Identification of Trichomonas vaginalis 5-Nitroimidazole Resistance Targets
Abstract
:1. Introduction
2. Materials and Methods
2.1. T. vaginalis Isolate Selection and Growth in Culture
2.2. 5-Nitroimidazole Susceptibility Testing
2.3. RNA Extraction for RNA-Sequencing
2.4. RNA-Sequencing, Bioinformatics Analyses, and Statistical Analysis
3. Results and Discussion
3.1. Differential Expression of Genes in MTZ-R vs. MTZ-S T. vaginalis Isolates
3.2. Metabolic Pathways Associated with DEGs in MTZ-R T. vaginalis Isolates
3.2.1. Upregulated Genes
3.2.2. Downregulated Genes
3.3. Differential Expression of Genes Encoding Resistance-Related Proteins in MTZ-R T. vaginalis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Kissinger, P. Trichomonas vaginalis: A review of epidemiologic, clinical and treatment issues. BMC Infect. Dis. 2015, 15, 307. [Google Scholar] [CrossRef]
- Meites, E.; Gaydos, C.A.; Hobbs, M.M.; Kissinger, P.; Nyirjesy, P.; Schwebke, J.R.; Secor, W.E.; Sobel, J.D.; Workowski, K.A. A review of evidence-based care of symptomatic trichomoniasis and asymptomatic Trichomonas vaginalis infections. Clin. Infect. Dis. 2015, 61 (Suppl. 8), S837–S848. [Google Scholar] [CrossRef] [PubMed]
- Sutton, M.; Sternberg, M.; Koumans, E.H.; McQuillan, G.; Berman, S.; Markowitz, L. The prevalence of Trichomonas vaginalis infection among reproductive-age women in the United States, 2001–2004. Clin. Infect. Dis. 2007, 45, 1319–1326. [Google Scholar] [CrossRef]
- Sena, A.C.; Miller, W.C.; Hobbs, M.M.; Schwebke, J.R.; Leone, P.A.; Swygard, H.; Atashili, J.; Cohen, M.S. Trichomonas vaginalis infection in male sexual partners: Implications for diagnosis, treatment, and prevention. Clin. Infect. Dis. 2007, 44, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Workowski, K.A.; Bachmann, L.H.; Chan, P.A.; Johnston, C.M.; Muzny, C.A.; Park, I.; Reno, H.; Zenilman, J.M.; Bolan, G.A. Sexually transmitted infections treatment guidelines, 2021. MMWR Recomm. Rep. 2021, 70, 1–187. [Google Scholar] [CrossRef]
- Cotch, M.F.; Pastorek, J.G., 2nd; Nugent, R.P.; Hillier, S.L.; Gibbs, R.S.; Martin, D.H.; Eschenbach, D.A.; Edelman, R.; Carey, J.C.; Regan, J.A.; et al. Trichomonas vaginalis associated with low birth weight and preterm delivery. Sex. Transm. Dis. 1997, 24, 353–360. [Google Scholar] [CrossRef]
- Kissinger, P.; Adamski, A. Trichomoniasis and HIV interactions: A review. Sex. Transm. Infect. 2013, 89, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Van Gerwen, O.T.; Craig-Kuhn, M.C.; Jones, A.T.; Schroeder, J.A.; Deaver, J.; Buekens, P.; Kissinger, P.J.; Muzny, C.A. Trichomoniasis and adverse birth outcomes: A systematic review and meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2021, 128, 1907–1915. [Google Scholar] [CrossRef] [PubMed]
- Videau, D.; Niel, G.; Siboulet, A.; Catalan, F. Secnidazole. A 5-nitroimidazole derivative with a long half-life. Br. J. Vener. Dis. 1978, 54, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Muzny, C.A.; Schwebke, J.R.; Nyirjesy, P.; Kaufman, G.; Mena, L.A.; Lazenby, G.B.; Van Gerwen, O.T.; Graves, K.J.; Arbuckle, J.; Carter, B.A.; et al. Efficacy and safety of single oral dosing of secnidazole for trichomoniasis in women: Results of a phase 3, randomized, double-blind, placebo-controlled, delayed-treatment study. Clin. Infect. Dis. 2021, 73, e1282–e1289. [Google Scholar] [CrossRef]
- Rodin, P.; King, A.J.; Nicol, C.S.; Barrow, J. Flagyl in the treatment of trichomoniasis. Br. J. Vener. Dis. 1960, 36, 147–151. [Google Scholar] [CrossRef]
- Robinson, S.C. Trichomonal vaginitis resistant to metranidazole. Can. Med. Assoc. J. 1962, 86, 665. [Google Scholar]
- Conrad, M.D.; Gorman, A.W.; Schillinger, J.A.; Fiori, P.L.; Arroyo, R.; Malla, N.; Dubey, M.L.; Gonzalez, J.; Blank, S.; Secor, W.E.; et al. Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite Trichomonas vaginalis. PLoS Negl. Trop. Dis. 2012, 6, e1573. [Google Scholar] [CrossRef]
- Kirkcaldy, R.D.; Augostini, P.; Asbel, L.E.; Bernstein, K.T.; Kerani, R.P.; Mettenbrink, C.J.; Pathela, P.; Schwebke, J.R.; Secor, W.E.; Workowski, K.A.; et al. Trichomonas vaginalis antimicrobial drug resistance in 6 US cities, STD Surveillance Network, 2009–2010. Emerg. Infect. Dis. 2012, 18, 939–943. [Google Scholar] [CrossRef]
- Pearlman, R.L.; Van Gerwen, O.T.; Kissinger, P.J.; Secor, W.E.; Muzny, C.A. Treatment of Trichomonas vaginalis in women in the setting of 5-Nitroimidazole drug resistance. In Proceedings of the 2022 UAB Department of Medicine Trainee Research Symposium, University of Alabama at Birmingham, Birmingham, AL, USA, 2 March 2022. [Google Scholar]
- Graves, K.J.; Novak, J.; Secor, W.E.; Kissinger, P.J.; Schwebke, J.R.; Muzny, C.A. A systematic review of the literature on mechanisms of 5-nitroimidazole resistance in Trichomonas vaginalis. Parasitology 2020, 147, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Nyirjesy, P.; Schwebke, J.R. Secnidazole: Next-generation antimicrobial agent for bacterial vaginosis treatment. Future Microbiol. 2018, 13, 507–524. [Google Scholar] [CrossRef] [PubMed]
- Meingassner, J.G.; Mieth, H. Cross-resistance of trichomonads to 5-nitroimidazole-derivatives. Experientia 1976, 32, 183–184. [Google Scholar] [CrossRef] [PubMed]
- Kulda, J. Trichomonads, hydrogenosomes and drug resistance. Int. J. Parasitol. 1999, 29, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Tachezy, J.; Kulda, J.; Tomkova, E. Aerobic resistance of Trichomonas vaginalis to metronidazole induced in vitro. Parasitology 1993, 106 Pt 1, 31–37. [Google Scholar] [CrossRef]
- Kulda, J.; Tachezy, J.; Cerkasovova, A. In vitro induced anaerobic resistance to metronidazole in Trichomonas vaginalis. J. Eukaryot. Microbiol. 1993, 40, 262–269. [Google Scholar] [CrossRef]
- Rasoloson, D.; Vanacova, S.; Tomkova, E.; Razga, J.; Hrdy, I.; Tachezy, J.; Kulda, J. Mechanisms of in vitro development of resistance to metronidazole in Trichomonas vaginalis. Microbiology 2002, 148 Pt 8, 2467–2477. [Google Scholar] [CrossRef] [PubMed]
- Hrdy, I.; Cammack, R.; Stopka, P.; Kulda, J.; Tachezy, J. Alternative pathway of metronidazole activation in Trichomonas vaginalis hydrogenosomes. Antimicrob. Agents Chemother. 2005, 49, 5033–5036. [Google Scholar] [CrossRef]
- Cerkasovova, A.; Novak, J.; Cerkasov, J.; Kulda, J.; Tachezy, J. Metabolic properties of Trichomonas vaginalis resistant to metronidazole under anaerobic conditions. Acta Univ. Carol. Biol. 1988, 30, 505–512. [Google Scholar]
- Leitsch, D.; Drinic, M.; Kolarich, D.; Duchene, M. Down-regulation of flavin reductase and alcohol dehydrogenase-1 (ADH1) in metronidazole-resistant isolates of Trichomonas vaginalis. Mol. Biochem. Parasitol. 2012, 183, 177–183. [Google Scholar] [CrossRef]
- Leitsch, D.; Williams, C.F.; Lloyd, D.; Duchene, M. Unexpected properties of NADP-dependent secondary alcohol dehydrogenase (ADH-1) in Trichomonas vaginalis and other microaerophilic parasites. Exp. Parasitol. 2013, 134, 374–380. [Google Scholar] [CrossRef]
- Rasoloson, D.; Tomkova, E.; Cammack, R.; Kulda, J.; Tachezy, J. Metronidazole-resistant strains of Trichomonas vaginalis display increased susceptibility to oxygen. Parasitology 2001, 123 Pt 1, 45–56. [Google Scholar] [CrossRef]
- Leitsch, D.; Janssen, B.D.; Kolarich, D.; Johnson, P.J.; Duchene, M. Trichomonas vaginalis flavin reductase 1 and its role in metronidazole resistance. Mol. Microbiol. 2014, 91, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Leitsch, D.; Kolarich, D.; Duchene, M. The flavin inhibitor diphenyleneiodonium renders Trichomonas vaginalis resistant to metronidazole, inhibits thioredoxin reductase and flavin reductase, and shuts off hydrogenosomal enzymatic pathways. Mol. Biochem. Parasitol. 2010, 171, 17–24. [Google Scholar] [CrossRef]
- Lin, H.C.; Chu, L.J.; Huang, P.J.; Cheng, W.H.; Zheng, Y.H.; Huang, C.Y.; Hong, S.W.; Chen, L.C.; Lin, H.A.; Wang, J.Y.; et al. Proteomic signatures of metronidazole-resistant Trichomonas vaginalis reveal novel proteins associated with drug resistance. Parasit Vectors 2020, 13, 274. [Google Scholar] [CrossRef]
- Paulish-Miller, T.E.; Augostini, P.; Schuyler, J.A.; Smith, W.L.; Mordechai, E.; Adelson, M.E.; Gygax, S.E.; Secor, W.E.; Hilbert, D.W. Trichomonas vaginalis metronidazole resistance is associated with single nucleotide polymorphisms in the nitroreductase genes ntr4Tv and ntr6Tv. Antimicrob. Agents Chemother. 2014, 58, 2938–2943. [Google Scholar] [CrossRef]
- Bradic, M.; Warring, S.D.; Tooley, G.E.; Scheid, P.; Secor, W.E.; Land, K.M.; Huang, P.J.; Chen, T.W.; Lee, C.C.; Tang, P.; et al. Genetic indicators of drug resistance in the highly repetitive genome of Trichomonas vaginalis. Genome Biol. Evol. 2017, 9, 1658–1672. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.P.; Aycock, C.; Schwebke, J.R. In vitro study of the susceptibility of clinical isolates of Trichomonas vaginalis to metronidazole and secnidazole. Antimicrob. Agents Chemother. 2018, 62, e02329-17. [Google Scholar] [CrossRef] [PubMed]
- Kissinger, P.; Muzny, C.A.; Mena, L.A.; Lillis, R.A.; Schwebke, J.R.; Beauchamps, L.; Taylor, S.N.; Schmidt, N.; Myers, L.; Augostini, P.; et al. Single-dose versus 7-day-dose metronidazole for the treatment of trichomoniasis in women: An open-label, randomised controlled trial. Lancet Infect. Dis. 2018, 18, 1251–1259. [Google Scholar] [CrossRef]
- Schwebke, J.R.; Morgan, F.G., Jr.; Koltun, W.; Nyirjesy, P. A phase-3, double-blind, placebo-controlled study of the effectiveness and safety of single oral doses of secnidazole 2 g for the treatment of women with bacterial vaginosis. Am. J. Obstet. Gynecol. 2017, 217, 678.e1–678.e9. [Google Scholar] [CrossRef]
- Meingassner, J.G.; Thurner, J. Strain of Trichomonas vaginalis resistant to metronidazole and other 5-nitroimidazoles. Antimicrob. Agents Chemother. 1979, 15, 254–257. [Google Scholar] [CrossRef]
- Narcisi, E.M.; Secor, W.E. In vitro effect of tinidazole and furazolidone on metronidazole-resistant Trichomonas vaginalis. Antimicrob. Agents Chemother. 1996, 40, 1121–1125. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, D.J.; Chen, Y.; Smyth, G.K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012, 40, 4288–4297. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lun, A.T.; Smyth, G.K. From reads to genes to pathways: Differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Research 2016, 5, 1438. [Google Scholar] [CrossRef] [PubMed]
- Carlton, J.M.; Hirt, R.P.; Silva, J.C.; Delcher, A.L.; Schatz, M.; Zhao, Q.; Wortman, J.R.; Bidwell, S.L.; Alsmark, U.C.; Besteiro, S.; et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 2007, 315, 207–212. [Google Scholar] [CrossRef]
- Hirt, R.P.; de Miguel, N.; Nakjang, S.; Dessi, D.; Liu, Y.C.; Diaz, N.; Rappelli, P.; Acosta-Serrano, A.; Fiori, P.L.; Mottram, J.C. Trichomonas vaginalis pathobiology new insights from the genome sequence. Adv. Parasitol. 2011, 77, 87–140. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.J.; Huang, C.Y.; Li, Y.X.; Liu, Y.C.; Chu, L.J.; Yeh, Y.M.; Cheng, W.H.; Chen, R.M.; Lee, C.C.; Chen, L.C.; et al. Dissecting the transcriptomes of multiple metronidazole-resistant and sensitive Trichomonas vaginalis strains identified distinct genes and pathways associated with drug resistance and cell death. Biomedicines 2021, 9, 1817. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, P.K.; Alam, M.N.; Roy Chowdhury, D.; Chakraborti, T. Drug resistance in protozoan parasites: An incessant wrestle for survival. J. Glob. Antimicrob. Resist. 2019, 18, 1–11. [Google Scholar] [CrossRef]
- Klokouzas, A.; Shahi, S.; Hladky, S.B.; Barrand, M.A.; van Veen, H.W. ABC transporters and drug resistance in parasitic protozoa. Int. J. Antimicrob. Agents 2003, 22, 301–317. [Google Scholar] [CrossRef]
- Pal, D.; Banerjee, S.; Cui, J.; Schwartz, A.; Ghosh, S.K.; Samuelson, J. Giardia, Entamoeba, and Trichomonas enzymes activate metronidazole (nitroreductases) and inactivate metronidazole (nitroimidazole reductases). Antimicrob. Agents Chemother. 2009, 53, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Quon, D.V.; d’Oliveira, C.E.; Johnson, P.J. Reduced transcription of the ferredoxin gene in metronidazole-resistant Trichomonas vaginalis. Proc. Natl. Acad. Sci. USA 1992, 89, 4402–4406. [Google Scholar] [CrossRef]
- Leitsch, D.; Kolarich, D.; Binder, M.; Stadlmann, J.; Altmann, F.; Duchene, M. Trichomonas vaginalis: Metronidazole and other nitroimidazole drugs are reduced by the flavin enzyme thioredoxin reductase and disrupt the cellular redox system. Implications for nitroimidazole toxicity and resistance. Mol. Microbiol. 2009, 72, 518–536. [Google Scholar] [CrossRef]
- Wiwanitkit, V. Identification of weak points prone for mutation in ferredoxin of Trichomonas vaginalis. Indian J. Med. Microbiol. 2008, 26, 158–159. [Google Scholar] [CrossRef]
- Heidari, S.; Bandehpour, M.; Seyyed-Tabaei, S.J.; Valadkhani, Z.; Haghighi, A.; Abadi, A.; Kazemi, B. Ferredoxin gene mutation in Iranian Trichomonas vaginalis isolates. Iran. J. Parasitol. 2013, 8, 402–407. [Google Scholar]
- Ravaee, R.; Ebadi, P.; Hatam, G.; Vafafar, A.; Ghahramani Seno, M.M. Synthetic siRNAs effectively target cystein protease 12 and α-actinin transcripts in Trichomonas vaginalis. Exp. Parasitol. 2015, 157, 30–34. [Google Scholar] [CrossRef]
- Zhang, J.X.; Fu, Y.C.; Xu, X.Y.; Wu, T.J.; Cao, F.L. [RNA interference to the expression of peroxiredoxin-related genes in Trichomonas vaginalis]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi Chin. 2005, 23, 437–440. [Google Scholar]
Isolate | MLC (µg/mL) | Susceptibility Status | Source | ||
---|---|---|---|---|---|
1 MTZ | 2 TDZ | 3 SEC | |||
1021 | 0.8 | 1.6 | 3.1 | Sensitive | UAB |
1003 | 6.3 | 1.6 | 1.6 | Sensitive | UAB |
1012 | 6.3 | 1.6 | 3.1 | Sensitive | UAB |
904 | 12.5 | 0.4 | 1.6 | Sensitive | CDC |
4448 | 100 | 50 | 25 | Resistant | UAB |
1073 | 200 | 100 | 100 | Resistant | UAB |
4266 | 400 | 50 | 100 | Resistant | UAB |
252 | 400 | 12.5 | 25 | Resistant | CDC |
Gene ID | Gene Product | Log2FC | p-Value * | |
---|---|---|---|---|
Upregulated Genes | TVAG_185520 | conserved hypothetical protein | 4.80 | 3.33 × 10−9 |
TVAG_174500 | conserved hypothetical protein | 3.48 | 3.26 × 10−8 | |
TVAG_003210 | conserved hypothetical protein (SANT/Myb Homeobox-like domains) | 6.11 | 1.14 × 10−7 | |
TVAG_303800 | conserved hypothetical protein | 6.63 | 6.49 × 10−7 | |
TVAG_064800 | conserved hypothetical protein (Galactose-binding-like domain) | 5.67 | 5.66 × 10−6 | |
TVAG_191000 | conserved hypothetical protein (EGF-like domain) | 4.75 | 6.46 × 10−6 | |
TVAG_474560 | leucine-rich repeat protein, BspA family | 5.01 | 9.60 × 10−6 | |
Downregulated Genes | TVAG_345450 | 50S ribosomal protein L14p, putative | −7.19 | 3.29 × 10−13 |
TVAG_474000 | 30S ribosomal protein S4p, putative | −6.52 | 2.82 × 10−7 | |
TVAG_604680 | conserved hypothetical protein (Shisa-like protein) | −5.24 | 2.12 × 10−6 | |
TVAG_345440 | 50S ribosomal protein L14, putative | −3.83 | 2.19 × 10−6 | |
TVAG_054400 | conserved hypothetical protein | −5.18 | 2.19 × 10−6 | |
TVAG_108140 | conserved hypothetical protein | −4.59 | 4.42 × 10−6 | |
TVAG_070260 | conserved hypothetical protein (Galactose-binding-like domain) | −5.64 | 7.47 × 10−6 |
Pathway Name | Gene IDs | Fold Enrichment | p-Value |
---|---|---|---|
Thiamine metabolism | TVAG_162060, TVAG_222600 | 8.4 | 0.0216 |
Methane metabolism | TVAG_302980, TVAG_472380 | 7.08 | 0.0298 |
Biosynthesis of type II polyketide backbone | TVAG_302980 | 30.44 | 0.0324 |
Nitrotoluene degradation | TVAG_302980 | 29.52 | 0.0334 |
O-Antigen nucleotide sugar biosynthesis | TVAG_222600, TVAG_302980 | 6.52 | 0.0348 |
Primary bile acid biosynthesis | TVAG_302980 | 27.06 | 0.0364 |
Glycolysis/Gluconeogenesis | TVAG_302980, TVAG_472380 | 5.99 | 0.0406 |
Linoleic acid metabolism | TVAG_302980 | 20.72 | 0.0473 |
Pathway Name | Gene IDs | Fold Enrichment | p-Value |
---|---|---|---|
Riboflavin metabolism | TVAG_036500, TVAG_072960, TVAG_205740 | 7.55 | 0.00686 |
Fructose and mannose metabolism | TVAG_063860, TVAG_067220, TVAG_217780, TVAG_284100, TVAG_379200 | 3.39 | 0.0133 |
Aminoacyl-tRNA biosynthesis | TVAG_024820, TVAG_040800, TVAG_100390, TVAG_494870, TVAG_497170 | 3.2 | 0.0167 |
Toluene degradation | TVAG_063860, TVAG_214810, TVAG_217780 | 4.82 | 0.0230 |
Terpenoid backbone biosynthesis | TVAG_063860, TVAG_100390, TVAG_217780, TVAG_528020 | 3.07 | 0.0377 |
Pathway | Gene ID | Gene Product | Log2FC | p-Value |
---|---|---|---|---|
Carbohydrate/ Energy Metabolism | TVAG_292710 | Ferredoxin 4 (fdx) | −1.56 | 0.015 |
TVAG_489800 | NADH dehydrogenase 51 kDa subunit (nadhd) | −1.05 | 0.048 | |
TVAG_133030 | NADH-ubiquinone oxidoreductase flavoprotein, putative (nadhd) | −0.99 | 0.018 | |
TVAG_267870 | malic enzyme, putative (me) | −1.40 | 0.011 | |
TVAG_412220 | malic enzyme, putative (me) | −1.07 | 0.016 | |
TVAG_183790 | malic enzyme (AP65-3 adhesin) (me) | −1.20 | 0.036 | |
TVAG_253650 | malate dehydrogenase, putative (me) | −0.77 | 0.038 | |
TVAG_239990 | malate dehydrogenase, putative (ldh) | 1.34 | 0.047 | |
TVAG_302980 | alcohol dehydrogenase, putative (adh) | 3.96 | 0.0002 | |
TVAG_113640 | alcohol dehydrogenase, putative (adh) | 1.58 | 0.028 | |
TVAG_393850 | acetyl-CoA hydrolase, putative (asct) | 1.51 | 0.028 | |
TVAG_144730 | succinate thiokinase, beta subunit (scs) | −1.27 | 0.015 | |
TVAG_165340 | succinate thiokinase a subunit (scs) | −1.08 | 0.015 | |
Detoxification | TVAG_205740 | conserved hypothetical protein (ntr) | −3.52 | 0.0001 |
TVAG_036500 | conserved hypothetical protein (ntr) | −4.17 | 0.0008 | |
TVAG_455650 | conserved hypothetical protein (ntr) | −1.96 | 0.015 | |
TVAG_499730 | nitroreductase family protein (ntr) | −1.60 | 0.032 | |
TVAG_137170 | conserved hypothetical protein (ntr) | −1.04 | 0.043 | |
Oxygen Scavenging (antioxidant/ redox) | TVAG_436950 | conserved hypothetical protein (fr1) | 1.14 | 0.040 |
TVAG_293430 | conserved hypothetical protein (fr1) | 1.63 | 0.043 | |
TVAG_064650 | conserved hypothetical protein (trx) | −1.48 | 0.0069 | |
TVAG_231810 | protein disulfide isomerase, putative (trx) | 1.54 | 0.026 | |
TVAG_204390 | thioredoxin m(mitochondrial)-type, putative (trx) | −1.01 | 0.034 | |
TVAG_161120 | conserved hypothetical protein (trx) | −1.08 | 0.047 | |
TVAG_474980 | dihydrolipoamide dehydrogenase, putative (trxr) | −1.35 | 0.005 | |
TVAG_348010 | disulfide oxidoreductase, putative (trxr) | −0.82 | 0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graves, K.J.; Reily, C.; Tiwari, H.K.; Srinivasasainagendra, V.; Secor, W.E.; Novak, J.; Muzny, C.A. Identification of Trichomonas vaginalis 5-Nitroimidazole Resistance Targets. Pathogens 2023, 12, 692. https://doi.org/10.3390/pathogens12050692
Graves KJ, Reily C, Tiwari HK, Srinivasasainagendra V, Secor WE, Novak J, Muzny CA. Identification of Trichomonas vaginalis 5-Nitroimidazole Resistance Targets. Pathogens. 2023; 12(5):692. https://doi.org/10.3390/pathogens12050692
Chicago/Turabian StyleGraves, Keonte J., Colin Reily, Hemant K. Tiwari, Vinodh Srinivasasainagendra, William Evan Secor, Jan Novak, and Christina A. Muzny. 2023. "Identification of Trichomonas vaginalis 5-Nitroimidazole Resistance Targets" Pathogens 12, no. 5: 692. https://doi.org/10.3390/pathogens12050692