Genomic Insights into Staphylococcus aureus Isolates Exhibiting Diminished Daptomycin Susceptibility
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection of Bacterial Strains
2.2. Antibiotic Susceptibility
2.3. DNA Extraction and Amplification of Genes Associated with DAP Non-Susceptibility in S. aureus
2.4. Visualization of Amplicons and Purification of PCR Product
3. Results
3.1. Antibiotic Susceptibility
3.2. Mutation Profiles Associated with Non-Susceptibility
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eisenstein, B.I.; Oleson, F.B., Jr.; Baltz, R.H. Daptomycin: From the mountain to the clinic, with essential help from Francis Tally, MD. Clin. Infect. Dis. 2010, 50 (Suppl. 1), S10–S15. [Google Scholar] [CrossRef]
- Steenbergen, J.N.; Alder, J.; Thorne, G.M.; Tally, F.P. Daptomycin: A lipopeptide antibiotic for the treatment of serious Gram-positive infections. J. Antimicrob. Chemother. 2005, 55, 283–288. [Google Scholar] [CrossRef]
- Anastasiou, D.M.; Thorne, G.M.; Luperechio, S.A.; Alder, J.D. In vitro activity of daptomycin against clinical isolates with reduced susceptibilities to linezolid and quinupristin/ dalfopristin. Int. J. Antimicrob. Agents 2006, 28, 385–388. [Google Scholar] [CrossRef]
- Cotroneo, N.; Harris, R.; Perlmutter, N.; Beveridge, T.; Silverman, J.A. Daptomycin exerts bactericidal activity without lysis of Staphylococcus aureus. Antimicrob. Agents Chemother. 2008, 52, 2223–2225. [Google Scholar] [CrossRef] [PubMed]
- Bhullar, K.; Waglechner, N.; Pawlowski, A.; Koteva, K.; Banks, E.D.; Johnston, M.D.; Barton, H.A.; Wright, G.D. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE 2012, 7, e34953. [Google Scholar] [CrossRef] [PubMed]
- Bayer, A.S.; Schneider, T.; Sahl, H.G. Mechanisms of daptomycin resistance in Staphylococcus aureus: Role of the cell membrane and cell wall. Ann. N. Y. Acad. Sci. 2013, 1277, 139–158. [Google Scholar] [CrossRef] [PubMed]
- Friedman, L.; Alder, J.D.; Silverman, J.A. Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob. Agents Chemother. 2006, 50, 2137–2145. [Google Scholar] [CrossRef]
- Mishra, N.N.; Rubio, A.; Nast, C.C.; Bayer, A.S. Differential Adaptations of Methicillin-Resistant Staphylococcus aureus to Serial In Vitro Passage in Daptomycin: Evolution of Daptomycin Resistance and Role of Membrane Carotenoid Content and Fluidity. Int. J. Microbiol. 2012, 2012, 683450. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.K.; Gold, H.S.; Sakoulas, G.; Wennersten, C.; Moellering, R.C., Jr.; Eliopoulos, G.M. Daptomycin nonsusceptibility in Staphylococcus aureus with reduced vancomycin susceptibility is independent of alterations in MprF. Antimicrob. Agents Chemother. 2007, 51, 2223–2225. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Rubio, A.; Jayaswal, R.K.; Silverman, J.A.; Wilkinson, B.J. Additional routes to Staphylococcus aureus daptomycin resistance as revealed by comparative genome sequencing, transcriptional profiling, and phenotypic studies. PLoS ONE 2013, 8, e58469. [Google Scholar] [CrossRef] [PubMed]
- Peleg, A.Y.; Miyakis, S.; Ward, D.V.; Earl, A.M.; Rubio, A.; Cameron, D.R.; Pillai, S.; Moellering, R.C.; Eliopoulos, G.M., Jr. Whole genome characterization of the mechanisms of daptomycin resistance in clinical and laboratory derived isolates of Staphylococcus aureus. PLoS ONE 2012, 7, e28316. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.; Cuirolo, A.X.; Plata, K.B.; Riosa, S.; Silverman, J.A.; Rubio, A.; Rosato, R.R.; Rosato, A.E. VraSR two-component regulatory system contributes to mprF-mediated decreased susceptibility to daptomycin in in vivo-selected clinical strains of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2012, 56, 92–102. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; CLSI Supplement M100S; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Fujimura, S.; Nakano, Y.; Watanabe, A. A correlation between reduced susceptibilities to vancomycin and daptomycin among the MRSA isolates selected in mutant selection window of both vancomycin and daptomycin. J. Infect. Chemother. 2014, 20, 752–756. [Google Scholar] [CrossRef] [PubMed]
- Humphries, R.M.; Pollett, S.; Sakoulas, G. A current perspective on daptomycin for the clinical microbiologist. Clin. Microbiol. Rev. 2013, 26, 759–780. [Google Scholar] [CrossRef] [PubMed]
- Cameron, D.R.; Mortin, L.I.; Rubio, A.; Mylonakis, E.; Moellering, R.C., Jr.; Eliopoulos, G.M.; Peleg, A.Y. Impact of daptomycin resistance on Staphylococcus aureus virulence. Virulence 2015, 6, 127–131. [Google Scholar] [CrossRef]
- Murthy, M.H.; Olson, M.E.; Wickert, R.W.; Fey, P.D.; Jalali, Z. Daptomycin non-susceptible methicillin-resistant Staphylococcus aureus USA 300 isolate. J. Med. Microbiol. 2008, 57, 1036–1038. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Casanova, N.; Siller Ruiz, M.; Muñoz Bellido, J.L. Mechanisms of resistance to daptomycin in Staphylococcus aureus. Rev. Esp. Quimioter. 2017, 30, 391–396. [Google Scholar] [PubMed]
- Ernst, C.M.; Peschel, A. Broad spectrum antimicrobial peptide resistance by MprF-mediated aminoacylation and flipping of phospholipids. Mol. Microbiol. 2011, 80, 290–299. [Google Scholar] [CrossRef]
- Ernst, C.M.; Staubitz, P.; Mishra, N.; Yang, S.J.; Hornig, G.; Kalbacher, H.; Bayer, A.S.; Kraus, D.; Peschel, A. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinilation and antimicrobial peptide repulsion. PLoS Pathog. 2009, 5, e1000660. [Google Scholar] [CrossRef]
- Kristian, S.A.; Dürr, M.; Van Strijp, J.A.; Neumeister, B.; Peschel, A. MprF-mediated lysinylation of phospholipids in Staphylococcus aureus leads to protection against oxygen-independent neutrophil killing. Infect. Immun. 2003, 71, 546–549. [Google Scholar] [CrossRef]
- Yang, S.J.; Nast, C.C.; Mishra, N.N.; Yeaman, M.R.; Fey, P.D.; Bayer, A.S. Cell wall thickening is not a universal accompaniment of the daptomycin nonsusceptibility phenotype in Staphylococcus aureus: Evidence for multiple resistance mechanisms. Antimicrob. Agents Chemother. 2010, 54, 3079–3085. [Google Scholar] [CrossRef]
- Bayer, A.S.; Mishra, N.N.; Sakoulas, G.; Nonejuie, P.; Nast, C.C.; Pogliano, J.; Chen, K.T.; Ellison, S.N.; Yeaman, M.R.; Yang, S.J. Heterogeneity of mprF sequences in methicillin-resistant Staphylococcus aureus clinical isolates: Role in cross-resistance between daptomycin and host defense antimicrobial peptides. Antimicrob. Agents Chemother. 2014, 58, 7462–7467. [Google Scholar] [CrossRef]
- Sabat, A.J.; Tinelli, M.; Grundmann, H.; Akkerboom, V.; Monaco, M.; del Grosso, M.; Errico, G.; Pantosti, A.; Friedrich, A.W. Daptomycin resistant Staphylococcus aureus clinical strain with novel non-synonymous mutations in the mprF and vraS genes: A new insight into daptomycin resistance. Front. Microbiol. 2018, 9, 2705. [Google Scholar] [CrossRef]
- Cui, L.; Isii, T.; Fukuda, M.; Ochiai, T.; Neoh, H.; Da Camargo, I.L.B.C.; Watanabe, Y.; Shoji, M.; Hiramatsu, K. An rpoB mutation confers dual heteroresistance to daptomycin and vancomycin in S. aureus. Antimicrob. Agents Chemother. 2010, 54, 5222–5233. [Google Scholar] [CrossRef] [PubMed]
- Bæk, K.T.; Thøgersen, L.; Mogenssen, R.G.; Mellergaard, M.; Thomsen, L.E.; Petersen, A.; Skov, S.; Cameron, D.R.; Peleg, A.Y.; Frees, D. Stepwise decrease in daptomycin susceptibility in clinical S. aureus isolates associated with an initial mutation in rpoB and a compensatory inactivation of the clpX gene. Antimicrob. Agents Chemother. 2015, 59, 6983–6991. [Google Scholar] [CrossRef]
- Hagiya, H.; Sugawara, Y.; Kimura, K.; Hamaguchi, S.; Nishi, I.; Hayashi, M.; Akeda, Y.; Tomono, K. Emergence of daptomycin non-susceptible coagulase-negative Staphylococci in patients with cardiovascular device infections: Two cases report investigated by whole genome analysis. Medicine 2018, 97, e13487. [Google Scholar] [CrossRef]
- Dubrac, S.; Bisicchia, P.; Devine, K.M.; Msadek, T. A matter of life and death: Cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway. Mol. Microbiol. 2008, 7, 1307–1322. [Google Scholar] [CrossRef] [PubMed]
- Howden, B.P.; McEvoy, C.R.; Allen, D.L.; Chua, K.; Gao, W.; Harrison, P.F.; Bell, J.; Coombs, G.; Bennett-Wood, V.; Porter, J.L.; et al. Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR. PLoS Pathog. 2011, 7, e1002359. [Google Scholar] [CrossRef]
- Koprivnjak, T.; Zhang, D.; Ernst, C.M.; Peschel, A.; Nauseef, W.M.; Weiss, J.P. Characterization of Staphylococcus aureus cardiolipin synthases 1 and 2 and their contribution to accumulation of cardiolipin in stationary phase and within phagocytes. J. Bacteriol. 2011, 193, 4134–4142. [Google Scholar] [CrossRef]
- Camargo, I.L.; Neoh, H.M.; Cui, L.; Hiramatsu, K. Serial daptomycin selection generates daptomycin-nonsusceptible Staphylococcus aureus strains with a heterogeneous vancomycin-intermediate phenotype. Antimicrob. Agents Chemother. 2008, 52, 4289–4299. [Google Scholar] [CrossRef] [PubMed]
Strains | DAP | VAN | OXA | LZD | DLV | TLV |
---|---|---|---|---|---|---|
MSa1 | 4.0 (R) | 1.0 (S) | 16 (R) | 2.0 (S) | 0.064 (S) | 0.125 (S) |
MSa2 | 1.0 (S) | 1.0 (S) | 256 (R) | 2.0 (S) | 0.047 (S) | 0.047 (S) |
MSa3 | 4.0 (R) | 2.0 (S) | 0.125 (S) | 2.0 (S) | 0.100 (S) | 0.125 (S) |
MSa4 * | 2.0 (R) | 2.0 (S) | 2.0 (S) | 2.0 (S) | 0.064 (S) | 0.125 (S) |
MSa5 | 4.0 (R) | 1.0 (S) | 0.064 (S) | 2.0 (S) | 0.047 (S) | 0.125 (S) |
MSa6 | 4.0 (R) | 1.0 (S) | 4.0 (R) | 2.0 (S) | 0.032 (S) | 0.125 (S) |
MSa7 * | 2.0 (R) | 1.0 (S) | 2.0 (S) | 2.0 (S) | 0.064 (S) | 0.094 (S) |
MSa8 | 4.0 (R) | 1.0 (S) | 0.125(S) | 2.0 (S) | 0.047 (S) | 0.125 (S) |
MSa9 | 2.0 (R) | 1.0 (S) | 0.5 (S) | 2.0 (S) | 0.032 (S) | 0.094 (S) |
N° of Isolate (MSax) | Amino Acid Mutations 1 | Base Changes * |
---|---|---|
1, 2, 3, 4, 6, 7, 8, 9 | V26A; N160D; A171V; L174F; Y194F; V223A; L371I; Y400F; I406L; I409T; L413F; V426A; A430V; I446V; L451I; I459L; I464V; F473L; V478I; K489R; I494L; V503I; A505M; N522K; E525D; D531N; D554N; N556T; I575L; T696E; N710E | T1353395C; A1353696G; C1353730T-T1353731A; G1353740T; A1353799T; T1353886C-C1353887T; C1354329A; A1354417T; A1354434T-C1354436A; T1354444C-T1354445A; A1354457C; T1354495C; C1354507T; A1354554G-T1354556A; C1354569A; A1354593T; A1354608G-C1354610T; T1354637A; G1354650A; A1354683C-A1354684G-A1354685C; A1354698C; G1354725A-T1354727A; G1354731A-C1354732T-A1354733G; T1354784A; G1354793T; G1354809A; G1354878A; A1354885C-T1354886A; A1354941T- C1354943A; A1355305G-C1355304A; A1355346G-T1355348A |
1, 4 | I375M; I461T | A1354343G; T1354600C-A1354601T |
1, 5 | P314T | C1354158A-G1354160T |
6 | I9V; G105A; P314L 2; P721T | A1353243G; G1353532C; C1354159T-G1354160T; C1355379 |
3 | L291I | T1354089A |
4, 7 | T345I 2,4,5, | C1354252T |
8 | V287I; S295P 3; A500S | G1354077A-G1354079A; T1354101C; G1354716T- A1354718T |
Genes | N° of Strain (MSax) | Amino Acid Mutations 1 | Base Changes * |
---|---|---|---|
cls1 | 1, 4, 6, 8, 9 | K147Q; K170Q; H174K; N197K | A1306452C; A1306521C; C1306533A-T1306535A; T1306604A |
1, 4, 9 | F389Y; I421M; N448K | T1307179A; C1307276G; T1307357G | |
1, 2, 3, 4, 6, 7, 8, 9 | I238V | A1306725G-T1306727A | |
1, 2, 3, 4, 7, 8 | E469K | G1307418A | |
1, 2, 3, 4, 7, 8 | Q2R; F3Y; S4T | A1306018G; T1306021A; T1306023A | |
1, 2, 3, 4, 7, 8 | V18A | T1306166C | |
6, 9 | V18A; G87A; V132I; A175V | T1306166C-C1306167A; G1306273C-A1306274G; G1306407A; C1306537T-T1306538G | |
9 | S43A; T44K | T1306140G; C1306144A-T1306145A | |
6, 9 | G20A | G1306072C-A1306073C | |
6 | V300E; G308K; P309S; L310F; S313A; V455A | T1306912A-T1306913A; G1306935A-G1306936A; C1306938T; G1306943C; T1306950G-A1306952G; T1307377C | |
5 | NC | NC | |
cls2 | 1, 2, 3, 4, 6, 7, 8, 9 | V135I; H205R | G2125012A; A2125223G |
6 | A471E | C2126021A | |
9 | I459L | A2125984T | |
5 | NC | NC |
Genes | N° of Strain (MSax) | Amino Acid Mutations 1 | Base Changes * |
---|---|---|---|
rpoB | 1, 2, 3, 4, 5, 6, 7, 8, 9 | F737Y | T545943A |
3 | M513I | G545272A | |
rpoC | 1, 2, 3, 4, 6, 7, 8, 9 | V864I | G550011A-T550013A |
3 | P100L | C547720T | |
5 | NC | NC | |
fakA | 1, 2, 3, 4, 6, 7, 8, 9 | L214I; D497E | C1191817A; T1192668A |
9 | E431D | A1192470C | |
6 | I144V; E277K; Y287H; A513E | A1191607G; G1192006A; T1192036C; C1192715A | |
5 | NC | NC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Casanova, N.; Gutiérrez-Zufiaurre, M.N.; Blázquez de Castro, A.M.; Muñoz-Bellido, J.L. Genomic Insights into Staphylococcus aureus Isolates Exhibiting Diminished Daptomycin Susceptibility. Pathogens 2024, 13, 206. https://doi.org/10.3390/pathogens13030206
Gómez-Casanova N, Gutiérrez-Zufiaurre MN, Blázquez de Castro AM, Muñoz-Bellido JL. Genomic Insights into Staphylococcus aureus Isolates Exhibiting Diminished Daptomycin Susceptibility. Pathogens. 2024; 13(3):206. https://doi.org/10.3390/pathogens13030206
Chicago/Turabian StyleGómez-Casanova, Natalia, Mª Nieves Gutiérrez-Zufiaurre, Ana Mª Blázquez de Castro, and Juan Luis Muñoz-Bellido. 2024. "Genomic Insights into Staphylococcus aureus Isolates Exhibiting Diminished Daptomycin Susceptibility" Pathogens 13, no. 3: 206. https://doi.org/10.3390/pathogens13030206
APA StyleGómez-Casanova, N., Gutiérrez-Zufiaurre, M. N., Blázquez de Castro, A. M., & Muñoz-Bellido, J. L. (2024). Genomic Insights into Staphylococcus aureus Isolates Exhibiting Diminished Daptomycin Susceptibility. Pathogens, 13(3), 206. https://doi.org/10.3390/pathogens13030206