Insights into the Intersection of Biocide Resistance, Efflux Pumps, and Sequence Types in Carbapenem-Resistant Acinetobacter baumannii: A Multicenter Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Antimicrobial Susceptibility Testing
2.3. Susceptibility to Biocides
2.4. Addition of Efflux Pump Inhibitor (EPI)
2.5. Screening of ARGs and EPGs
2.6. Multilocus Sequence Typing (MLST)
3. Results
3.1. Clinical Characteristics of A. baumannii Isolates
3.2. Susceptibility to Antibiotics and Biocides
3.3. Effect of EPI on Antimicrobial Susceptibility
3.4. Distribution of ARGs
3.5. Distribution of EPGs and BRGs
3.6. Multilocus Sequence Typing
3.7. Sequence Types-Specific Analysis of ARGs and EPGs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarshar, M.; Behzadi, P.; Scribano, D.; Palamara, A.T.; Ambrosi, C. Acinetobacter baumannii: An Ancient Commensal with Weapons of a Pathogen. Pathogens 2021, 10, 387. [Google Scholar] [CrossRef] [PubMed]
- Dijkshoorn, L.; Nemec, A.; Seifert, H. An increasing threat in hospitals: Multidrug-resistant Acinetobacter baumannii. Nat. Rev. Microbiol. 2007, 5, 939–951. [Google Scholar] [CrossRef]
- Jones, I.A.; Joshi, L.T. Biocide Use in the Antimicrobial Era: A Review. Molecules 2021, 26, 2276. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Xu, Y.; Chang, Y.; Liu, C.; Jia, X.; Ling, B. Molecular Characterization of Reduced Susceptibility to Biocides in Clinical Isolates of Acinetobacter baumannii. Front. Microbiol. 2017, 8, 1836. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Pi, B.; Zhou, H.; Yu, Y.; Li, L. Triclosan resistance in clinical isolates of Acinetobacter baumannii. J. Med. Microbiol. 2009, 58, 1086–1091. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Cuenca, F.; Tomás, M.; Caballero-Moyano, F.J.; Bou, G.; Martínez-Martínez, L.; Vila, J.; Pachón, J.; Cisneros, J.M.; Rodríguez-Baño, J.; Pascual, Á. Reduced susceptibility to biocides in Acinetobacter baumannii: Association with resistance to antimicrobials, epidemiological behaviour, biological cost and effect on the expression of genes encoding porins and efflux pumps. J. Antimicrob. Chemother. 2015, 70, 3222–3229. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Han, J.; Dai, H.; Jia, P. Biocide-tolerance and antibiotic-resistance in community environments and risk of direct transfers to humans: Unintended consequences of community-wide surface disinfecting during COVID-19? Environ. Pollut. 2021, 283, 117074. [Google Scholar] [CrossRef]
- Manian, F.A.; Griesenauer, S.; Senkel, D.; Setzer, J.M.; Doll, S.A.; Perry, A.M.; Wiechens, M. Isolation of Acinetobacter baumannii complex and methicillin-resistant Staphylococcus aureus from hospital rooms following terminal cleaning and disinfection: Can we do better? Infect. Control Hosp. Epidemiol. 2011, 32, 667–672. [Google Scholar] [CrossRef] [Green Version]
- Meyer, C.; Lucaβen, K.; Gerson, S.; Xanthopoulou, K.; Wille, T.; Seifert, H.; Higgins, P.G. Contribution of RND-Type Efflux Pumps in Reduced Susceptibility to Biocides in Acinetobacter baumannii. Antibiotics 2022, 11, 1635. [Google Scholar] [CrossRef]
- Romero, J.L.; Grande Burgos, M.J.; Pérez-Pulido, R.; Gálvez, A.; Lucas, R. Resistance to Antibiotics, Biocides, Preservatives and Metals in Bacteria Isolated from Seafoods: Co-Selection of Strains Resistant or Tolerant to Different Classes of Compounds. Front. Microbiol. 2017, 8, 1650. [Google Scholar] [CrossRef] [Green Version]
- Ghanem, B.; Haddadin, R.N. Multiple drug resistance and biocide resistance in Escherichia coli environmental isolates from hospital and household settings. Antimicrob. Resist. Infect. Control 2018, 7, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco, P.; Hernando-Amado, S.; Reales-Calderon, J.A.; Corona, F.; Lira, F.; Alcalde-Rico, M.; Bernardini, A.; Sanchez, M.B.; Martinez, J.L. Bacterial Multidrug Efflux Pumps: Much More than Antibiotic Resistance Determinants. Microorganisms 2016, 4, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kornelsen, V.; Kumar, A. Update on Multidrug Resistance Efflux Pumps in Acinetobacter spp. Antimicrob. Agents Chemother. 2021, 65, e0051421. [Google Scholar] [CrossRef] [PubMed]
- Khurshid, M.; Rasool, M.H.; Siddique, M.H.; Azeem, F.; Naeem, M.; Sohail, M.; Sarfraz, M.; Saqalein, M.; Taj, Z.; Nisar, M.A.; et al. Molecular mechanisms of antibiotic co-resistance among carbapenem resistant Acinetobacter baumannii. J. Infect. Dev. Ctries. 2019, 13, 899–905. [Google Scholar] [CrossRef] [Green Version]
- Pannek, S.; Higgins, P.G.; Steinke, P.; Jonas, D.; Akova, M.; Bohnert, J.A.; Seifert, H.; Kern, W.V. Multidrug efflux inhibition in Acinetobacter baumannii: Comparison between 1-(1-naphthylmethyl)-piperazine and phenyl-arginine-beta-naphthylamide. J. Antimicrob. Chemother. 2006, 57, 970–974. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Rasool, M.H.; Khurshid, M.; Aslam, B.; Baloch, Z. Co-Occurrence of mcr-1 and Carbapenem Resistance in Avian Pathogenic E. coli Serogroup O78 ST95 from Colibacillosis-Infected Broiler Chickens. Antibiotics 2023, 12, 812. [Google Scholar] [CrossRef]
- Weatherly, L.M.; Gosse, J.A. Triclosan exposure, transformation, and human health effects. J. Toxicol. Environ. Health B Crit. Rev. 2017, 20, 447–469. [Google Scholar] [CrossRef]
- Peyneau, M.; de Chaisemartin, L.; Gigant, N.; Chollet-Martin, S.; Kerdine-Römer, S. Quaternary ammonium compounds in hypersensitivity reactions. Front. Toxicol. 2022, 4, 973680. [Google Scholar] [CrossRef]
- Brookes, Z.L.S.; Bescos, R.; Belfield, L.A.; Ali, K.; Roberts, A. Current uses of chlorhexidine for management of oral disease: A narrative review. J. Dent. 2020, 103, 103497. [Google Scholar] [CrossRef]
- Vijayakumar, R.; Sandle, T.; Al-Aboody, M.S.; AlFonaisan, M.K.; Alturaiki, W.; Mickymaray, S.; Premanathan, M.; Alsagaby, S.A. Distribution of biocide resistant genes and biocides susceptibility in multidrug-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii—A first report from the Kingdom of Saudi Arabia. J. Infect. Public Health 2018, 11, 812–816. [Google Scholar] [CrossRef]
- Khurshid, M.; Rasool, M.H.; Ashfaq, U.A.; Aslam, B.; Waseem, M. Emergence of ISAba1 harboring carbapenem-resistant Acinetobacter baumannii isolates in Pakistan. Future Microbiol. 2017, 12, 1261–1269. [Google Scholar] [CrossRef]
- Khurshid, M.; Rasool, M.H.; Ashfaq, U.A.; Aslam, B.; Waseem, M.; Xu, Q.; Zhang, X.; Guo, Q.; Wang, M. Dissemination of bla(OXA-23)-harbouring carbapenem-resistant Acinetobacter baumannii clones in Pakistan. J. Glob. Antimicrob. Resist. 2020, 21, 357–362. [Google Scholar] [CrossRef]
- Héritier, C.; Poirel, L.; Lambert, T.; Nordmann, P. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2005, 49, 3198–3202. [Google Scholar] [CrossRef] [Green Version]
- Clímaco, E.C.; Oliveira, M.L.; Pitondo-Silva, A.; Oliveira, M.G.; Medeiros, M.; Lincopan, N.; da Costa Darini, A.L. Clonal complexes 104, 109 and 113 playing a major role in the dissemination of OXA-carbapenemase-producing Acinetobacter baumannii in Southeast Brazil. Infect. Genet. Evol. 2013, 19, 127–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chagas, T.P.; Carvalho, K.R.; de Oliveira Santos, I.C.; Carvalho-Assef, A.P.; Asensi, M.D. Characterization of carbapenem-resistant Acinetobacter baumannii in Brazil (2008–2011): Countrywide spread of OXA-23-producing clones (CC15 and CC79). Diagn. Microbiol. Infect. Dis. 2014, 79, 468–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gnanadhas, D.P.; Marathe, S.A.; Chakravortty, D. Biocides—Resistance, cross-resistance mechanisms and assessment. Expert Opin. Investig. Drugs 2013, 22, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Chowdhury, G.; Mukhopadhyay, A.K.; Dutta, S.; Basu, S. Convergence of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Infection. Front. Med. 2022, 9, 793615. [Google Scholar] [CrossRef]
- Donadu, M.G.; Mazzarello, V.; Cappuccinelli, P.; Zanetti, S.; Madléna, M.; Nagy, Á.L.; Stájer, A.; Burián, K.; Gajdács, M. Relationship between the Biofilm-Forming Capacity and Antimicrobial Resistance in Clinical Acinetobacter baumannii Isolates: Results from a Laboratory-Based In Vitro Study. Microorganisms 2021, 9, 2384. [Google Scholar] [CrossRef]
- Wu, H.J.; Xiao, Z.G.; Lv, X.J.; Huang, H.T.; Liao, C.; Hui, C.Y.; Xu, Y.; Li, H.F. Drug-resistant Acinetobacter baumannii: From molecular mechanisms to potential therapeutics (Review). Exp. Ther. Med. 2023, 25, 209. [Google Scholar] [CrossRef]
- Li, X.Z.; Plésiat, P.; Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 2015, 28, 337–418. [Google Scholar] [CrossRef] [Green Version]
- Fournier, P.E.; Vallenet, D.; Barbe, V.; Audic, S.; Ogata, H.; Poirel, L.; Richet, H.; Robert, C.; Mangenot, S.; Abergel, C.; et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet. 2006, 2, e7. [Google Scholar] [CrossRef] [Green Version]
- Kawamura-Sato, K.; Wachino, J.; Kondo, T.; Ito, H.; Arakawa, Y. Reduction of disinfectant bactericidal activities in clinically isolated Acinetobacter species in the presence of organic material. J. Antimicrob. Chemother. 2008, 61, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Kawamura, K.; Matsui, M.; Suzuki, M.; Suzuki, S.; Shibayama, K.; Arakawa, Y. Reduction in chlorhexidine efficacy against multi-drug-resistant Acinetobacter baumannii international clone II. J. Hosp. Infect. 2017, 95, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Zhang, Y.; Xu, W.; Zhang, X.; Xu, Y.; Sun, Y.; Zhou, T.; Cao, J. Hyper-expression of the efflux pump gene adeB was found in Acinetobacter baumannii with decreased triclosan susceptibility. J. Glob. Antimicrob. Resist. 2020, 22, 367–373. [Google Scholar] [CrossRef]
- Migliaccio, A.; Esposito, E.P.; Bagattini, M.; Berisio, R.; Triassi, M.; De Gregorio, E.; Zarrilli, R. Inhibition of AdeB, AceI, and AmvA Efflux Pumps Restores Chlorhexidine and Benzalkonium Susceptibility in Acinetobacter baumannii ATCC 19606. Front. Microbiol. 2021, 12, 790263. [Google Scholar] [CrossRef]
- Ruan, Z.; Chen, Y.; Jiang, Y.; Zhou, H.; Zhou, Z.; Fu, Y.; Wang, H.; Wang, Y.; Yu, Y. Wide distribution of CC92 carbapenem-resistant and OXA-23-producing Acinetobacter baumannii in multiple provinces of China. Int. J. Antimicrob. Agents 2013, 42, 322–328. [Google Scholar] [CrossRef]
- Adams-Haduch, J.M.; Onuoha, E.O.; Bogdanovich, T.; Tian, G.B.; Marschall, J.; Urban, C.M.; Spellberg, B.J.; Rhee, D.; Halstead, D.C.; Pasculle, A.W.; et al. Molecular epidemiology of carbapenem-nonsusceptible Acinetobacter baumannii in the United States. J. Clin. Microbiol. 2011, 49, 3849–3854. [Google Scholar] [CrossRef] [Green Version]
- Ansaldi, F.; Canepa, P.; Bassetti, M.; Zancolli, M.; Molinari, M.P.; Talamini, A.; Ginocchio, F.; Durando, P.; Mussap, M.; Orengo, G.; et al. Sequential outbreaks of multidrug-resistant Acinetobacter baumannii in intensive care units of a tertiary referral hospital in Italy: Combined molecular approach for epidemiological investigation. J. Hosp. Infect. 2011, 79, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhou, J.; Zhou, H.; Yang, Q.; Wei, Z.; Yu, Y.; Li, L. Wide dissemination of OXA-23-producing carbapenem-resistant Acinetobacter baumannii clonal complex 22 in multiple cities of China. J. Antimicrob. Chemother. 2010, 65, 644–650. [Google Scholar] [CrossRef] [Green Version]
- Runnegar, N.; Sidjabat, H.; Goh, H.M.; Nimmo, G.R.; Schembri, M.A.; Paterson, D.L. Molecular epidemiology of multidrug-resistant Acinetobacter baumannii in a single institution over a 10-year period. J. Clin. Microbiol. 2010, 48, 4051–4056. [Google Scholar] [CrossRef] [Green Version]
- Endo, S.; Yano, H.; Hirakata, Y.; Arai, K.; Kanamori, H.; Ogawa, M.; Shimojima, M.; Ishibashi, N.; Aoyagi, T.; Hatta, M.; et al. Molecular epidemiology of carbapenem-non-susceptible Acinetobacter baumannii in Japan. J. Antimicrob. Chemother. 2012, 67, 1623–1626. [Google Scholar] [CrossRef] [Green Version]
- Mendes, R.E.; Bell, J.M.; Turnidge, J.D.; Castanheira, M.; Jones, R.N. Emergence and widespread dissemination of OXA-23, -24/40 and -58 carbapenemases among Acinetobacter spp. in Asia-Pacific nations: Report from the SENTRY Surveillance Program. J. Antimicrob. Chemother. 2009, 63, 55–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khurshid, M.; Rasool, M.H.; Ashfaq, U.A.; Aslam, B.; Waseem, M.; Ali, M.A.; Almatroudi, A.; Rasheed, F.; Saeed, M.; Guo, Q.; et al. Acinetobacter baumannii Sequence Types Harboring Genes Encoding Aminoglycoside Modifying Enzymes and 16SrRNA Methylase; a Multicenter Study from Pakistan. Infect. Drug Resist. 2020, 13, 2855–2862. [Google Scholar] [CrossRef] [PubMed]
- Vrancianu, C.O.; Gheorghe, I.; Czobor, I.B.; Chifiriuc, M.C. Antibiotic Resistance Profiles, Molecular Mechanisms and Innovative Treatment Strategies of Acinetobacter baumannii. Microorganisms 2020, 8, 935. [Google Scholar] [CrossRef]
- Lin, M.F.; Lan, C.Y. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World J. Clin. Cases 2014, 2, 787–814. [Google Scholar] [CrossRef] [PubMed]
Gender | Number (Percentage) | Specimen Source | Number (Percentage) | Department | Number (Percentage) | Age | Number (Percentage) | Hospital | Number (Percentage) |
---|---|---|---|---|---|---|---|---|---|
Male | 85 (65.38%) | Tracheal secretion | 30 (23.08%) | Cardiology | 1 (0.77%) | ≤20 | 19 (14.62%) | A | 36 (27.69%) |
Female | 45 (34.62%) | Blood | 25 (19.23%) | ICU | 43 (33.08%) | 21–60 | 57 (43.85%) | B | 32 (24.62%) |
Sputum | 21 (16.15%) | Medicine | 29 (22.31%) | 61–70 | 36 (27.69%) | C | 12 (9.23%) | ||
Urine | 12 (9.23%) | Oncology | 21 (16.15%) | >70 | 18 (13.85%) | D | 36 (27.69%) | ||
Pus | 15 (11.54%) | Pediatrics | 8 (6.15%) | E | 14 (10.77%) | ||||
Wound swab | 8 (6.15%) | Surgery | 20 (15.38%) | ||||||
Bronchial washings | 6 (4.62%) | Urology | 8 (6.15%) | ||||||
CSF | 4 (3.08%) | ||||||||
Endotracheal tube | 4 (3.08%) | ||||||||
Catheter tip | 4 (3.08%) | ||||||||
Fluid | 1 (0.77%) |
Antimicrobial Agents | MIC (µg/mL) | ||||
---|---|---|---|---|---|
Breakpoints | MIC50 | MIC90 | Susceptible (%) | Resistant (%) | |
Amikacin | ≥64 | 512 | 1024 | 14 (10.77) | 116 (89.23) |
Gentamicin | ≥16 | 256 | 512 | 17 (13.08) | 113 (86.92) |
Tobramycin | ≥16 | 256 | 512 | 25 (19.23) | 105 (80.77) |
Piperacillin-Tazobactam | ≥128/4 | 256 | 512 | 14 (10.77) | 116 (89.23) |
Ampicillin-Sulbactam | ≥32/16 | 512 | 512 | 14 (10.77) | 116 (89.23) |
Ceftazidime | ≥32 | 256 | 512 | 14 (10.77) | 116 (89.23) |
Cefepime | ≥32 | 128 | 256 | 14 (10.77) | 116 (89.23) |
Imipenem | ≥8 | 16 | 32 | 14 (10.77) | 116 (89.23) |
Meropenem | NT | - | - | 14 (10.77) | 116 (89.23) |
Doxycycline | ≥16 | 64 | 128 | 22 (16.92) | 108 (83.08) |
Tigecycline | ≥8 | 1 | 1 | 130 (100) | 0 (0) |
Colistin | ≥4 | 0.5 | 1 | 130 (100) | 0 (0) |
Ciprofloxacin | ≥4 | 64 | 128 | 10 (7.69) | 120 (92.31) |
Trimethoprim-Sulfamethoxazole | ≥4/76 | 32/608 | 64/1216 | 27 (20.77) | 103 (79.23) |
Triclosan | NA | 32 | 64 | - | - |
Chlorhexidine Diacetate | NA | 64 | 128 | - | - |
Benzalkonium Bromide | NA | 16 | 32 | - | - |
Antimicrobial Agents | MIC (μg/mL) | Fold-Change in MIC (Number of Isolates) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | ≥512 | 2-Fold ↑ | No Change | 2-Fold ↓ | 4-Fold ↓ | ≥8-Fold ↓ | ||
Amikacin | Alone | - | - | - | - | 1 | 10 | 3 | - | - | 4 | 25 | 16 | 71 | 12 | 68 | 50 | - | - |
With NMP | - | - | - | - | 5 | 8 | 1 | - | - | 11 | 28 | 18 | 59 | ||||||
Gentamicin | Alone | - | - | - | 9 | 8 | - | - | 2 | 14 | 7 | 17 | 29 | 44 | 14 | 58 | 57 | 1 | - |
With NMP | - | - | 4 | 12 | 1 | - | - | 14 | 3 | 15 | 11 | 35 | 35 | ||||||
Cefepime | Alone | - | - | - | - | 4 | 5 | 5 | - | - | 27 | 55 | 34 | - | 9 | 36 | 73 | 9 | 3 |
With NMP | - | - | - | 3 | 7 | 4 | - | - | 19 | 43 | 43 | 11 | - | ||||||
Imipenem | Alone | - | - | 6 | 8 | - | - | 10 | 56 | 50 | - | - | - | - | 9 | 22 | 96 | 3 | - |
With NMP | - | 4 | 8 | 2 | - | - | 55 | 49 | 12 | - | - | - | - | ||||||
Doxycycline | Alone | - | - | 4 | 15 | 3 | - | - | 1 | 21 | 53 | 33 | - | - | - | - | 35 | 88 | 7 |
With NMP | 3 | 5 | 12 | 2 | - | 4 | 13 | 47 | 44 | - | - | - | - | ||||||
Ciprofloxacin | Alone | - | 1 | 7 | 2 | - | - | - | 12 | 25 | 53 | 30 | - | - | - | - | 36 | 79 | 15 |
With NMP | 2 | 8 | - | - | 2 | 7 | 27 | 42 | 42 | - | - | - | - |
Sequence Types | Isolates n (%) | Gene Distribution | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
adeB | adeG | adeJ | abeD | adeT1 | adeT2 | abeM | tetA | tetB | amvA | qacE | qacEΔ1 | aceI | TRI | CHD | BB | ||
ST589 | 37 (28.46) | + | + | + | + | + | + | + | − | + | + | + | + | + | 16–64 | 16–128 | 16–32 |
ST2 | 33 (25.38) | + | + | + | + | + | + | + | −/+ | + | + | + | + | + | 16–64 | 32–64 | 16–32 |
ST642 | 19 (14.62) | + | + | + | + | + | + | + | − | + | + | + | − | + | 16–32 | 32–64 | 8–64 |
ST338 | 9 (6.92) | − | − | + | + | − | − | − | − | − | + | + | + | + | 2–4 | 4–16 | 4–8 |
ST1241 | 8 (6.15) | + | + | + | + | − | − | + | − | + | + | − | − | + | 16–64 | 16–32 | 8–16 |
ST600 | 6 (4.62) | + | + | + | + | − | + | + | − | + | + | + | + | + | 16–32 | 32–64 | 16–32 |
ST103 | 5 (3.85) | + | − | + | + | − | − | + | − | + | + | − | − | + | 16–32 | 16–32 | 8–16 |
ST889 | 5 (3.85) | + | − | + | + | + | − | + | − | − | + | − | − | + | 4–8 | 8–16 | 4 |
ST708 | 4 (3.08) | + | − | + | + | − | − | − | − | − | − | − | − | + | 4–8 | 16–64 | 8–16 |
ST615 | 3 (2.31) | + | − | + | + | + | + | + | − | − | + | − | − | + | 8–16 | 32–64 | 8–16 |
ST597 | 1 (0.77) | + | − | + | − | − | − | − | − | − | − | − | − | − | 4 | 8 | 4 |
Sequence Types | Total Number of Isolates | MIC (µg/mL) Range Except Those Specified | Acquired Antimicrobial-Resistant Genotypes (Number of Isolates) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SAM | TZP | CAZ | FEP | IPM | AK | CN | TOB | DO | SXT | CIP | |||
ST589 | 37 | ≥512 | 256- ≥ 512 | 256- ≥ 512 | 128–256 | 16–32 | ≥512 | 256- ≥ 512 | 256- ≥ 512 | 32–64 | 32–64 | 64–128 | blaOXA-23 (37), IS-blaOXA-23 (37), armA (37), aphA6 (25), aadB (23), tetB (37), sul2 (37) |
ST2 | 33 | 256- ≥ 512 | 128–256 | 128–256 | 64–256 | 8–32 | ≥512 | ≥512 | 256- ≥ 512 | 64–128 | 16–64 | 32–128 | blaOXA-23 (33), IS-blaOXA-23 (33), armA (33), aphA1 (5), aphA6 (28), aacC1 (17), aadB (28), tetA (17), tetB (33), sul1 (12), sul2 (26) |
ST642 | 19 | 256- ≥ 512 | 128–256 | 128–256 | 64–128 | 16–32 | 128–256 | 32–128 | 16–64 | 64–128 | 16–32 | 64–128 | blaOXA-23 (19), IS-blaOXA-23 (19), aphA6 (19), aacC1 (11), aadB (19), tetB (19), sul2 (19) |
ST338 | 9 | 4–8 | 2–4 | 4–8 | 4–8 | 0.5–1 | 2–8 | 1–2 | 1–2 | 1–2 | 0.5–2 | 0.25–1 | - |
ST1241 | 8 | 256- ≥ 512 | 128–256 | 128–256 | 128–256 | 16–32 | 64–128 | 16–32 | 1–4 | 16–64 | 0.5–1 | 16–64 | blaOXA-23 (8), IS-blaOXA-23 (8), aphA1 (8), aphA6 (8), tetB (8) |
ST600 | 6 | 256- ≥ 512 | 128 | 128–256 | 128–256 | 16–32 | 256- ≥ 512 | 64–256 | 32–128 | 32–64 | 32–64 | 32–64 | blaOXA-23 (6), IS-blaOXA-23 (6), aphA6 (6), aadB (6), tetB (6), sul2 (6) |
ST103 | 5 | 256- ≥ 512 | 128 | 64–128 | 64–128 | 16–32 | 128–256 | 64–128 | 32–64 | 32–64 | 4–16 | 16–32 | blaOXA-23 (5), IS-blaOXA-23 (5), aphA6 (5), aadB (5), tetB (5), sul1 (5) |
ST889 | 5 | 128–256 | 128 | 64–128 | 64–128 | 16–32 | 64–256 | 128–256 | 32–128 | 0.5–1 | 0.5–1 | 16–32 | blaOXA-23 (5), IS-blaOXA-23 (5), aphA6 (5), aacC1 (5), aadB (5) |
ST708 | 4 | 4–8 | 2–4 | 2–8 | 2–4 | 0.5–1 | 4–8 | 2 | 2 | 0.5–1 | 0.5–1 | 16–32 | - |
ST615 | 3 | 64–128 | 128 | 64–128 | 64 | 8–16 | 64–128 | 1–2 | 1–2 | 1–2 | 4–8 | 16–32 | blaOXA-23 (3), IS-blaOXA-23 (3), aphA6 (3), sul1 (3) |
ST597 | 1 | 8 | 4 | 4 | 2 | 1 | 4 | 1 | 1 | 1 | 1 | 0.5 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taj, Z.; Rasool, M.H.; Khurshid, M.; Aslam, B.; Qamar, M.U. Insights into the Intersection of Biocide Resistance, Efflux Pumps, and Sequence Types in Carbapenem-Resistant Acinetobacter baumannii: A Multicenter Study. Pathogens 2023, 12, 899. https://doi.org/10.3390/pathogens12070899
Taj Z, Rasool MH, Khurshid M, Aslam B, Qamar MU. Insights into the Intersection of Biocide Resistance, Efflux Pumps, and Sequence Types in Carbapenem-Resistant Acinetobacter baumannii: A Multicenter Study. Pathogens. 2023; 12(7):899. https://doi.org/10.3390/pathogens12070899
Chicago/Turabian StyleTaj, Zeeshan, Muhammad Hidayat Rasool, Mohsin Khurshid, Bilal Aslam, and Muhammad Usman Qamar. 2023. "Insights into the Intersection of Biocide Resistance, Efflux Pumps, and Sequence Types in Carbapenem-Resistant Acinetobacter baumannii: A Multicenter Study" Pathogens 12, no. 7: 899. https://doi.org/10.3390/pathogens12070899
APA StyleTaj, Z., Rasool, M. H., Khurshid, M., Aslam, B., & Qamar, M. U. (2023). Insights into the Intersection of Biocide Resistance, Efflux Pumps, and Sequence Types in Carbapenem-Resistant Acinetobacter baumannii: A Multicenter Study. Pathogens, 12(7), 899. https://doi.org/10.3390/pathogens12070899