Synergistic Antileishmanial Effect of Oregano Essential Oil and Silver Nanoparticles: Mechanisms of Action on Leishmania amazonensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture of Leishmania (Leishmania) amazonensis
2.2. Animals and Ethics Committee
2.3. Oregano Essential Oil
2.4. Silver Nanoparticles
2.5. OEO, AgNp, and Association Activity on Promastigote Forms of L. amazonensis
2.6. Peritoneal Macrophage Viability
2.7. Isobologram Construction Using the Fixed-Ratio Method from OEO and AgNp Combination
2.8. Calculation of Combination Index
2.9. Morphological and Ultrastructural Analysis of Promastigotes by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)
2.10. Detection of Reactive Oxygen Species
2.11. Determination of Nitrite Levels as an Estimation of Produced Nitric Oxide
2.12. Determination of Mitochondrial Membrane Potential
2.13. Evaluation of Lipid Bodies
2.14. Evaluation of Autophagic Vacuoles
2.15. Detection of Death Mechanisms
2.16. Anti-Amastigote Assay
2.17. Production of ROS in Macrophages Infected with L. amazonensis
2.18. Statistical Analysis
3. Results
3.1. OEO and AgNp Exert a Leishmanicidal Effect on Promastigote Forms of L. amazonensis and in Combination Present a Synergic Effect with Better Results and Low Toxicity in Peritoneal Macrophages of BALB/c Mice
3.2. Combination of OEO and AgNp Induces Morphological and Ultrastructural Alterations in L. amazonensis Promastigotes
3.3. Combination of OEO and AgNp Exerts an Anti-Promastigote Effect by ROS and NO Production Resulting in Mitochondrial Dysfunction, Forming Lipid Bodies and Autophagy Vacuoles
3.4. The Treatment with OEO + NpAg Culminates in Late Apoptosis in Promastigote Forms
3.5. Combination of OEO and AgNp Induces NO and ROS Increase in Infected Macrophages and Anti-Amastigote Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet 2018, 392, 951–970. [Google Scholar] [CrossRef] [PubMed]
- Arenas, R.; Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J. Leishmaniasis: A Review. F1000Research 2017, 6, 750. [Google Scholar] [CrossRef]
- Ponte-Sucre, A.; Gamarro, F.; Dujardin, J.-C.; Barrett, M.P.; Ló Pez-Vé Lez, R.; García-Hernández, R.; Pountain, A.W.; Mwenechanya, R.; Papadopoulou, B. Drug Resistance and Treatment Failure in Leishmaniasis: A 21st Century Challenge. PLoS Negl. Trop. Dis. 2017, 11, e0006052. [Google Scholar] [CrossRef]
- Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; de Boer, M. Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLoS ONE 2012, 7, e35671. [Google Scholar] [CrossRef]
- Bollenbach, T. Antimicrobial Interactions: Mechanisms and Implications for Drug Discovery and Resistance Evolution. Curr. Opin. Microbiol. 2015, 27, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Sapla, M.M.; Tomiotto-Pellissier, F.; Assolini, J.P.; Carloto, A.C.M.; Bortoleti, B.T.d.S.; Gonçalves, M.D.; Tavares, E.R.; Rodrigues, J.H.d.S.; Simão, A.N.C.; Yamauchi, L.M.; et al. Trans-Chalcone Modulates Leishmania Amazonensis Infection in Vitro by Nrf2 Overexpression Affecting Iron Availability. Eur. J. Pharmacol. 2019, 853, 275–288. [Google Scholar] [CrossRef]
- Bortoleti, B.T.d.S.; Gonçalves, M.D.; Tomiotto-Pellissier, F.; Contato, V.M.; Silva, T.F.; de Matos, R.L.N.; Detoni, M.B.; Rodrigues, A.C.J.; Carloto, A.C.; Lazarin, D.B.; et al. Solidagenone Acts on Promastigotes of L. Amazonensis by Inducing Apoptosis-like Processes on Intracellular Amastigotes by IL-12p70/ROS/NO Pathway Activation. Phytomedicine 2021, 85, 153536. [Google Scholar] [CrossRef]
- Tomiotto-Pellissier, F.; Alves, D.R.; Miranda-Sapla, M.M.; de Morais, S.M.; Assolini, J.P.; da Silva Bortoleti, B.T.; Gonçalves, M.D.; Cataneo, A.H.D.; Kian, D.; Madeira, T.B.; et al. Caryocar Coriaceum Extracts Exert Leishmanicidal Effect Acting in Promastigote Forms by Apoptosis-like Mechanism and Intracellular Amastigotes by Nrf2/HO-1/Ferritin Dependent Response and Iron Depletion. Biomed. Pharmacother. 2018, 98, 662–672. [Google Scholar] [CrossRef]
- Bortoleti, B.T.d.S.; Gonçalves, M.D.; Tomiotto-Pellissier, F.; Miranda-Sapla, M.M.; Assolini, J.P.; Carloto, A.C.M.; de Carvalho, P.G.C.; Cardoso, I.L.A.; Simão, A.N.C.; Arakawa, N.S.; et al. Grandiflorenic Acid Promotes Death of Promastigotes via Apoptosis-like Mechanism and Affects Amastigotes by Increasing Total Iron Bound Capacity. Phytomedicine 2018, 46, 11–20. [Google Scholar] [CrossRef]
- Gonçalves, M.D.; Bortoleti, B.T.S.; Tomiotto-Pellissier, F.; Miranda-Sapla, M.M.; Assolini, J.P.; Carloto, A.C.M.; Carvalho, P.G.C.; Tudisco, E.T.; Urbano, A.; Ambrósio, S.R.; et al. Dehydroabietic Acid Isolated from Pinus Elliottii Exerts in Vitro Antileishmanial Action by Pro-Oxidant Effect, Inducing ROS Production in Promastigote and Downregulating Nrf2/Ferritin Expression in Amastigote Forms of Leishmania Amazonensis. Fitoterapia 2018, 128, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Altintas, A.; Tabanca, N.; Tyihák, E.; Ott, P.G.; Móricz, Á.M.; Mincsovics, E.; Wedge, D.E. Characterization of Volatile Constituents from Origanum Onites and Their Antifungal and Antibacterial Activity. J. AOAC Int. 2013, 96, 1200–1208. [Google Scholar] [CrossRef]
- Tomiotto-Pellissier, F.; Bortoleti, B.T.d.S.; Concato, V.M.; Ganaza, A.F.M.; Quasne, A.C.; Ricci, B.; Dolce e Carvalho, P.V.; Della Colleta, G.H.; Lazarin-Bidóia, D.; Silva, T.F.; et al. The Cytotoxic and Anti-Leishmanial Activity of Oregano (Origanum Vulgare) Essential Oil: An in Vitro, in Vivo, and in Silico Study. Ind. Crops Prod. 2022, 187, 115367. [Google Scholar] [CrossRef]
- Avola, R.; Granata, G.; Geraci, C.; Napoli, E.; Graziano, A.C.E.; Cardile, V. Oregano (Origanum Vulgare L.) Essential Oil Provides Anti-Inflammatory Activity and Facilitates Wound Healing in a Human Keratinocytes Cell Model. Food Chem. Toxicol. 2020, 144, 111586. [Google Scholar] [CrossRef] [PubMed]
- Lombrea, A.; Antal, D.; Ardelean, F.; Avram, S.; Pavel, I.Z.; Vlaia, L.; Mut, A.M.; Diaconeasa, Z.; Dehelean, C.A.; Soica, C.; et al. A Recent Insight Regarding the Phytochemistry and Bioactivity of Origanum Vulgare L. Essential Oil. Int. J. Mol. Sci. 2020, 21, 9653. [Google Scholar] [CrossRef] [PubMed]
- Tepe, B.; Cakir, A.; Tepe, A.S. Medicinal Uses, Phytochemistry, and Pharmacology of Origanum Onites (L.): A Review. Chem. Biodivers. 2016, 13, 504–520. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Serov, D.A.; Astashev, M.E.; Semenova, A.A.; Lisitsyn, A.B. Ag2O Nanoparticles as a Candidate for Antimicro-bial Compounds of the New Generation. Pharmaceuticals 2022, 15, 968. [Google Scholar] [CrossRef]
- Durán, N.; Durán, M.; de Jesus, M.B.; Seabra, A.B.; Fávaro, W.J.; Nakazato, G. Silver Nanoparticles: A New View on Mechanistic Aspects on Antimicrobial Activity. Nanomed. Biol. Med. 2016, 12, 789–799. [Google Scholar] [CrossRef]
- Picoli, S.U.; Durán, M.; Andrade, P.F.; Duran, N. Silver Nanoparticles/Silver Chloride (Ag/AgCl) Synthesized from Fusarium Oxysporum Acting against Klebsiella Pneumouniae Carbapenemase (KPC) and Extended Spectrum Beta-Lactamase (ESBL). Front. Nanosci. Nanotechnol. 2016, 2, 107–110. [Google Scholar] [CrossRef]
- Moreno, E.; Schwartz, J.; Fernández, C.; Sanmartín, C.; Nguewa, P.; Manuel Irache, J.; Espuelas, S. Nanoparticles as Multifunctional Devices for the Topical Treatment of Cutaneous Leishmaniasis. Expert Opin. Drug Deliv. 2014, 11, 579–597. [Google Scholar] [CrossRef]
- Mushtaq, S.; Abbasi, B.H.; Uzair, B.; Abbasi, R. Natural Products as Reservoirs of Novel Therapeutic Agents. Excli J. 2018, 17, 420–451. [Google Scholar] [CrossRef]
- Durán, N.; Alves, O.L.; Esposito, E.; De Souza, G.I.M.H.; Marcato, P.D. Method of Producing Silver Nanoparticles Stabilized by Proteins in the Production of Antibacterial Textiles and the Treatment of Effluent Produced. Brazilian Patent PI 0605681–4 Br, 2006. [Google Scholar]
- Durán, N.; Marcato, P.D.; Alves, O.L.; de Souza, G.I.H.; Esposito, E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnol. 2005, 3, 8. [Google Scholar] [CrossRef]
- Fanti, J.R.; Tomiotto-Pellissier, F.; Miranda-Sapla, M.M.; Cataneo, A.H.D.; Andrade, C.G.T.d.J.; Panis, C.; Rodrigues, J.H.d.S.; Wowk, P.F.; Kuczera, D.; Costa, I.N.; et al. Biogenic Silver Nanoparticles Inducing Leishmania Amazonensis Promastigote and Amastigote Death in Vitro. Acta Trop. 2018, 178, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Machado, L.F.; Sanfelice, R.A.; Bosqui, L.R.; Assolini, J.P.; Scandorieiro, S.; Navarro, I.T.; Depieri Cataneo, A.H.; Wowk, P.F.; Nakazato, G.; Bordignon, J.; et al. Biogenic silver nanoparticles reduce adherence, infection, and proliferation of toxoplasma gondii RH strain in HeLa cells without inflammatory mediators induction. Exp. Parasitol. 2020, 211, 107853. [Google Scholar] [CrossRef] [PubMed]
- Sanfelice, R.A.D.S.; Bortoleti, B.T.D.S.; Tomiotto-Pellissier, F.; Silva, T.F.; Bosqui, L.R.; Nakazato, G.; Castilho, P.M.; de Barros, L.D.; Garcia, J.L.; Lazarin-Bidóia, D.; et al. Biogenic silver nanoparticles (AgNp-Bio) reduce Toxoplasma gondii infection and proliferation in HeLa cells, and induce autophagy and death of tachyzoites by apoptosis-like mechanism. Acta Trop. 2021, 222, 106070. [Google Scholar] [CrossRef] [PubMed]
- Seifert, K.; Croft, S.L. In Vitro and in Vivo Interactions between Miltefosine and Other Antileishmanial Drugs. Antimicrob. Agents Chemother. 2006, 50, 73–79. [Google Scholar] [CrossRef]
- Zhao, L.; Wientjes, M.G.; Au, J.L. Evaluation of combination chemotherapy: Integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clin. Cancer Res. 2004, 10, 7994–8004. [Google Scholar] [CrossRef]
- Hall, M.J.; Middleton, R.F.; Westmacott, D. The fractional inhibitory concentration (FIC) index as a measure of synergy. J. Antimicrob. Chemother. 1983, 11, 427–433. [Google Scholar] [CrossRef]
- Chou, T.C.; Talalay, P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv. Enzym. Regul. 1984, 22, 27–55. [Google Scholar] [CrossRef]
- Tomiotto-Pellissier, F.; Bortoleti, B.T.d.S.; Assolini, J.P.; Gonçalves, M.D.; Carloto, A.C.M.; Miranda-Sapla, M.M.; Conchon-Costa, I.; Bordignon, J.; Pavanelli, W.R. Macrophage Polarization in Leishmaniasis: Broadening Horizons. Front. Immunol. 2018, 9, 2529. [Google Scholar]
- Lee, S.J.; Zhang, J.; Choi, A.M.K.; Kim, H.P. Mitochondrial Dysfunction Induces Formation of Lipid Droplets as a Generalized Response to Stress. Oxid. Med. Cell. Longev. 2013, 2013, 327167. [Google Scholar] [CrossRef]
- Chakravarty, J.; Sundar, S. Current and Emerging Medications for the Treatment of Leishmaniasis. Expert Opin. Pharmacother. 2019, 20, 1251–1265. [Google Scholar] [CrossRef]
- Fajardo, S.; García-Galvan, R.F.; Barranco, V.; Galvan, J.C.; Batlle, S.F. Crossing Biological Barriers for Leishmaniasis Therapy: From Nanomedicinal Targeting Perspective. In Leishmaniases as Re-emerging Diseases; Intech: London, UK, 2016; p. 13. [Google Scholar] [CrossRef]
- Gonçalves-Oliveira, L.F.; Souza-Silva, F.; de Castro Côrtes, L.M.; Veloso, L.B.; Santini Pereira, B.A.; Cysne-Finkelstein, L.; Lechuga, G.C.; Bourguignon, S.C.; Almeida-Souza, F.; da Silva Calabrese, K.; et al. The Combination Therapy of Meglumine Antimoniate and Oxiranes (Epoxy-α-Lapachone and Epoxymethyl-Lawsone) Enhance the Leishmanicidal Effect in Mice Infected by Leishmania (Leishmania) Amazonensis. Int. J. Parasitol. Drugs Drug Resist. 2019, 10, 101–108. [Google Scholar] [CrossRef]
- Pastor, J.; García, M.; Steinbauer, S.; Setzer, W.N.; Scull, R.; Gille, L.; Monzote, L. Combinations of Ascaridole, Carvacrol, and Caryophyllene Oxide against Leishmania. Acta Trop. 2015, 145, 31–38. [Google Scholar] [CrossRef]
- Scandorieiro, S.; de Camargo, L.C.; Lancheros, C.A.C.; Yamada-Ogatta, S.F.; Nakamura, C.V.; de Oliveira, A.G.; Andrade, C.G.T.J.; Duran, N.; Nakazato, G.; Kobayashi, R.K.T. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains. Front. Microbiol. 2016, 7, 760. [Google Scholar] [CrossRef]
- Kathuria, M.; Bhattacharjee, A.; Sashidhara, K.V.; Singh, S.P.; Mitra, K. Induction of Mitochondrial Dysfunction and Oxidative Stress in Leishmania Donovani by Orally Active Clerodane Diterpene. Antimicrob. Agents Chemother. 2014, 58, 5916–5928. [Google Scholar] [CrossRef]
- Herb, M.; Schramm, M. Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants 2021, 10, 313. [Google Scholar] [CrossRef]
- Abd El-Aleem, S.A.; Abdelwahab, S.; AM-Sherief, H.; Sayed, A. Cellular and Physiological Upregulation of Inducible Nitric Oxide Synthase, Arginase, and Inducible Cyclooxygenase in Wound Healing. J. Cell. Physiol. 2019, 234, 23618–23632. [Google Scholar] [CrossRef] [PubMed]
- Crowley, L.C.; Christensen, M.E.; Waterhouse, N.J. Measuring Mitochondrial Transmembrane Potential by TMRE Staining. Cold Spring Harb. Protoc. 2016, 2016, 1092–1096. [Google Scholar] [CrossRef] [PubMed]
- Bortoleti, B.T.D.S.; Tomiotto-Pellissier, F.; Gonçalves, M.D.; Miranda-Sapla, M.M.; Assolini, J.P.; Carloto, A.C.; Lima, D.M.; Silveira, G.F.; Almeida, R.S.; Costa, I.N.; et al. Caffeic Acid Has Antipromastigote Activity by Apoptosis-like Process; and Anti-Amastigote by TNF-α/ROS/NO Production and Decreased of Iron Availability. Phytomedicine 2019, 57, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Antinarelli, L.M.R.; de Oliveira Souza, I.; Zabala Capriles, P.V.; Gameiro, J.; Britta, E.A.; Nakamura, C.V.; Lima, W.P.; da Silva, A.D.; Coimbra, E.S. Antileishmanial Activity of a 4-Hydrazinoquinoline Derivative: Induction of Autophagy and Apoptosis-Related Processes and Effectiveness in Experimental Cutaneous Leishmaniasis. Exp. Parasitol. 2018, 195, 78–86. [Google Scholar] [CrossRef]
- Basmaciyan, L.; Casanova, M. Cell Death in Leishmania. Parasite 2019, 26, 71. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Sun, L.; Chen, X.; Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res. 2013, 8, 2003–2014. [Google Scholar] [CrossRef] [PubMed]
Fixed Ratio (%) OEO/AgNp | IC50 (µg/mL) | CC50 (µg/mL) | |
---|---|---|---|
OEO | 100/0 | 16 (±0.05) | 116.50 (± 0.04) |
P1 | 80/20 | 12.7/0.04 (±0.03) | 105.60/0.33 (±0.08) |
P2 | 60/40 | 7.4/0.06 (±0.04) | 90.48/0.75 (±0.02) |
P3 | 50/50 | 8/0.10 (±0.02) | 105.90/1.32 (±0.03) |
P4 | 40/60 | 5.15/0.09 (±0.03) | 82.01/1.53 (±0.02) |
P5 | 20/80 | 2.52/0.13 (±0.03) | 41.06/2.05 (±0.03) |
AgNp | 0/100 | 0.2 (±0.06) | 2.25 (±0.09) |
AMB | 0.06 (±0.02) | 45.94 (±0.04) |
Fixed Ratio (%) OEO/AgNp | CI IC50 | CI CC50 | |
---|---|---|---|
P1 | 80/20 | 0.99 | 1.05 |
P2 | 60/40 | 0.76 | 1.11 |
P3 | 50/50 | 1 | 1.49 |
P4 | 40/60 | 0.77 | 1.38 |
P5 | 20/80 | 0.80 | 1.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, A.B.; da Silva Bortoleti, B.T.; Tomiotto-Pellissier, F.; Ganaza, A.F.M.; Gonçalves, M.D.; Carloto, A.C.M.; Rodrigues, A.C.J.; Silva, T.F.; Nakazato, G.; Kobayashi, R.K.T.; et al. Synergistic Antileishmanial Effect of Oregano Essential Oil and Silver Nanoparticles: Mechanisms of Action on Leishmania amazonensis. Pathogens 2023, 12, 660. https://doi.org/10.3390/pathogens12050660
Alves AB, da Silva Bortoleti BT, Tomiotto-Pellissier F, Ganaza AFM, Gonçalves MD, Carloto ACM, Rodrigues ACJ, Silva TF, Nakazato G, Kobayashi RKT, et al. Synergistic Antileishmanial Effect of Oregano Essential Oil and Silver Nanoparticles: Mechanisms of Action on Leishmania amazonensis. Pathogens. 2023; 12(5):660. https://doi.org/10.3390/pathogens12050660
Chicago/Turabian StyleAlves, Alex Barbosa, Bruna Taciane da Silva Bortoleti, Fernanda Tomiotto-Pellissier, Ana Flávia Marques Ganaza, Manoela Daiele Gonçalves, Amanda Cristina Machado Carloto, Ana Carolina Jacob Rodrigues, Taylon Felipe Silva, Gerson Nakazato, Renata Katsuko Takayama Kobayashi, and et al. 2023. "Synergistic Antileishmanial Effect of Oregano Essential Oil and Silver Nanoparticles: Mechanisms of Action on Leishmania amazonensis" Pathogens 12, no. 5: 660. https://doi.org/10.3390/pathogens12050660