Bacterial Co- or Superinfection in Patients Treated in Intensive Care Unit with COVID-19- and Influenza-Associated Pneumonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Collection of Data
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. Bacterial Co-Infection or Superinfection
3.3. Clinical Outcomes
4. Discussion
- (a)
- The incidence of c/s did not vary between patients with CP and IP;
- (b)
- C/s did not contribute to mortality in our study population;
- (c)
- Superinfection was primarily caused by Enterobacterales, especially Klebsiella pneumoniae in CP.
4.1. Incidence of Bacterial Co-Infection in COVID-19 and Influenza Patients
4.2. Incidence of Bacterial Superinfection in COVID-19 and Influenza Patients
4.3. Characteristics of Co-Infection or Superinfection in Patients COVID-19 or Influenza Patients
4.4. Outcome of Bacterial Co-Infection in COVID-19 and Influenza Patients
4.5. Outcome of Bacterial Superinfection in COVID-19 and Influenza Patients
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meyer, N.J.; Gattinoni, L.; Calfee, C.S. Acute respiratory distress syndrome. Lancet 2021, 398, 622–637. [Google Scholar] [CrossRef] [PubMed]
- Martin-Loeches, I.; Schultz, M.J.; Vincent, J.-L.; Alvarez-Lerma, F.; Bos, L.D.; Solé-Violán, J.; Torres, A.; Rodriguez, A. Increased incidence of co-infection in critically ill patients with influenza. Intensive Care Med. 2017, 43, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Patton, M.J.; Orihuela, C.J.; Harrod, K.S.; Bhuiyan, M.A.N.; Dominic, P.; Kevil, C.G.; Fort, D.; Liu, V.X.; Farhat, M.; Koff, J.L.; et al. COVID-19 bacteremic co-infection is a major risk factor for mortality, ICU admission, and mechanical ventilation. Crit. Care 2023, 27, 34. [Google Scholar] [CrossRef] [PubMed]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef]
- Garcia-Vidal, C.; Sanjuan, G.; Moreno-García, E.; Puerta-Alcalde, P.; Garcia-Pouton, N.; Chumbita, M.; Fernandez-Pittol, M.; Pitart, C.; Inciarte, A.; Bodro, M.; et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: A retrospective cohort study. Clin. Microbiol. Infect. 2021, 27, 83–88. [Google Scholar] [CrossRef]
- Hughes, S.; Troise, O.; Donaldson, H.; Mughal, N.; Moore, L.S.P. Bacterial and fungal coinfection among hospitalized patients with COVID-19: A retrospective cohort study in a UK secondary-care setting. Clin. Microbiol. Infect. 2020, 26, 1395–1399. [Google Scholar] [CrossRef]
- Moreno-García, E.; Puerta-Alcalde, P.; Letona, L.; Meira, F.; Dueñas, G.; Chumbita, M.; Garcia-Pouton, N.; Monzó, P.; Lopera, C.; Serra, L.; et al. Bacterial co-infection at hospital admission in patients with COVID-19. Int. J. Infect. Dis. 2022, 118, 197–202. [Google Scholar] [CrossRef]
- Rozencwajg, S.; Bréchot, N.; Schmidt, M.; Hékimian, G.; Lebreton, G.; Besset, S.; Franchineau, G.; Nieszkowska, A.; Leprince, P.; Combes, A.; et al. Co-infection with influenza-associated acute respiratory distress syndrome requiring extracorporeal membrane oxygenation. Int. J. Antimicrob. Agents 2018, 51, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Martin-Loeches, I.; Valles, J. Overtreating or underdiagnosing invasive pulmonary aspergillosis (IPA) in critically ill H1N1 patients: Who is right? Intensive Care Med. 2012, 38, 1733–1735. [Google Scholar] [CrossRef] [Green Version]
- Chertow, D.S.; Memoli, M.J. Bacterial coinfection in influenza: A grand rounds review. JAMA 2013, 309, 275–282. [Google Scholar] [CrossRef]
- Ewig, S.; Kolditz, M.; Pletz, M.; Altiner, A.; Albrich, W.; Drömann, D.; Flick, H.; Gatermann, S.; Krüger, S.; Nehls, W.; et al. Leitlinie—Behandlung von Erwachsenen Patienten mit Ambulant Erworbener Pneumonie—Update 2021. 2021. Available online: https://register.awmf.org/assets/guidelines/020-020l_S3_Behandlung-von-erwachsenen-Patienten-mit-ambulant-erworbener-Pneumonie__2021-05.pdf (accessed on 5 May 2023).
- Metlay, J.P.; Waterer, G.W.; Long, A.C.; Anzueto, A.; Brozek, J.; Crothers, K.; Cooley, L.A.; Dean, N.C.; Fine, M.J.; Flanders, S.A.; et al. Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the american thoracic society and infectious diseases society of America. Am. J. Respir. Crit. Care Med. 2019, 200, e45–e67. [Google Scholar] [CrossRef] [PubMed]
- ARDS Definition of Task Force; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef] [PubMed]
- Wongsurakiat, P.; Sunhapanit, S.; Muangman, N. Bacterial Coinfection and Superinfection in Respiratory Syncytial Virus-Associated Acute Respiratory Illness: Prevalence, Pathogens, Initial Antibiotic-Prescribing Patterns and Outcomes. Trop. Med. Infect. Dis. 2023, 8, 148. [Google Scholar] [CrossRef]
- Russell, C.D.; Fairfield, C.J.; Drake, T.M.; Seaton, R.A.; Wootton, D.G.; Sigfrid, L.; Harrison, E.M.; Docherty, A.B.; de Silva, T.I.; Egan, C.; et al. Co-infections, secondary infections, and antimicrobial use in patients hospitalised with COVID-19 during the first pandemic wave from the ISARIC WHO CCP-UK study: A multicentre, prospective cohort study. Lancet Microbe 2021, 2, e354–e365. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ling, L.; Wong, S.H.; Wang, M.H.; Fitzgerald, J.; Zou, X.; Fang, S.; Liu, X.; Wang, X.; Hu, W.; et al. Outcomes of respiratory viral-bacterial co-infection in adult hospitalized patients. Eclinicalmedicine 2021, 37, 100955. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.-P.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef]
- Razazi, K.; Arrestier, R.; Haudebourg, A.F.; Benelli, B.; Carteaux, G.; Decousser, J.-W.; Fourati, S.; Woerther, P.L.; Schlemmer, F.; Charles-Nelson, A.; et al. Risks of ventilator-associated pneumonia and invasive pulmonary aspergillosis in patients with viral acute respiratory distress syndrome related or not to Coronavirus 19 disease. Crit. Care 2020, 24, 699. [Google Scholar] [CrossRef]
- Bergmann, F.; Gabler, C.M.; Nussbaumer-Pröll, A.; Wölfl-Duchek, M.; Blaschke, A.; Radtke, C.; Zeitlinger, M.; Jorda, A. Early Bacterial Coinfections in Patients Admitted to the ICU With COVID-19 or Influenza: A Retrospective Cohort Study. Crit. Care Explor. 2023, 5, e0895. [Google Scholar] [CrossRef]
- Jorda, A.; Gabler, C.; Blaschke, A.; Wölfl-Duchek, M.; Gelbenegger, G.; Nussbaumer-Pröll, A.; Radtke, C.; Zeitlinger, M.; Bergmann, F. Community-acquired and hospital-acquired bacterial co-infections in patients hospitalized with COVID-19 or influenza: A retrospective cohort study. Infection 2023. Online head of print. [Google Scholar] [CrossRef]
- MacIntyre, C.R.; Chughtai, A.A.; Barnes, M.; Ridda, I.; Seale, H.; Toms, R.; Heywood, A. The role of pneumonia and secondary bacterial infection in fatal and serious outcomes of pandemic influenza a(H1N1)pdm09. BMC Infect. Dis. 2018, 18, 637. [Google Scholar] [CrossRef] [Green Version]
- Rice, T.W.M.; Rubinson, L.; Uyeki, T.M.M.; Vaughn, F.L.; John, B.B.P.; Miller, R.R.I.; Higgs, E.M.; Randolph, A.G.M.; Smoot, B.E.; Thompson, B.T.M.F.T.N.A.N. Critical illness from 2009 pandemic influenza A virus and bacterial coinfection in the United States*. Crit. Care Med. 2012, 40, 1487–1498. [Google Scholar] [CrossRef] [Green Version]
- Joseph, C.; Togawa, Y.; Shindo, N. Bacterial and viral infections associated with influenza. Influenza Other Respir. Viruses 2013, 7 (Suppl. S2), 105–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickens, C.O.; Gao, C.A.; Cuttica, M.J.; Smith, S.B.; Pesce, L.L.; Grant, R.A.; Kang, M.; Morales-Nebreda, L.; Bavishi, A.A.; Arnold, J.M.; et al. Bacterial Superinfection Pneumonia in Patients Mechanically Ventilated for COVID-19 Pneumonia. Am. J. Respir. Crit. Care Med. 2021, 204, 921–932. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Tiseo, G.; Giordano, C.; Leonildi, A.; Menichini, M.; Vecchione, A.; Pistello, M.; Guarracino, F.; Ghiadoni, L.; Forfori, F.; et al. Predictors of hospital-acquired bacterial and fungal superinfections in COVID-19: A prospective observational study. J. Antimicrob. Chemother. 2021, 76, 1078–1084. [Google Scholar] [CrossRef]
- Louie, J.K.; Acosta, M.; Winter, K.; Jean, C.; Gavali, S.; Schechter, R.; Vugia, D.; Harriman, K.; Matyas, B.; Glaser, C.A.; et al. Factors Associated With Death or Hospitalization Due to Pandemic 2009 Influenza A(H1N1) Infection in California. JAMA 2009, 302, 1896–1902. [Google Scholar] [CrossRef] [Green Version]
- Rouzé, A.; Martin-Loeches, I.; Povoa, P.; Makris, D.; Artigas, A.; Bouchereau, M.; Lambiotte, F.; Metzelard, M.; Cuchet, P.; Geronimi, C.B.; et al. Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: A European multicenter cohort study. Intensive Care Med. 2021, 47, 188–198. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Barrasa, H.; Rello, J.; Tejada, S.; Martín, A.; Balziskueta, G.; Vinuesa, C.; Fernández-Miret, B.; Villagra, A.; Vallejo, A.; Sebastián, A.S.; et al. SARS-CoV-2 in Spanish Intensive Care Units: Early experience with 15-day survival in Vitoria. Anaesth. Crit. Care Pain Med. 2020, 39, 553–561. [Google Scholar] [CrossRef]
- Rothberg, M.B.; Haessler, S.D.; Brown, R.B. Complications of Viral Influenza. Am. J. Med. 2008, 121, 258–264. [Google Scholar] [CrossRef]
- Klein, E.Y.; Monteforte, B.; Gupta, A.; Jiang, W.; May, L.; Hsieh, Y.; Dugas, A. The frequency of influenza and bacterial coinfection: A systematic review and meta-analysis. Influenza Other Respir. Viruses 2016, 10, 394–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nseir, S.; Martin-Loeches, I.; Povoa, P.; Metzelard, M.; Du Cheyron, D.; Lambiotte, F.; Tamion, F.; Labruyere, M.; Makris, D.; Geronimi, C.B.; et al. Relationship between ventilator-associated pneumonia and mortality in COVID-19 patients: A planned ancillary analysis of the coVAPid cohort. Crit. Care 2021, 25, 177. [Google Scholar] [CrossRef] [PubMed]
- Bakaletz, L.O. Viral–bacterial co-infections in the respiratory tract. Curr. Opin. Microbiol. 2017, 35, 30–35. [Google Scholar] [CrossRef]
- Rouzé, A.; Martin-Loeches, I.; Povoa, P.; Metzelard, M.; Du Cheyron, D.; Lambiotte, F.; Tamion, F.; Labruyere, M.; Geronimi, C.B.; Nieszkowska, A.; et al. Early Bacterial Identification among Intubated Patients with COVID-19 or Influenza Pneumonia: A European Multicenter Comparative Clinical Trial. Am. J. Respir. Crit. Care Med. 2021, 204, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Delhommeau, G.; Buetti, N.; Neuville, M.; Siami, S.; Cohen, Y.; Laurent, V.; Mourvillier, B.; Reignier, J.; Goldgran-Toledano, D.; Schwebel, C.; et al. Bacterial Pulmonary Co-Infections on ICU Admission: Comparison in Patients with SARS-CoV-2 and Influenza Acute Respiratory Failure: A Multicentre Cohort Study. Biomedicines 2022, 10, 2646. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, B.; Li, Q.; Wen, L.; Zhang, R. Clinical Features of 69 Cases With Coronavirus Disease 2019 in Wuhan, China. Clin. Infect. Dis. 2020, 71, 769–777. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.M.; Lee, J.; Lee, S.-M.; Lee, H.Y. Incidence and clinical outcomes of bacterial superinfections in critically ill patients with COVID-19. Front. Med. 2023, 10, 1079721. [Google Scholar] [CrossRef]
- Wallemacq, S.; Danwang, C.; Scohy, A.; Belkhir, L.; De Greef, J.; Kabamba, B.; Yombi, J.C. A comparative analysis of the outcomes of patients with influenza or COVID-19 in a tertiary hospital in Belgium. J. Infect. Chemother. 2022, 28, 1489–1493. [Google Scholar] [CrossRef]
- Wicky, P.-H.; Dupuis, C.; Cerf, C.; Siami, S.; Cohen, Y.; Laurent, V.; Mourvillier, B.; Reignier, J.; Goldgran-Toledano, D.; Schwebel, C.; et al. Ventilator-Associated Pneumonia in COVID-19 Patients Admitted in Intensive Care Units: Relapse, Therapeutic Failure and Attributable Mortality—A Multicentric Observational Study from the OutcomeRea Network. J. Clin. Med. 2023, 12, 1298. [Google Scholar] [CrossRef]
- Vacheron, C.-H.; Lepape, A.; Savey, A.; Machut, A.; Timsit, J.F.; Comparot, S.; Courno, G.; Vanhems, P.; Landel, V.; Lavigne, T.; et al. Attributable Mortality of Ventilator-associated Pneumonia Among Patients with COVID-19. Am. J. Respir. Crit. Care Med. 2022, 206, 161–169. [Google Scholar] [CrossRef] [PubMed]
Characteristic | COVID-19 (n = 114) | Influenza (n = 76) | p-Value |
---|---|---|---|
Sex (male/female) | 73/41 | 46/30 | 0.65 |
Age (years) | 61 ± 16 | 49 ± 13 | <0.0001 |
Height (cm) | 172 ± 9 | 174 ± 9 | 0.30 |
Weight (kg) | 86.5 ± 20.8 | 88 ± 18.1 | 0.83 |
BMI (kg/m2) | 29.2 ± 6.6 | 30 ± 5.7 | 0.42 |
Pre-existing conditions | |||
Chronic respiratory disease | 13 (11.4%) | 11 (14.5%) | 0.66 |
Chronic heart disease | 40 (35.1%) | 26 (34.2%) | >0.99 |
Chronic renal disease | 10 (8.8%) | 3 (4%) | 0.25 |
Chronic liver disease | 0 (0%) | 2 (2.6%) | 0.16 |
Diabetes mellitus | 23 (20.2%) | 29 (38.2%) | 0.0080 |
Immunocompromised | 18 (6.1%) | 27 (35.5%) | <0.0028 |
ICU length of stay (days) | 18 ± 16 | 21 ± 16 | 0.07 |
Hospital length of stay (days) | 23 ± 16 | 22 ± 16 | 0.69 |
Mechanical ventilation at admission | 89 (78.1%) | 75 (98.7%) | <0.0001 |
Mechanical ventilation duration (days) | 17± 16 | 20 ± 15 | 0.0377 |
Days till bacteria detection (days) | 9 ± 7 | 17 ± 13 | 0.0028 |
No ARDS | 26 (22.8%) | 3 (4.0%) | 0.0003 |
Mild ARDS | 7 (6.1%) | 10 (13.2%) | 0.1211 |
Moderate ARDS | 36 (31.6%) | 30 (39.5%) | 0.2796 |
Severe ARDS | 45 (39.5%) | 33 (43.4%) | 0.6522 |
SAPS II score at admission | 51.3 ± 19.7 | 42.3 ± 12.7 | 0.0012 |
SOFA score at admission | 9.4 ± 3.9 | 13.4 ± 2.3 | <0.0001 |
ECMO | 28 (24.6%) | 37 (48.7%) | 0.0010 |
ECMO duration (days) | 20 ± 12 | 18 ± 13 | 0.47 |
Characteristic | COVID-19 (n = 114) | Influenza (n = 76) | p-Value |
---|---|---|---|
Respiratory rate at admission (1/min) | 24 ± 5 | 19 ± 7 | <0.0001 |
PEEP at admission (cmH2O) | 13 ± 4 | 16 ± 4 | <0.0001 |
Driving pressure at admission | 17 ± 6 | 17 ± 6 | 0.95 |
PaO2/FiO2 at admission (mmHg) | 121 ± 63 | 134 ± 74 | 0.30 |
paCO2 at admission (mmHg) | 55 ± 19 | 70 ± 19 | <0.0001 |
pH at admission | 7.3 ± 0.1 | 7.2 ± 0.1 | <0.0001 |
Lactate at admission (mmol/L) | 2.1 ± 2.2 | 3.0 ± 3.4 | 0.0143 |
Renal replacement therapy | 59 (51.8%) | 41 (54%) | 0.88 |
Cardiogenic shock | 29 (25.4%) | 43 (56.6%) | <0.0001 |
Neurological event | 18 (15.8%) | 29 (38.2%) | 0.0006 |
Multiorgan failure | 79 (69.3%) | 72 (94.7%) | <0.0001 |
Leukocytes at admission (1/nL) | 13 ± 12 | 12 ± 9 | 0.57 |
CRP at admission (mg/L) | 168 ± 99 | 223 ± 118 | 0.0029 |
PCT at admission (µg/L) | 3.4 ± 11.3 | 58.5 ± 201.3 | <0.0001 |
COVID-19 (n = 114) | Influenza (n = 76) | p-Value | |
---|---|---|---|
Bacterial co-infection | 15 (13.2%) | 5 (6.6%) | 0.2269 |
Multiple pathogenic bacteria | 10 (66.7%) | 2 (40.0%) | 0.3473 |
Gram-positive | 13 (86.7%) | 5 (100%) | 0.3194 |
Staphylococcus aureus | 13 (86.7%) | 5 (100%) | 0.3194 |
Streptococcus pneumoniae | 1 (6.7%) | 0 (0%) | >0.9999 |
Enterococcus spp. | 1 (6.7%) | 0 (0%) | >0.9999 |
Gram-negative | 9 (60%) | 2 (40.0%) | 0.2045 |
Pseudomonas aeruginosa | 2 (13.3%) | 0 (0%) | 0.5175 |
Burkholderia cepacia | 0 (0%) | 0 (0%) | >0.9999 |
Proteus mirabilis | 2 (13.3%) | 0 (0%) | 0.5175 |
Proteus vulgaris | 1 (6.7%) | 0 (0%) | >0.9999 |
Morganella morganii | 1 (6.7%) | 0 (0%) | >0.9999 |
Haemophilus influenzae | 0 (0%) | 0 (0%) | >0.9999 |
Stenotrophomonas maltophilia | 2 (13.3%) | 0 (0%) | 0.5175 |
Acinetobacter baumanii | 0 (0%) | 1 (20.0%) | 0.4000 |
Enterobacterales | 8 (53.3%) | 2 (40.0%) | 0.3202 |
Citrobacter freundii | 0 (0%) | 0 (0%) | >0.9999 |
Citrobacter koseri | 2 (13.3%) | 0 (0%) | 0.5175 |
Enterobacter cloacae | 3 (20%) | 1 (20.0%) | 0.6510 |
Escherichia coli | 2 (13.3%) | 0 (0%) | 0.5175 |
Klebsiella oxytoca | 1 (6.7%) | 1 (20.0%) | >0.9999 |
Klebsiella aerogenes | 0 (0%) | 0 (0%) | >0.9999 |
Klebsiella pneumoniae | 4 (26.7%) | 0 (0%) | 0.1512 |
Serratia marcescens | 2 (13.3%) | 0 (0%) | 0.5175 |
COVID-19 (n = 114) | Influenza (n = 76) | p-Value | |
---|---|---|---|
Bacterial superinfection | 50 (43.9%) | 28 (36.8%) | 0.3687 |
Multiple pathogenic bacteria | 25 (50.0%) | 7 (25.0%) | 0.0347 |
Gram-positive | 25 (50.0%) | 16 (57.1%) | >0.9999 |
Staphylococcus aureus | 16 (32.0%) | 7 (25.0%) | 0.3702 |
Streptococcus pneumoniae | 1 (2.0%) | 0 (0%) | >0.9999 |
Enterococcus spp. | 8 (16.0%) | 0 (0%) | 0.0226 |
Gram-negative | 44 (88.0%) | 20 (71.4%) | 0.0868 |
Pseudomonas aeruginosa | 8 (16.0%) | 7 (25.0%) | 0.5938 |
Burkholderia cepacia | 1 (2.0%) | 1 (3.6%) | >0.9999 |
Proteus mirabilis | 1 (2.0%) | 2 (7.1%) | 0.5649 |
Proteus vulgaris | 1 (2.0%) | 0 (0%) | >0.9999 |
Morganella morganii | 1 (2.0%) | 0 (0%) | >0.9999 |
Haemophilus influenzae | 3 (6.0%) | 0 (0%) | 0.2762 |
Stenotrophomonas maltophilia | 1 (2.0%) | 1 (3.6%) | >0.9999 |
Acinetobacter baumanii | 1 (2.0%) | 0 (0%) | >0.9999 |
Enterobacterales | 37 (74.0%) | 13 (46.4%) | 0.0194 |
Citrobacter freundii | 0 (0%) | 1 (3.6%) | 0.4000 |
Citrobacter koseri | 9 (18.0%) | 2 (7.1%) | 0.2045 |
Enterobacter cloacae | 6 (12.0%) | 3 (10.7%) | 0.7433 |
Escherichia coli | 14 (28.0%) | 5 (17.9%) | 0.2270 |
Klebsiella oxytoca | 4 (8.0%) | 1 (3.6%) | 0.6498 |
Klebsiella aerogenes | 4 (8.0%) | 3 (10.7%) | >0.9999 |
Klebsiella pneumoniae | 13 (26.0%) | 0 (0%) | 0.0019 |
Serratia marcescens | 3 (6.0%) | 0 (0%) | 0.2762 |
COVID-19 (n = 114) | Influenza (n = 76) | p-Value | |
---|---|---|---|
Mortality (total) | 40 (35.1%) | 29 (38.6%) | 0.7583 |
Mortality without co-infection or superinfection | 15 (13.2%) | 13 (17.1%) | >0.9999 |
Mortality + bacterial co-infection | 6 (5.3%) | 2 (2.6%) | 0.4795 |
Mortality + bacterial superinfection | 19 (16.7%) | 14 (18.4%) | 0.8455 |
Univariate Analysis | Multivariable Analysis | |||
---|---|---|---|---|
Parameter | Odds Ratio (95%CI) | p-Value | Odds Ratio (95%CI) | p-Value |
Female sex | 0.9 (0.4–2.1) | 0.8746 | ||
Age ≥ 65 years | 3.9 (1.7–8.9) | 0.0011 | 2.3 (0.7–7.6) | 0.1462 |
BMI ≥ 35 kg/m2 | 1.3 (0.4–3.8) | 0.6693 | ||
Chronic respiratory disease | 0.8 (0.2–2.7) | 0.7293 | ||
Chronic heart disease | 3.2 (1.4–7.3) | 0.0049 | 1.5 (0.5–4.6) | 0.4561 |
Chronic renal disease | 1.3 (0.3–4.7) | 0.7337 | ||
Diabetes mellitus | 1.2 (0.5–3.2) | 0.6497 | ||
Immunocompromised | 1.2 (0.4–3.4) | 0.7130 | ||
SAPS II at ICU admission ≥ 42 | 4.6 (1.7–14.9) | <0.0044 | 1.6 (0.5–6.4) | 0.4571 |
SOFA at ICU admission ≥ 12 | 4.0 (1.6–10.6) | <0.0036 | 1.5 (0.4–5.7) | 0.5511 |
ECMO requirement | 2.3 (1.0–5.6) | 0.7293 | ||
Driving Pressure > 14 cmH2O | 2.4 (1.1–5.5) | 0.0267 | 1.0 (0.3–3.5) | 0.9697 |
Lactate ≥ 2 mmol/L at admission | 3.5 (1.5–8.4) | 0.0049 | 1.8 (0.5–6.3) | 0.3609 |
Renal replacement therapy | 3.2 (1.5–7.5) | 0.0049 | 1.2 (0.3–4.4) | 0.7796 |
Cardiogenic shock | 3.1 (1.3–7.6) | 0.0103 | 2.1 (0.6–7.2) | 0.2194 |
Multiorgan failure | 6.5 (2.4–19.9) | 0.0012 | 2.8 (0.6–16.5) | 0.3651 |
Cardiac arrest | / | / | ||
Co-infection | 1.3 (0.4–3.8) | 0.6693 | ||
Superinfection | 1.3 (0.6–2.7) | 0.5650 | ||
Gram-positive | 1.2 (0.5–2.6) | 0.6455 | ||
Gram-negative | 1.2 (0.6–2.7) | 0.5810 |
Univariate Analysis | Multivariable Analysis | |||
---|---|---|---|---|
Parameter | Odds Ratio (95%CI) | p-Value | Odds Ratio (95%CI) | p-Value |
Female sex | 2.3 (0.9–6.0) | 0.0888 | ||
Age ≥ 65 years | 2.2 (0.5–9.8) | 0.2612 | ||
BMI ≥ 35 kg/m2 | 0.6 (0.1–3.5) | 0.5709 | ||
Chronic respiratory disease | 0.3 (0.04–1.3) | 0.1570 | ||
Chronic heart disease | 1.7 (0.6–4.4) | 0.3026 | ||
Chronic renal disease | 3.4 (0.3–75.3) | 0.3261 | ||
Diabetes mellitus | 1.6 (0.6–4.1) | 0.3484 | ||
Immunocompromised | 3.1 (1.2–8.5) | 0.0227 | 1.5 (0.1–2392) | 0.9388 |
SAPS II at ICU admission ≥ 42 | 3.9 (1.5–10.5) | 0.0052 | 2.5 (0.2–37.3) | 0.4548 |
SOFA at ICU admission ≥ 12 | 12.3 (2.2–229.0) | 0.0189 | 1.3 (0.1–237.8) | 0.8989 |
ECMO requirement | 5.1 (1.9–14.7) | 0.0017 | 5.8 (0.6–173.2) | 0.1867 |
Driving Pressure > 14 cmH2O | 1.0 (0.4–2.9) | 0.9361 | ||
Lactate ≥ 2 mmol/L at admission | 3.5 (1.3–9.4) | 0.0144 | 1.8 (0.2–22.4) | 0.6177 |
Renal replacement therapy | 1.4 (0.5–3.5) | 0.5213 | ||
Cardiogenic shock | 5.2 (1.9–16.2) | 0.0026 | 3.0 (0.3–48.7) | 0.3814 |
Multiorgan failure | / | / | ||
Cardiac arrest | 145.1 (30.4–1158) | <0.0001 | 217.8 (26.9–6849) | <0.0001 |
Co-infection | 1.0 (0.1–7.0) | 0.9301 | ||
Superinfection | 2.2 (0.8–5.8) | 0.1074 | ||
Gram-positive | 2.3 (0.9–6.0) | 0.0868 | ||
Gram-negative | 1.2 (0.4–3.2) | 0.7528 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schoettler, J.J.; Sandrio, S.; Boesing, C.; Bauer, L.; Miethke, T.; Thiel, M.; Krebs, J. Bacterial Co- or Superinfection in Patients Treated in Intensive Care Unit with COVID-19- and Influenza-Associated Pneumonia. Pathogens 2023, 12, 927. https://doi.org/10.3390/pathogens12070927
Schoettler JJ, Sandrio S, Boesing C, Bauer L, Miethke T, Thiel M, Krebs J. Bacterial Co- or Superinfection in Patients Treated in Intensive Care Unit with COVID-19- and Influenza-Associated Pneumonia. Pathogens. 2023; 12(7):927. https://doi.org/10.3390/pathogens12070927
Chicago/Turabian StyleSchoettler, Jochen Johannes, Stany Sandrio, Christoph Boesing, Lena Bauer, Thomas Miethke, Manfred Thiel, and Joerg Krebs. 2023. "Bacterial Co- or Superinfection in Patients Treated in Intensive Care Unit with COVID-19- and Influenza-Associated Pneumonia" Pathogens 12, no. 7: 927. https://doi.org/10.3390/pathogens12070927
APA StyleSchoettler, J. J., Sandrio, S., Boesing, C., Bauer, L., Miethke, T., Thiel, M., & Krebs, J. (2023). Bacterial Co- or Superinfection in Patients Treated in Intensive Care Unit with COVID-19- and Influenza-Associated Pneumonia. Pathogens, 12(7), 927. https://doi.org/10.3390/pathogens12070927