA, 1981; p. 406. [Google Scholar]
- Cristina, R.T.; Kocsis, R.; Dégi, J.; Muselin, F.; Dumitrescu, E.; Tirziu, E.; Herman, V.; Darău, A.P.; Oprescu, I. Pathology and Prevalence of Antibiotic-Resistant Bacteria: A Study of 398 Pet Reptiles. Animals 2022, 12, 1279. [Google Scholar] [CrossRef] [PubMed]
- Dipineto, L.; Raia, P.; Varriale, L.; Borrelli, L.; Botta, V.; Serio, C.; Capasso, M.; Rinaldi, L. Bacteria and parasites in Podarcis sicula and P. sicula klemmerii. BMC Vet. Res. 2018, 14, 392. [Google Scholar] [CrossRef] [PubMed]
- Taddei, S.; Dodi, P.L.; Di Ianni, F.; Cabassi, C.S.; Cavirani, S. Conjunctival flora of clinically normal captive green iguanas (Iguana iguana). Vet. Rec. 2010, 167, 29–30. [Google Scholar] [CrossRef]
- Jacobson, E.R.; Wronski, T.J.; Schumacher, J.; Reggiardo, C.; Berry, K.H. Cutaneous Dyskeratosis in Free-Ranging Desert Tortoises, Gopherus agassizii, in the Colorado Desert of Southern California. J. Zoo. Wildlife Med. 1994, 25, 68–81. [Google Scholar]
- Umbrasko, I.; Harlamova, N.; Pupins, M.; Skute, N. Skin microbiome of free-living European pond turtle (Emys orbicularis (L.)) on the northern border of its range in Silene nature park, Latvia. Acta Biol. Univ. Daugavp. 2020, 20, 155–161. [Google Scholar]
- Santana, J.A.; Silva, B.A.; Trevizani, N.A.B.; e Souza, A.M.A.; de Lima, G.M.N.; Furtado, N.R.M.; Lobato, F.C.F.; Silva, R.O.S. Isolation and antimicrobial resistance of coagulase-negative staphylococci recovered from healthy tortoises in Minas Gerais, Brazil. Ciência Rural. 2022, 52, e20210354. [Google Scholar] [CrossRef]
- Dickinson, V.M.; Duck, T.; Schwalbe, C.R.; Jarchow, J.L.; Trueblood, M.H. Nasal and cloacal bacteria in free-ranging desert tortoises from the western United States. J. Wildl. Dis. 2001, 37, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Di Ianni, F.; Dodi, P.L.; Cabassi, C.S.; Pelizzone, I.; Sala, A.; Cavirani, S.; Parmigiani, E.; Quintavalla, F.; Taddei, S. Conjunctival flora of clinically normal and diseased turtles and tortoises. BMC Vet. Res. 2015, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Holt, P.E.; Cooper, J.E.; Needham, J.R. Diseases of tortoises: A review of seventy cases. J. Small Anim. Pract. 1979, 20, 269–286. [Google Scholar] [CrossRef]
- Joyner, P.H.; Brown, J.D.; Holladay, S.; Sleeman, J.M. Characterization of the bacterial microflora of the tympanic cavity of eastern box turtles with and without aural abscesses. J. Wildl. Dis. 2006, 42, 859–864. [Google Scholar] [CrossRef]
- Oros, J.; Torrent, A.; Calabuig, P.; Deniz, S. Diseases and causes of mortality among sea turtles stranded in the Canary Islands, Spain (1998–2001). Dis. Aquat. Org. 2005, 63, 13–24. [Google Scholar] [CrossRef]
- Ebani, V.V. Bacterial Infections in Sea Turtles. Vet. Sci. 2023, 10, 333. [Google Scholar] [CrossRef]
- Maas, A.K. Vesicular, Ulcerative, and necrotic dermatitis of reptiles. Vet. Clin. Exot. Anim. 2013, 16, 737–755. [Google Scholar] [CrossRef]
- Hilf, M.; Wagner, R.A.; Yu, V.L. A prospective study of upper airway flora in healthy boid snakes and snakes with pneumonia. J. Zoo. Wildl. Med. 1990, 21, 318–325. [Google Scholar]
- Xia, Y.; Long, S.; Peng, Y.; Qin, S.; Shen, Y. Isolation and identification of four pathogenic bacterial strains from edible snake (Elaphe carinata and Ptyas mucosus) farms with pneumonia in China. Anim. Dis. 2022, 2, 30. [Google Scholar] [CrossRef]
- Goldstein, E.J.; Agyare, E.O.; Vagvolgyi, A.E.; Halpern, M. Aerobic bacterial oral flora of garter snakes: Development of normal flora and pathogenic potential for snakes and humans. J. Clin. Microbiol. 1981, 13, 954–956. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.J.; Citron, D.M.; Gonzales, H.; Russell, F.E.; Finegold, S.M. Bacteriology of rattlesnake venom and implications for therapy. J. Infect. Dis. 1979, 140, 818–821. [Google Scholar] [CrossRef] [PubMed]
- Blaylock, R.S. Normal oral bacterial flora from some southern African snakes. Onderstepoort J. Vet. Res. 2001, 68, 175–182. [Google Scholar]
- Fitzgerald, K.T.; Shipley, B.K.; Newquist, K.L.; Vera, R.; Flood, A.A. Additional observations and notes on the natural history of the prairie rattlesnake (Crotalus viridis) in Colorado. Top. Companion Anim. Med. 2013, 28, 167–176. [Google Scholar] [CrossRef]
- Fonseca, M.G.; Moreira, W.M.Q.; Counha, K.C.; Ribeiro, A.C.M.G.; Almeida, M.T.G. Oral microbiota of Brazilian captive snakes. J. Venom. Anim. Toxins Incl. Trop. Dis. 2009, 15, 54–60. [Google Scholar] [CrossRef]
- Jho, Y.S.; Park, D.H.; Lee, J.H.; Cha, S.Y.; Han, J.S. Identification of bacteria from the oral cavity and cloaca of snakes imported from Vietnam. Lab. Anim. Res. 2011, 27, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Pereira, H.C.; Gomes, D.O.; Hirano, L.Q.; Santos, A.L.; Lima, A.M. Oral microbiota in healthy Bothrops atrox (Serpentes: Viperidae) and in snakes with stomatitis. Acta Vet. Brno 2017, 11, 180–183. [Google Scholar] [CrossRef]
- Smith, L.K.; Vardanega, J.; Smith, S.; White, J.; Little, M.; Hanson, J. The Incidence of Infection Complicating Snakebites in Tropical Australia: Implications for Clinical Management and Antimicrobial Prophylaxis. J. Trop. Med. 2023, 2023, 5812766. [Google Scholar] [CrossRef]
- Ciscotto, P.; Machado de Avila, R.A.; Coelho, E.A.; Oliveira, J.; Diniz, C.G.; Farías, L.M.; de Carvalho, M.A.; Maria, W.S.; Sanchez, E.F.; Borges, A.; et al. Antigenic, microbicidal and antiparasitic properties of an l-amino acid oxidase isolated from Bothrops jararaca snake venom. Toxicon 2009, 53, 330–341. [Google Scholar] [CrossRef]
- Nunes Edos, S.; de Souza, M.A.; Vaz, A.F.; Santana, G.M.; Gomes, F.S.; Coelho, L.C.; Paiva, P.M.; da Silva, R.M.; Silva-Lucca, R.A.; Oliva, M.L.; et al. Purification of a lectin with antibacterial activity from Bothrops leucurus snake venom. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2011, 159, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Costa Torres, A.F.; Dantas, R.T.; Toyama, M.H.; Diz Filho, E.; Zara, F.J.; Rodrigues de Queiroz, M.G.; Nogueira, N.A.P.; de Oliveira, M.R.; de Oliveira Toyama, D.; Monteiro, H.S.; et al. Antibacterial and antiparasitic effects of Bothrops marajoensis venom and its fractions: Phospholipase A2 and L-amino acid oxidase. Toxicon 2010, 55, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Bustillo, S.; Leiva, L.C.; Merino, L.; Acosta, O.; Bal de Kier Joffé, E.; Gorodner, J.O. Antimicrobial activity of Bothrops alternatus venom from the Northeast of Argentine. Rev. Latinoam. Microbiol. 2008, 50, 79–82. [Google Scholar]
- Samy, R.P.; Kandasamy, M.; Gopalakrishnakone, P.; Stiles, B.G.; Rowan, E.G.; Becker, D.; Shanmugam, M.K.; Sethi, G.; Chow, V.T. Wound healing activity and mechanisms of action of an antibacterial protein from the venom of the eastern diamondback rattlesnake (Crotalus adamanteus). PLoS ONE 2014, 9, e80199. [Google Scholar] [CrossRef] [PubMed]
- Vargas, L.J.; Quintana, J.C.; Pereañez, J.A.; Núñez, V.; Sanz, L.; Calvete, J. Cloning and characterization of an antibacterial L-amino acid oxidase from Crotalus durissus cumanensis venom. Toxicon 2013, 64, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Vargas, L.J.; Londoño, M.; Quintana, J.C.; Rua, C.; Segura, C.; Lomonte, B.; Núñez, V. An acidic phospholipase A2 with antibacterial activity from Porthidium nasutum snake venom. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2012, 161, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Amorim, F.G.; Dunbar, J.P.; Leonard, D.; Redureau, D.; Quinton, L.; Dugon, M.M.; Boyd, A. Inhibition of bacterial biofilms by the snake venom proteome. Biotechnol. Rep. 2023, 39, e00810. [Google Scholar] [CrossRef] [PubMed]
- Okumu, M.O.; Eyaan, K.L.; Bett, L.K.; Gitahi, N. Antibacterial Activity of Venom from the Puff Adder (Bitis arietans), Egyptian Cobra (Naja haje), and Red Spitting Cobra (Naja pallida). Int. J. Microbiol. 2023, 2023, 7924853. [Google Scholar] [CrossRef]
- Mainster, M.E.; Lynd, F.T.; Cragg, P.C.; Karger, J. Treatment of multiple cases of Pasteurella multocida and staphylococcal pneumonia in Alligator mississippiensis on a herd basis. Proc. Am. Assoc. Zoo Vet. 1972, 33–36. [Google Scholar]
- Brown, D.R.; Nogueira, M.F.; Schoeb, T.R.; Vliet, K.A.; Bennett, R.A.; Pye, G.W.; Jacobson, E.R. Pathology of experimental mycoplasmosis in American alligators. J. Wildl. Dis. 2001, 37, 671–679. [Google Scholar] [CrossRef]
- Huchzermeyer, F.W. Crocodiles: Biology, Husbandry and Diseases; CABI Publishing: Wallingford, UK, 2003. [Google Scholar]
- Merchant, M.; Britton, A. Characterization of serum complement activity of saltwater (Crocodylus porosus) and freshwater (Crocodylus johnstoni) crocodiles. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2006, 143, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Preecharram, S.; Jearranaiprepame, P.; Daduang, S.; Temsiripong, Y.; Somdee, T.; Fukamizo, T.; Svasti, J.; Araki, T.; Thammasirirak, S. Isolation and characterisation of crocosin, an antibacterial compound from crocodile (Crocodylus siamensis) plasma. Anim. Sci. J. 2010, 81, 393–401. [Google Scholar] [CrossRef]
- Lovely, C.J.; Leslie, A.J. Normal intestinal flora of wild Nile crocodiles (Crocodylus niloticus) in the Okavango Delta, Botswana. J. South Afr. Vet. Assoc. 2008, 79, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.S.; Mota, R.A.; Pinheiro Júnior, J.W.; Almeida, M.C.; Silva, D.R.; Ferreira, D.R.; Azevedo, J.C. Aerobic bacterial microflora of Broad-snouted caiman (Caiman latirostris) oral cavity and cloaca, originating from parque Zoológico Arruda Câmara, Paraíba, Brazil. Braz. J. Microbiol. 2009, 40, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Charruau, P.; Pérez-Flores, J.; Pérez-Juárez, J.G.; Cedeño-Vázquez, J.R.; Rosas-Carmona, R. Oral and cloacal microflora of wild crocodiles Crocodylus acutus and C. moreletii in the Mexican Caribbean. Dis. Aquat. Organ. 2012, 98, 27–39. [Google Scholar] [CrossRef]
- Magnino, S.; Colin, P.; Dei-Cas, E.; Madsen, M.; McLauchlin, J.; Nöckler, K.; Maradona, M.P.; Tsigarida, E.; Vanopdenbosch, E.; Van Peteghem, C. Biological risks associated with consumption of reptile products. Int. J. Food Microbiol. 2009, 134, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Gruen, R.L. Crocodile attacks in Australia: Challenges for injury prevention and trauma care. World J. Surg. 2009, 33, 1554–1561. [Google Scholar] [CrossRef]
- Johnston, M.A.; Porter, D.E.; Rhodes, G.I.; Webster, L.F. Isolation of faecal coliform bacteria from the American alligator (Alligator mississippiensis). J. Appl. Microbiol. 2010, 108, 965–973. [Google Scholar] [CrossRef]
- AmphibiaWeb. Available online: https://amphibiaweb.org/index.html (accessed on 14 June 2024).
- Measey, J.; Basson, A.; Rebelo, A.D.; Nunes, A.L.; Vimercati, G.; Louw, M.; Mohanty, N.P. Why Have a Pet Amphibian? Insights From YouTube. Front. Ecol. Evol. 2019, 7, 52. [Google Scholar] [CrossRef]
- Glorioso, J.C.; Amborski, R.L.; Amborski, G.F.; Culley, D.D. Microbiological studies on septicemic bullfrog (Rana catesbeiana). Am. J. Vet. Res. 1974, 35, 1241–1245. [Google Scholar]
- Mauel, M.J.; Miller, D.L.; Frazier, K.S.; Hines, M.E., 2nd. Bacterial pathogens isolated from cultured bullfrogs (Rana catesbeiana). J. Vet. Diagn. Investig. 2002, 14, 431–433. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Cheng, Y.; Liao, W.; Yu, Q.; Shi, J.; Xia, X.; Chen, M.; Han, S.; Li, P. Composition and function of the skin microbiota were altered of red leg syndrome in cultured bullfrog (Rana catesbeiana). Aquac. Rep. 2023, 29, 101487. [Google Scholar] [CrossRef]
- Kouete, M.T.; Bletz, M.C.; LaBumbard, B.C.; LaBumbard, B.C.; Woodhams, D.C.; Blackburn, D.C. Parental care contributes to vertical transmission of microbes in a skin-feeding and direct-developing caecilian. Anim. Microbiome 2023, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, S.; Fang, J.; Zheng, S.; Wang, Z.; Jiao, Y.; Xia, P.; Wu, H.; Ma, Z.; Hao, L. Peptides Isolated from Amphibian Skin. Secretions with Emphasis on Antimicrobial Peptides. Toxins 2022, 14, 722. [Google Scholar] [CrossRef] [PubMed]
- Pickof, F.L. Studies in Comparative Immunity: I. Resistance of the Frog to Staphylococcus aureus with One Plate. J. Infect. Dis. 1923, 32, 232–242. Available online: http://www.jstor.org/stable/30083058 (accessed on 2 April 2024).
- Slaughter, D.M.; Patton, T.G.; Sievert, G.; Sobieski, R.J.; Crupper, S.S. Antibiotic resistance in coagulase-negative staphylococci isolated from Cope’s gray treefrogs (Hyla chrysoscelis). FEMS Microbiol. Lett. 2001, 205, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Koffi, A.C.; Kone, M.B.; Sylla, A.; Koffi-Nevry, R. Evaluation of the microbiological and nutritional quality of dried frogs marketed in Man (Côte d’Ivoire). GSC Biol. Pharm. Sci. 2022, 21, 067–073. [Google Scholar] [CrossRef]
- Ibietela, D.S.; Amadi, C.C. Bacterial Flora and Proximate Composition of Edible Frogs (Ptychadena mascareniensis and Ptychadena pumilio) from Some Locations in Rivers State, Nigeria. Int. J. Pathogen Res. 2019, 2, 1–12. [Google Scholar] [CrossRef]
- Ogoanah, O.S.; Okafor, A.E.; Eyong, M.M. Effect of different preparatory methods on microbial load of the edible frog Hoplobatrachus occipitalis from Aguleri, Anambra State, Nigeria. NISEB J. 2017, 17, 91–95. [Google Scholar]
- Rodrigues, E.; Teixeira de Seixas Filho, J.; Pereira Mello, S.C.R.; Castagna, A.A.; de Sousa, M.A.; Pereira Silva, U. Frog meat microbiota (Lithobates catesbeianus) used in infant food. Food Sci. Technol. 2014, 34, 51–54. [Google Scholar] [CrossRef]
- McCarthy, A.J.; Loeffler, A.; Witney, A.A.; Gould, K.A.; Lloyd, D.H.; Lindsay, J.A. Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo. Genome Biol. Evol. 2014, 6, 2697–2708. [Google Scholar] [CrossRef] [PubMed]
- Haaber, J.; Penadés, J.R.; Ingmer, H. Transfer of Antibiotic Resistance in Staphylococcus aureus. Trends Microbiol. 2017, 25, 893–905. [Google Scholar] [CrossRef] [PubMed]
- Dalla Valle, L.; Benato, F.; Maistro, S.; Quinzani, S.; Alibardi, L. Bioinformatic and molecular characterization of betadefensins-like peptides isolated from the green lizard Anolis carolinensis. Dev. Comp. Immunol. 2012, 36, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.R.; Singh, V.; Ebibeni, N.; Singh, R.K. Maternal transfer of bacteria to eggs of common house gecko (Hemidactylus frenatus). J. Micro Res. 2014, 4, 78–85. [Google Scholar]
Animal Species | Location | Sample | Health Status | Staphylococcus Species | Ref. |
---|---|---|---|---|---|
Anolis barbutus | Slovakia | skin | healthy | S. kloosii | [45] |
Anolis spp. | Tenerife (Spain) | feces | lower weight | S. lugdunensis | [50] |
Eublepharis macularis | Slovakia | skin | healthy | S. kloosii | [45] |
Gallotia bravoana | Tenerife (Spain) | feces | healthy | Staphylococcus spp. | [49] |
Gallotia intermedia | Tenerife (Spain) | feces | healthy | Staphylococcus spp. | [49] |
Gecko gecko | Singapore | feces | healthy | S. aureus | [47] |
Hemidactylus turcicus | Iraq | feces | healthy | Staphylococcus spp. | [48] |
Iguana iguana | Slovakia | skin | healthy | S. xylosus | [45] |
Italy | conjunctiva | healthy | S. aureus, S. epidermidis, S. sciuri, S. xylosus | [59] | |
Podarcis muralis | Serbia | skin | ectodermic lesions | S. epidermidis | [44] |
Podarcis sicula | Italy | oral, cloacal swabs | healthy | Staphylococcus spp. CoNS | [58] |
Podarcis sicula klemmerii | Italy | oral, cloacal swabs | healthy | Staphylococcus spp. CoNS | [58] |
Pogona vitticeps | Slovakia | skin | healthy | S. xylosus, S.sciuri | [45] |
Romania | oral cavity | - | S. aureus | [57] | |
Varanus komodoensis | Indonesia | oral cavity | healthy | S. aureus, S. auricularis, S. capitis, S. caseolytocus, S. cohnii, S. gallinarum, S. haemoliticus, S. hominis, S. kloosii, S. saprophyticus, S. sciuri, S. xylosus, S. warneri | [55] |
Animal Species | Location | Sample | Health Status | Staphylococcus Species | Ref. |
---|---|---|---|---|---|
Chelonoidis carbonaria | Brazil | cloaca | healthy | S. kloosii, S. sciuri, S. saprophyticus, S. xylosus | [62] |
Emys orbicularis | Latvia | skin | healthy | Staphylococcus spp. | [61] |
Geochelonae elegans | Slovakia | skin | healthy | S. kloosii, S. sciuri | [45] |
Gopherus agassizii | Colorado | skin | cutaneous dyskeratosis | Staphylococcus spp. | [60] |
Arizona | cloaca, nasal cavity | healthy | Staphylococcus spp. | [63] | |
Italy | conjunctiva | healthy | S. xylosus | [64] | |
Italy | conjunctiva | conjunctivitis | S. xylosus | [64] | |
Stigmochelys pardalis | Slovakia | skin | healthy | S. arlettae, S. xylosus | [45] |
Terrapene carolina carolina | Virginia (USA) | ear | ear abscess | S. epidermidis | [66] |
Virginia (USA) | ear | healthy | S. epidermidis | [66] | |
Testudo graeca | Slovakia | skin | healthy | S. sciuri, S. xylosus | [45] |
Italy | conjunctiva | healthy | S. aureus, S. auricolaris, S. sciuri, S. xylosus | [64] | |
Italy | conjunctiva | conjunctivitis | S. xylosus | [64] | |
United Kingdom | conjunctiva | panophthalmitis | S. aureus | [65] | |
Testudo hermanni | Italy | conjunctiva | healthy | S. sciuri, S. xylosus | [64] |
Italy | conjunctiva | conjunctivitis | S. xylosus | [64] | |
Testudo horsfieldii | Slovakia | skin | healthy | S. cohnii, S. sciuri, S. xylosus | [45] |
Italy | conjunctiva | conjunctivitis | S. xylosus | [64] | |
Testudo marginata | Slovakia | skin | healthy | S. sciuri, S. xylosus | [45] |
Italy | conjunctiva | healthy | S. xylosus | [64] | |
Trachemys scripta | Italy | conjunctiva | healthy | S. lentus | [64] |
Italy | conjunctiva | conjunctivitis | S. haemolyticus | [64] |
Animal Species | Location | Sample | Health Status | Staphylococcus Species | Ref. |
---|---|---|---|---|---|
Boa constrictor | Slovakia | skin | healthy | S. sciuri, S. xylosus | [45] |
Pennsylvania (USA) | upper respiratory tract | healthy | CoNS | [70] | |
Bothrops atrox | Brazil | oral cavity | stomatitis | Staphylococcus spp. | [78] |
Chilabothrus angulifer | Slovakia | skin | healthy | S. kloosii, S. sciuri, S. xylosus | [45] |
Crotalus durissus | Brazil | oral cavity | healthy | CoNS | [76] |
Crotalus scutulatus scutulatus | New York, USA | oral cavity | healthy | S. aureus, CoNS | [73] |
Crotalus viridis | Colorado (USA) | oral cavity | healthy | CoNS | [75] |
Crotalus viridis helleri | New York (USA) | oral cavity | healthy | S. aureus, CoNS | [73] |
Elaphe carinata | China | - | pneumonia, enteritis | S. sciuri | [71] |
Elaphe schrenckii | Slovakia | skin | healthy | S. sciuri, S. xylosus | [45] |
Eunectes muremis | Brazil | oral cavity | healthy | CoNS | [76] |
Eunectes notaeus | Slovakia | skin | healthy | S.sciuri, S. haemolyticus | [45] |
Mastigodryas bifossatus | Brazil | oral cavity | healthy | CoNS | [76] |
Micrurus frontalis | Brazil | oral cavity | healthy | S. aureus | [76] |
Morelia spilota variegata | Slovakia | skin | healthy | S. cohnii, S. xylosus, S. warneri | [45] |
Pantherophis guttatus | Slovakia | skin | healthy | S. arlettae, S. cohnii, S. sciuri, S. xylous | [45] |
Ptyas mucosus | China | - | pneumonia, enteritis | S. sciuri | [71] |
Python molurus | Pennsylvania (USA) | upper respiratory tract | healthy | CoNS | [70] |
Pennsylvania (USA) | lung | pneumonia | CoNS | [70] | |
Python molurus bivittatus | Korea | oral cavity, cloaca | healthy | Staphylococcus spp. | [77] |
Python reticulatus | Pennsylvania (USA) | upper respiratory tract | healthy | CoNS | [70] |
Thamnophis spp. | New York (USA) | oral cavity | healthy | CoNS | [72] |
Animal Species | Location | Sample | Health Status | Staphylococcus Species | Ref. |
---|---|---|---|---|---|
Alligator mississipiensis | Florida, USA | lung | respiratory disease | S. aureus | [89] |
Florida, USA | blood | skin lesion | S. cohnii | [90] | |
Caiman latirostris | Brazil | oral cavity, feces | healthy | Staphylococcus spp. | [95] |
Crocodylus acutus | Mexico | oral cavity | healthy | S. aureus, S. hyicus, Staphylococcus spp. | [96] |
Crocodylus moreletii | Mexico | oral cavity | healthy | S. aureus, S. hyicus, Staphylococcus spp. | [96] |
Crocodylus niloticus | Botswana | feces | healthy | S. epidermidis | [94] |
Animal Species | Location | Sample | Health Status | Staphylococcus Species | Ref. |
---|---|---|---|---|---|
Herpele squalostoma | Cameroon | skin, gut | healthy | S. sciuri, Staphylococcus spp. | [105] |
Hoplobatrachus occipitalis | Nigeria | meat | healthy | Staphylococcu spp. | [111] |
Hyla chrysoscelis | Kansas (USA) | feces | healthy | S. capitis, S. cohnii, S. felis, S. gallinarum, S. saprophyticus, S. xylosus | [108] |
Lithobates catesbeianus | Brazil | meat | healthy | Staphylococcus spp. | [112] |
Ptychadena mascareniensis | Nigeria | meat | healthy | Staphylococcus spp. | [110] |
Ptychadena pumilio | Nigeria | meat | healthy | Staphylococcus spp. | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebani, V.V. Staphylococci, Reptiles, Amphibians, and Humans: What Are Their Relations? Pathogens 2024, 13, 607. https://doi.org/10.3390/pathogens13070607
Ebani VV. Staphylococci, Reptiles, Amphibians, and Humans: What Are Their Relations? Pathogens. 2024; 13(7):607. https://doi.org/10.3390/pathogens13070607
Chicago/Turabian StyleEbani, Valentina Virginia. 2024. "Staphylococci, Reptiles, Amphibians, and Humans: What Are Their Relations?" Pathogens 13, no. 7: 607. https://doi.org/10.3390/pathogens13070607
APA StyleEbani, V. V. (2024). Staphylococci, Reptiles, Amphibians, and Humans: What Are Their Relations? Pathogens, 13(7), 607. https://doi.org/10.3390/pathogens13070607