Comparison of the Antibiotic Resistance of Escherichia coli Populations from Water and Biofilm in River Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. E. coli Isolation from the Water Samples
2.3. E. coli Isolation from Sediment Samples
2.4. Antimicrobial Susceptibility Testing
2.5. Phenotypic Confirmation of Extended-Spectrum Beta-Lactamases and Carbapenemases
2.6. Determination of ESBL and Carbapenemase Genes
2.7. Phenotyping—The PhenePlate System
2.8. Statistics
3. Results
3.1. Comparison of Antibiotic Susceptibility of the Water and Sediment-Derived Isolates
3.2. Comparison of Water Isolates from Upstream and Downstream of the WWTP
3.3. Comparison of Sediment Isolates from Upstream and Downstream of the WWTP
3.4. Resistance to the 21 Antibiotics
3.5. Phenotyping of E. coli from the Mur and Drava Rivers
3.6. ESBL and Carbapenemase-Producing E. coli
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Czekalski, N.; Berthold, T.; Caucci, S.; Egli, A.; Bürgmann, H. Increased Levels of Multiresistant Bacteria and Resistance Genes after Wastewater Treatment and Their Dissemination into Lake Geneva, Switzerland. Front. Microbiol. 2012, 3, 106. [Google Scholar] [CrossRef] [PubMed]
- Kummerer, K. Resistance in the Environment. J. Antimicrob. Chemother. 2004, 54, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.S.; Tsering, D.; Poonia, S. Antibiotic Susceptibility Profile of Bacteria Isolated from Natural Sources of Water from Rural Areas of East Sikkim. Indian J. Community Med. 2014, 39, 156. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.-Y.; He, L.-Y.; Gao, F.-Z.; Zhang, M.; Chen, S.; Wu, D.-L.; Liu, Y.-S.; He, L.-X.; Bai, H.; Ying, G.-G. Antibiotic Resistance Genes in Surface Water and Groundwater from Mining Affected Environments. Sci. Total Environ. 2021, 772, 145516. [Google Scholar] [CrossRef] [PubMed]
- Kittinger, C.; Lipp, M.; Folli, B.; Kirschner, A.; Baumert, R.; Galler, H.; Grisold, A.J.; Luxner, J.; Weissenbacher, M.; Farnleitner, A.H.; et al. Enterobacteriaceae Isolated from the River Danube: Antibiotic Resistances, with a Focus on the Presence of ESBL and Carbapenemases. PLoS ONE 2016, 11, e0165820. [Google Scholar] [CrossRef] [PubMed]
- Paulshus, E.; Kühn, I.; Möllby, R.; Colque, P.; O’Sullivan, K.; Midtvedt, T.; Lingaas, E.; Holmstad, R.; Sørum, H. Diversity and Antibiotic Resistance among Escherichia coli Populations in Hospital and Community Wastewater Compared to Wastewater at the Receiving Urban Treatment Plant. Water Res. 2019, 161, 232–241. [Google Scholar] [CrossRef]
- Suzuki, Y.; Hashimoto, R.; Xie, H.; Nishimura, E.; Nishiyama, M.; Nukazawa, K.; Ishii, S. Growth and Antibiotic Resistance Acquisition of Escherichia coli in a River That Receives Treated Sewage Effluent. Sci. Total Environ. 2019, 690, 696–704. [Google Scholar] [CrossRef]
- Titilawo, Y.; Sibanda, T.; Obi, L.; Okoh, A. Multiple Antibiotic Resistance Indexing of Escherichia coli to Identify High-Risk Sources of Faecal Contamination of Water. Environ. Sci. Pollut. Res. 2015, 22, 10969–10980. [Google Scholar] [CrossRef]
- Verburg, I.; García-Cobos, S.; Hernández Leal, L.; Waar, K.; Friedrich, A.W.; Schmitt, H. Abundance and Antimicrobial Resistance of Three Bacterial Species along a Complete Wastewater Pathway. Microorganisms 2019, 7, 312. [Google Scholar] [CrossRef]
- Böger, B.; Surek, M.; de O Vilhena, R.; Fachi, M.M.; Junkert, A.M.; Santos, J.M.; Domingos, E.L.; Cobre, A.d.F.; Momade, D.R.; Pontarolo, R. Occurrence of Antibiotics and Antibiotic Resistant Bacteria in Subtropical Urban Rivers in Brazil. J. Hazard. Mater. 2021, 402, 123448. [Google Scholar] [CrossRef]
- Arias-Andres, M.; Klümper, U.; Rojas-Jimenez, K.; Grossart, H.-P. Microplastic Pollution Increases Gene Exchange in Aquatic Ecosystems. Environ. Pollut. 2018, 237, 253–261. [Google Scholar] [CrossRef]
- Stalder, T.; Top, E. Plasmid Transfer in Biofilms: A Perspective on Limitations and Opportunities. npj Biofilms Microbiomes 2016, 2, 16022. [Google Scholar] [CrossRef]
- Dickinson, A.W.; Power, A.; Hansen, M.G.; Brandt, K.K.; Piliposian, G.; Appleby, P.; O’Neill, P.A.; Jones, R.T.; Sierocinski, P.; Koskella, B.; et al. Heavy Metal Pollution and Co-Selection for Antibiotic Resistance: A Microbial Palaeontology Approach. Environ. Int. 2019, 132, 105117. [Google Scholar] [CrossRef]
- Reddy, S.; Kaur, K.; Barathe, P.; Shriram, V.; Govarthanan, M.; Kumar, V. Antimicrobial Resistance in Urban River Ecosystems. Microbiol. Res. 2022, 263, 127135. [Google Scholar] [CrossRef] [PubMed]
- VanMensel, D.; Chaganti, S.R.; Droppo, I.G.; Weisener, C.G. Exploring Bacterial Pathogen Community Dynamics in Freshwater Beach Sediments: A Tale of Two Lakes. Environ. Microbiol. 2020, 22, 568–583. [Google Scholar] [CrossRef]
- Chigor, V.; Ibangha, I.-A.; Chigor, C.; Titilawo, Y. Treated Wastewater Used in Fresh Produce Irrigation in Nsukka, Southeast Nigeria Is a Reservoir of Enterotoxigenic and Multidrug-Resistant Escherichia coli. Heliyon 2020, 6, e03780. [Google Scholar] [CrossRef] [PubMed]
- Flores-Vargas, G.; Bergsveinson, J.; Lawrence, J.R.; Korber, D.R. Environmental Biofilms as Reservoirs for Antimicrobial Resistance. Front. Microbiol. 2021, 12, 766242. [Google Scholar] [CrossRef]
- EUCAST Breakpoint Tables for Interpretation of MICs and Zone Diameters, version 7.1; The European Committee on Antimicrobial Susceptibility Testing: Växjö, Sweden, 2017. Available online: http://www.eucast.org (accessed on 12 March 2018).
- CLSI M100; Performance Standards for Antimicrobial Susceptibility Testing. Clinical & Laboratory Standards Institute: Wayne, PA, USA, 2008.
- Boyen, F.; Vangroenweghe, F.; Butaye, P.; De Graef, E.; Castryck, F.; Heylen, P.; Vanrobaeys, M.; Haesebrouck, F. Disk Prediffusion Is a Reliable Method for Testing Colistin Susceptibility in Porcine E. coli Strains. Vet. Microbiol. 2010, 144, 359–362. [Google Scholar] [CrossRef]
- Gales, A.C.; Reis, A.O.; Jones, R.N. Contemporary Assessment of Antimicrobial Susceptibility Testing Methods for Polymyxin B and Colistin: Review of Available Interpretative Criteria and Quality Control Guidelines. J. Clin. Microbiol. 2001, 39, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Eckert, C.; Gautier, V.; Saladin-Allard, M.; Hidri, N.; Verdet, C.; Ould-Hocine, Z.; Barnaud, G.; Delisle, F.; Rossier, A.; Lambert, T.; et al. Dissemination of CTX-M-Type β-Lactamases among Clinical Isolates of Enterobacteriaceae in Paris, France. Antimicrob. Agents Chemother. 2004, 48, 1249–1255. [Google Scholar] [CrossRef]
- Krishnamurthy, V.; Vijaykumar, G.S.; Kumar, S.; Prashanth, H.V.; Prakash, R.; Nagaraj, E.R. Phenotypic and Genotypic Methods for Detection of Extended Spectrum β Lactamase Producing Escherichia coli and Klebsiella pneumoniae Isolated from Ventilator Associated Pneumonia. J. Clin. Diagn. Res. 2013, 7, 1975–1978. [Google Scholar] [CrossRef]
- Asai, T.; Masani, K.; Sato, C.; Hiki, M.; Usui, M.; Baba, K.; Ozawa, M.; Harada, K.; Aoki, H.; Sawada, T. Phylogenetic Groups and Cephalosporin Resistance Genes of Escherichia coli from Diseased Food-Producing Animals in Japan. Acta Vet. Scand. 2011, 53, 52. [Google Scholar] [CrossRef] [PubMed]
- Naas, T.; Poirel, L.; Karim, A.; Nordmann, P. Molecular Characterization of In50, a Class 1 Integron Encoding the Gene for the Extended-Spectrum Beta-Lactamase VEB-1 in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 1999, 176, 411–419. [Google Scholar] [CrossRef]
- Gröbner, S.; Linke, D.; Schütz, W.; Fladerer, C.; Madlung, J.; Autenrieth, I.B.; Witte, W.; Pfeifer, Y. Emergence of Carbapenem-Non-Susceptible Extended-Spectrum β-Lactamase-Producing Klebsiella Pneumoniae Isolates at the University Hospital of Tübingen, Germany. J. Med. Microbiol. 2009, 58, 912–922. [Google Scholar] [CrossRef]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Lépesová, K.; Kraková, L.; Pangallo, D.; Medveďová, A.; Olejníková, P.; Mackuľak, T.; Tichý, J.; Grabic, R.; Birošová, L. Prevalence of Antibiotic-Resistant Coliform Bacteria, Enterococcus Spp. and Staphylococcus Spp. in Wastewater Sewerage Biofilm. J. Glob. Antimicrob. Resist. 2018, 14, 145–151. [Google Scholar] [CrossRef]
- Dhawde, R.; Macaden, R.; Saranath, D.; Nilgiriwala, K.; Ghadge, A.; Birdi, T. Antibiotic Resistance Characterization of Environmental E. coli Isolated from River Mula-Mutha, Pune District, India. Int. J. Environ. Res. Public Health 2018, 15, 1247. [Google Scholar] [CrossRef] [PubMed]
- Pantanella, F.; Lekunberri, I.; Gagliardi, A.; Venuto, G.; Sànchez-Melsió, A.; Fabiani, M.; Balcázar, J.L.; Schippa, S.; De Giusti, M.; Borrego, C.; et al. Effect of Urban Wastewater Discharge on the Abundance of Antibiotic Resistance Genes and Antibiotic-Resistant Escherichia coli in Two Italian Rivers. Int. J. Environ. Res. Public Health 2020, 17, 6813. [Google Scholar] [CrossRef]
- Rizzo, L.; Fiorentino, A.; Anselmo, A. Effect of Solar Radiation on Multidrug Resistant E. coli Strains and Antibiotic Mixture Photodegradation in Wastewater Polluted Stream. Sci. Total Environ. 2012, 427–428, 263–268. [Google Scholar] [CrossRef]
- Crettels, L.; Champon, L.; Burlion, N.; Delrée, E.; Saegerman, C.; Thiry, D. Antimicrobial Resistant Escherichia coli Prevalence in Freshwaters in Belgium and Human Exposure Risk Assessment. Heliyon 2023, 9, e16538. [Google Scholar] [CrossRef]
- Hanna, N.; Purohit, M.; Diwan, V.; Chandran, S.P.; Riggi, E.; Parashar, V.; Tamhankar, A.J.; Lundborg, C.S. Monitoring of Water Quality, Antibiotic Residues, and Antibiotic-Resistant Escherichia coli in the Kshipra River in India over a 3-Year Period. Int. J. Environ. Res. Public Health 2020, 17, 7706. [Google Scholar] [CrossRef]
- Hooban, B.; Fitzhenry, K.; Cahill, N.; Joyce, A.; O’ Connor, L.; Bray, J.E.; Brisse, S.; Passet, V.; Abbas Syed, R.; Cormican, M.; et al. A Point Prevalence Survey of Antibiotic Resistance in the Irish Environment, 2018–2019. Environ. Int. 2021, 152, 106466. [Google Scholar] [CrossRef]
- Khan, F.A.; Söderquist, B.; Jass, J. Prevalence and Diversity of Antibiotic Resistance Genes in Swedish Aquatic Environments Impacted by Household and Hospital Wastewater. Front. Microbiol. 2019, 10, 688. [Google Scholar] [CrossRef]
- Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban Wastewater Treatment Plants as Hotspots for Antibiotic Resistant Bacteria and Genes Spread into the Environment: A Review. Sci. Total Environ. 2013, 447, 345–360. [Google Scholar] [CrossRef]
- Galler, H.; Feierl, G.; Petternel, C.; Reinthaler, F.; Haas, D.; Habib, J.; Kittinger, C.; Luxner, J.; Zarfel, G. Multiresistant Bacteria Isolated from Activated Sludge in Austria. Int. J. Environ. Res. Public Health 2018, 15, 479. [Google Scholar] [CrossRef]
- Bessa, L.J.; Barbosa-Vasconcelos, A.; Mendes, Â.; Vaz-Pires, P.; Martins da Costa, P. High Prevalence of Multidrug-Resistant Escherichia coli and Enterococcus Spp. in River Water, Upstream and Downstream of a Wastewater Treatment Plant. J. Water Health 2014, 12, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Bleichenbacher, S.; Stevens, M.J.A.; Zurfluh, K.; Perreten, V.; Endimiani, A.; Stephan, R.; Nüesch-Inderbinen, M. Environmental Dissemination of Carbapenemase-Producing Enterobacteriaceae in Rivers in Switzerland. Environ. Pollut. 2020, 265, 115081. [Google Scholar] [CrossRef] [PubMed]
- Novovic, K.; Filipic, B.; Veljovic, K.; Begovic, J.; Mirkovic, N.; Jovcic, B. Environmental Waters and blaNDM-1 in Belgrade, Serbia: Endemicity Questioned. Sci. Total Environ. 2015, 511, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Piedra-Carrasco, N.; Fàbrega, A.; Calero-Cáceres, W.; Cornejo-Sánchez, T.; Brown-Jaque, M.; Mir-Cros, A.; Muniesa, M.; González-López, J.J. Carbapenemase-Producing Enterobacteriaceae Recovered from a Spanish River Ecosystem. PLoS ONE 2017, 12, e0175246. [Google Scholar] [CrossRef]
- Paulitsch-Fuchs, A.H.; Melchior, N.; Haitzmann, T.; Fingerhut, T.; Feierl, G.; Baumert, R.; Kittinger, C.; Zarfel, G. Analysis of Extended Spectrum Beta Lactamase (ESBL) Genes of Non-Invasive ESBL Enterobacterales in Southeast Austria in 2017. Antibiotics 2022, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Zarfel, G.; Hoenigl, M.; Leitner, E.; Salzer, H.J.F.; Feierl, G.; Masoud, L.; Valentin, T.; Krause, R.; Grisold, A.J. Emergence of New Delhi Metallo-β-Lactamase, Austria. Emerg. Infect. Dis. 2011, 17, 129–130. [Google Scholar] [CrossRef] [PubMed]
Sampling Date | Sample Name | Location | Coordinates |
---|---|---|---|
24 November 2016 | W0X | Graz, Weinzödlbrücke | 47°06′30.3″ N 15°23′25.4″ E |
21 December 2016 | KD01 | Kalsdorf | 46°58′01.7″ N 15°29′24.6″ E |
3 April 2017 | DR01 | Villach, Rennsteinerstraße | 46°38′30.7″ N 13°48′21.1″ E |
3 April 2017 | DK01 | Villach, Klampfererweg | 46°36′46.0″ N 13°55′16.3″ E |
Mur | Drava | |||||
---|---|---|---|---|---|---|
Water | Sediment | Sum of Isolates | Water | Sediment | Sum of Isolates | |
Upstream | 144 | 113 | 257 | 90 | 33 | 123 |
Downstream | 117 | 195 | 312 | 105 | 34 | 139 |
Sum of isolates | 261 | 308 | 569 | 195 | 67 | 262 |
Mur Water | Mur Sediment | p-Value | Drava Water | Drava Sediment | p-Value | |
---|---|---|---|---|---|---|
(261 isolates) | (308 isolates) | (195 isolates) | (67 isolates) | |||
No resistance | 76.63% (200) | 72.08% (222) | 0.25 | 76.41% (149) | 76.12% (51) | 1 |
Resistant | 16.48% (43) | 18.83% (58) | 0.51 | 17.95% (35) | 16.42% (11) | 0.85 |
Multi-resistant | 6.9% (18) | 9.09% (28) | 0.36 | 5.64% (11) | 7.46% (5) | 0.56 |
Mur water us | Mur water ds | p-value | Drava Water us | Drava water ds | p-value | |
(144 isolates) | (117 isolates) | (90 isolates) | (105 isolates) | |||
No resistance | 72.92% (105) | 81.2% (95) | 0.14 | 83.33% (75) | 70.48% (74) | 0.04 |
Resistant | 19.44% (28) | 12.82% (15) | 0.18 | 11.11% (10) | 23.81% (25) | 0.02 |
Multi-resistant | 7.64% (11) | 5.98% (7) | 0.63 | 5.56% (5) | 5.71% (6) | 1 |
Mur sediment us | Mur sediment ds | p-value | Drava sediment us | Drava sediment ds | p-value | |
(113 isolates) | (195 isolates) | (33 isolates) | (34 isolates) | |||
No resistance | 64.6% (73) | 76.41% (149) | 0.03 | 72.73% (24) | 79.41% (27) | 0.58 |
Resistant | 30.09% (34) | 12.31% (24) | <0.01 | 15.15% (5) | 17.65% (6) | 1 |
Multi-resistant | 5.31% (6) | 11.28% (22) | 0.1 | 12.12% (4) | 2.94% (1) | 0.2 |
Mur water us | Mur sediment us | p-value | Drava water us | Drava sediment us | p-value | |
(144 isolates) | (113 isolates) | (90 isolates) | (33 isolates) | |||
No resistance | 72.92% (105) | 64.6% (73) | 0.17 | 83.33% (75) | 72.73% (24) | 0.21 |
Resistant | 19.44% (28) | 30.09% (34) | 0.06 | 11.11% (10) | 15.15% (5) | 0.54 |
Multi-resistant | 7.64% (11) | 5.31% (6) | 0.61 | 5.56% (5) | 12.12% (4) | 0.25 |
Mur water ds | Mur sediment ds | p-value | Drava water ds | Drava sediment ds | p-value | |
(117 isolates) | (195 isolates) | (105 isolates) | (34 isolates) | |||
No resistance | 81.2% (95) | 76.41% (149) | 0.4 | 70.48% (74) | 79.41% (27) | 0.38 |
Resistant | 12.82% (15) | 12.31% (24) | 1 | 23.81% (25) | 17.65% (6) | 0.64 |
Multi-resistant | 5.98% (7) | 11.28% (22) | 0.16 | 5.71% (6) | 2.94% (1) | 1 |
Mur River | Water Isolates | Sediment Isolates | Total Isolates |
---|---|---|---|
Upstream | 2.25 | 2.22 | 2.82 |
Downstream | 1.60 | 1.37 | 1.75 |
Total course | 2.06 | 1.75 | 2.33 |
Drava River | Water Isolates | Sediment Isolates | Total Isolates |
---|---|---|---|
Upstream | 2.50 | 1.27 | 2.51 |
Downstream | 1.81 | 1.95 | 2.09 |
Total course | 2.50 | 1.67 | 2.70 |
Isolate ID | Origin | PHP Cluster | Resistance Genes | Resistance Pattern 1 |
---|---|---|---|---|
DK01EC050 | water | M-20 | blaCTX-M-1 | AM, CN, CXM, CTX, FEP |
DR01EC012 | water | M-31 | blaSHV-12, blaTEM-1 2 | AM, AMC, CN, CXM, FOX, CAZ, GM, MXF, CIP, NA, SXT, TE, C |
DR01EC036 | water | M-31 | blaCTX-M-15 | AM, AMC, CN, CXM, CTX, CAZ, FEP, TE |
KD01EC006 | sediment | Single. | blaCTX-M-14 | AM, AMC, CN, CXM, CTX, FEP, MXF, CIP, NA, SXT |
KD01EC110 | sediment | Single. | blaCTX-M-1, blaTEM-1, blaKPC-2 | AM, AMC, CN, CXM, FOX, CTX, TZP, CAZ, FEP, MEM, IPM, MXF, CIP, NA, C |
KD01EC112 | sediment | M-42 | blaCTX-M-15, blaTEM-1 | AM, AMC, CN, CXM, CTX, CAZ, FEP, MXF, CIP, NA |
W04EC016 | sediment | M-18 | blaCTX-M-15 | AM, CN, CXM, CTX, CAZ, FEP, NA, SXT, TE |
W04EC018 | sediment | M-18 | blaCTX-M-15, blaTEM-1 | AM, AMC, CN, CXM, CTX, CAZ, FEP, NA, SXT, TE |
W04EC029 | sediment | M-18 | blaCTX-M-15 | AM, CN, FOX, CTX, CAZ, FEP, NA, SXT, TE |
W04EC057 | sediment | Single. | blaCTX-M-1 | AM, CN, CXM, CTX, CAZ, FB, TE |
W04EC088 | water | M-18 | blaCTX-M-15, blaTEM-1 | AM, CN, CXM, CTX, CAZ, FEP, NA, SXT, TE |
W04EC090 | water | M-18 | blaCTX-M-15 | AM, CN, CXM, CTX, CAZ, FEP, NA, SXT, TE |
W04EC093 | water | M-18 | blaCTX-M-15 | AM, CN, CXM, CTX, CAZ, FEP, NA, SXT, TE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skof, A.; Koller, M.; Baumert, R.; Hautz, J.; Treiber, F.; Kittinger, C.; Zarfel, G. Comparison of the Antibiotic Resistance of Escherichia coli Populations from Water and Biofilm in River Environments. Pathogens 2024, 13, 171. https://doi.org/10.3390/pathogens13020171
Skof A, Koller M, Baumert R, Hautz J, Treiber F, Kittinger C, Zarfel G. Comparison of the Antibiotic Resistance of Escherichia coli Populations from Water and Biofilm in River Environments. Pathogens. 2024; 13(2):171. https://doi.org/10.3390/pathogens13020171
Chicago/Turabian StyleSkof, Aline, Michael Koller, Rita Baumert, Jürgen Hautz, Fritz Treiber, Clemens Kittinger, and Gernot Zarfel. 2024. "Comparison of the Antibiotic Resistance of Escherichia coli Populations from Water and Biofilm in River Environments" Pathogens 13, no. 2: 171. https://doi.org/10.3390/pathogens13020171
APA StyleSkof, A., Koller, M., Baumert, R., Hautz, J., Treiber, F., Kittinger, C., & Zarfel, G. (2024). Comparison of the Antibiotic Resistance of Escherichia coli Populations from Water and Biofilm in River Environments. Pathogens, 13(2), 171. https://doi.org/10.3390/pathogens13020171