Colonization with Escherichia coli ST131-H30R (H30R) Corresponds with Increased Serum Anti-O25 IgG Levels and Decreased TNFα and IL-10 Responsiveness to H30R
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects, Fecal Samples, and Strain Typing
2.2. Blood Sample Collection
2.3. O6 and O25b Serology
2.4. Antigen Stimulation of Whole-Blood Samples
2.5. Detection of Cytokines
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Anti-O25 and Anti-O6 IgG Levels: Cross-Sectional Comparisons
3.3. Anti-O25 and Anti-O6 IgG Levels: Longitudinal Comparisons
3.4. Antigen-Triggered Cytokine Release: Cross-Sectional Comparisons
3.5. Association of Immune Responses with Host Characteristics
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicolas-Chanoine, M.-H.; Bertrand, X.; Madec, J.-Y. Escherichia coli ST131, an intriguing clonal group. Clin. Microbiol. Rev. 2014, 27, 543–574. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Porter, S.; Thuras, P.; Castanheira, M. Epidemic emergence in the United States of Escherichia coli sequence type 131-H30 (ST131-H30), 2000–2009. Antimicrob. Agents Chemother. 2017, 61, e00732-00717. [Google Scholar] [CrossRef] [PubMed]
- Tchesnokova, V.; Riddell, K.; Scholes, D.; Johnson, J.; Sokurenko, E. The uropathogenic Escherichia coli subclone ST131-H30 is responsible for most antibiotic prescription errors at an urgent care clinic. Clin. Infect. Dis. 2019, 68, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Price, L.B.; Johnson, J.R.; Aziz, M.; Clabots, C.; Johnston, B.; Tchesnokova, V.; Nordstrom, L.; Billig, M.; Chattopadhyay, S.; Stegger, M.; et al. The epidemic of extended-spectrum-β-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. mBio 2013, 6, e00377-13. [Google Scholar] [CrossRef]
- Petty, N.K.; Ben Zakour, N.L.; Stanton-Cook, M.; Skippington, E.; Totsika, M.; Forde, B.M.; Phan, M.-D.; Moriel, D.G.; Peters, K.M.; Davies, M.; et al. Global dissemination of a multidrug resistant Escherichia coli clone. Proc. Natl. Acad. Sci. USA 2014, 111, 5694–5699. [Google Scholar] [CrossRef]
- Bonten, M.; Johnson, J.R.; van den Biggelaar, A.; Georgalis, L.; Geurtsen, J.; Ibarra de Palacios, P.; Gravenstein, S.; Verstraeten, T.; Hermans, P.; Poolman, J. Epidemiology of Escherichia coli bacteremia: A systematic literature review. Clin. Infect. Dis. 2021, 72, 1211–1229. [Google Scholar] [CrossRef]
- Johnson, J.R.; Davis, G.; Clabots, C.; Johnston, B.D.; Porter, S.; Debroy, C.; Pomputius, W.; Ender, P.T.; Cooperstock, M.; Slater, B.C.; et al. Household clustering of Escherichia coli sequence type 131 clinical and fecal isolates according to whole genome se-quence analysis. Open Forum Infect. Dis. 2016, 3, ofw129. [Google Scholar] [CrossRef]
- Moreno, E.; Andreu, A.; Pigrau, C.; Kuskowski, M.A.; Johnson, J.R.; Prats, G. Relationship between Escherichia coli strains causing acute cystitis in women and the fecal E. coli population of the host. J. Clin. Microbiol. 2008, 46, 2529–2534. [Google Scholar] [CrossRef]
- Grüneberg, R.N. Relationship of infecting urinary organism to the faecal flora in patients with symptomatic urinary infection. Lancet 1969, 1, 766–768. [Google Scholar] [CrossRef]
- Hooper, L.V.; Littman, D.R.; MacPherson, A.J. Interactions between the microbiota and the immune system. Science 2012, 336, 1268–1273. [Google Scholar] [CrossRef]
- Stecher, B. The roles of inflammation, nutrient availability and the commensal microbiota in enteric pathogen infection. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [PubMed]
- Mendes, V.; Galvão, I.; Vieira, A.T. Mechanisms by Which the gut microbiota influences cytokine production and modulates host inflammatory responses. J. Interferone Cytokine Res. 2019, 39, 393–409. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.; Clabots, C.; Porter, S.B.; Bender, T.; Thuras, P.; Johnson, J.R. Large fecal reservoir of Escherichia coli sequence type 131-H30 subclone strains that are shared within households and re-semble clinical ST131-H30 isolates. J. Infect. Dis. 2019, 221, 1659–1668. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Clabots, C.; Porter, S.B.; Bender, T.; Johnston, B.D.; Thuras, P. Intestinal persistence of colonizing Escherichia coli strains, especially ST131-H30, in relation to bacterial and host factors. J. Infect. Dis. 2022, 225, 2197–2207. [Google Scholar] [CrossRef] [PubMed]
- Berg, D.E.; Akopyants, N.S.; Kersulyte, D. Fingerprinting microbial genomes using the RAPD or AP-PCR method. Methods Mol. Cell. Biol. 1994, 5, 13–24. [Google Scholar]
- Johnson, J.R.; Menard, M.; Johnston, B.; Kuskowski, M.A.; Nichol, K.; Zhanel, G.G. Epidemic clonal groups of Escherichia coli as a cause of antimicrobial-resistant urinary tract infections in Canada, 2002 to 2004. Antimicrob. Agents Chemother. 2009, 53, 2733–2739. [Google Scholar] [CrossRef]
- Johnson, J.R.; Johnston, B.D.; Porter, S.B.; Clabots, C.; Bender, T.L.; Thuras, P.; Trott, D.J.; Cobbold, R.; Mollinger, J.; Ferrieri, P.; et al. Rapid emergence, subsidence, and molecular detection of Escherichia coli sequence type 1193-fimH64, a new dissemi-nated multidrug-resistant commensal and extraintestinal pathogen. J. Clin. Microbiol. 2019, 57, e01664-18. [Google Scholar] [CrossRef]
- Clermont, O.; Christenson, J.K.; Daubie, A.; Gordon, D.M.; Denamur, E. Development of an allele-specific PCR for Escherichia coli B2 sub-typing, a rapid and easy to perform substitute of multilocus sequence typing. J. Microbiol. Methods 2014, 101, 24–27. [Google Scholar] [CrossRef]
- Johnston, B.D.; Thuras, P.; Porter, S.B.; Anacker, M.; VonBank, B.; Vagnone, P.S.; Witwer, M.; Castanheira, M.; Johnson, J.R. Global molecular epidemiology of carbapenem-resistant Escherichia coli (2002–2017). Eur. J. Clin. Microbiol. Infect. Dis. 2021, 1–13. [Google Scholar] [CrossRef]
- Huttner, A.; Hatz, C.; van den Dobbelstein, G.; Abbanat, D.; Hornacek, A.; Frölich, R.; Dreyer, A.M.; Martin, P.; Davies, T.; Fae, K.; et al. immunogenicity, and preliminary clinical efficacy of a vaccine against extraintestinal pathogenic Escherichia coli in women with a history of recurrent urinary tract infection: A randomised, single-blind, placebo-controlled phase 1b trial. Lancet Infect. Dis. 2017, 17, 528–537. [Google Scholar] [CrossRef]
- van den Dobbelsteen, G.P.J.M.; Faé, K.C.; Serroyen, J.; van den Nieuwenhof, I.M.; Braun, M.; Haeuptle, M.A.; Sirena, D.; Schneider, J.; Alaimo, C.; Lipowsky, G.; et al. Immunogenicity and safety of a tetravalent E. coli O-antigen bioconjugate vaccine in animal models. Vaccine 2016, 34, 4152–4160. [Google Scholar] [CrossRef] [PubMed]
- Frenck, R.W.; Ervin, J.; Chu, L.; Abbanat, D.; Spiessens, B.; Go, O.; Haazen, W.; Dobbelsteen, G.V.D.; Poolman, J.; Thoelen, S.; et al. Safety and immunogenicity of a vaccine for extra-intestinal pathogenic Escherichia coli (ESTELLA): A phase 2 random-ised controlled trial. Lancet Infect. Dis. 2019, 19, 631–640. [Google Scholar] [CrossRef]
- Marin, J.; Clermont, O.; Royer, G.; Mercier-Darty, M.; Decousser, J.-W.; Tenaillon, A.; Denamur, E.; Blanquart, F. The popu-lation genomics of increased virulence and antibiotic resistance in human commensal Escherichia coli over 30 years in France. Appl. Environ. Microbiol. 2022, 88, e0066422. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Porter, S.; Thuras, P.; Castanheira, M. The pandemic H30 subclone of sequence type 131 (ST131) as the leading cause of multidrug-resistant Escherichia coli in-fections in the United States (2011–2012). Open Forum Infect. Dis. 2017, 4, ofx089. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.Y.; Cisalpino, D.; Varadarajan, S.; Hellman, J.; Warren, H.S.; Cascalho, M.; Inohara, N.; Núñez, G. Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. Immunity 2016, 44, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Vujkovic-Cvijin, I.; Welles, H.C.; Ha, C.W.Y.; Huq, L.; Mistry, S.; Brenchley, J.M.; Trinchieri, G.; Devkota, S.; Belkaid, Y. The systemic anti-microbiota IgG repertoire can identify gut bacteria that translocate across gut barrier surfaces. Sci. Transl. Med. 2022, 14, eabl3927. [Google Scholar] [CrossRef]
- Cevallos, S.A.; Lee, J.-Y.; Tiffany, C.R.; Bundloss, A.J.; Johnston, L.; Byndloss, M.X.; Bäumler, A.J. Increased epithelial oxygenation links colitis to an expansion of tumorigenic bacteria. mBio 2019, 10, e-02244-19. [Google Scholar] [CrossRef]
- Winter, S.E.; Winter, M.G.; Zavier, M.N.; Thiennimitr, P.; Poon, V.; Keestra, A.M.; Laughlin, R.C.; Gomez, G.; Wu, J.; Lawhon, S.D.; et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 2013, 339, 708–711. [Google Scholar] [CrossRef]
- Becattini, S.; Sorbara, M.T.; Kim, S.G.; Littmann, E.L.; Dong, Q.; Walsh, G.; Wright, R.; Amoretti, L.; Fontana, E.; Hohl, T.M.; et al. Rapid transcriptional and metabolic adaptation of intestinal microbes to host immune activation. Cell Host Microbe 2021, 29, 378–393.e5. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Cevallos, S.A.; Byndloss, M.X.; Tiffany, C.R.; Olsan, E.E.; Butler, B.P.; Young, B.M.; Rogers, A.W.; Nguyen, H.; Kim, K.; et al. High-fat diet and antibiotics cooperatively impair mitochondrial bioenergetics to trigger dysbiosis that exacerbates pre-inflammatory bowel disease. Cell Host Microbe 2020, 28, 273–284.e6. [Google Scholar] [CrossRef]
- Costello, E.K.; Stagaman, K.; Dethlefsen, L.; Bohannan, B.J.M.; Relman, D.A. The application of ecological theory toward an understanding of the human microbiome. Science 2012, 336, 1255–1262. [Google Scholar] [CrossRef]
- Yoo, W.; Zieba, J.K.; Foegeding, N.J.; Torres, T.P.; Shelton, C.D.; Shealy, N.G.; Byndloss, A.J.; Cevallos, S.A.; Gertz, E.; Tiffany, C.R.; et al. High-fat diet–induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide. Science 2021, 373, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Casey, J.; Almudevar, A.; Pichichero, M. Correlation of higher antibody levels to pneumococcal proteins with protection from pneumococcal acute otitis media but not protection from nasopharyngeal colonization in young children. Clin. Microbiol. Infect. 2017, 23, 487.e1–487.e6. [Google Scholar] [CrossRef] [PubMed]
- Nurkka, A.; Lahdenkari, M.; Palmu, A.A.; Käyhty, H. The FinOM Study Group Salivary antibodies induced by the seven-valent PncOMPC conjugate vaccine in the Finnish Otitis Media Vaccine Trial. BMC Infect. Dis. 2005, 5, 41. [Google Scholar] [CrossRef] [PubMed]
Subject Characteristics within Subgroup a | ||||||
---|---|---|---|---|---|---|
Serum IgG Substudy | Stimulated Cytokine Release Substudy | |||||
Variable | Total (n = 52) | Control (n = 26) | H30R-Colonized (n = 26) | Total (n = 61) | Control (n = 32) | H30R-Colonized (n = 29) |
Age, years: median (IQR) | 69 (64,74) | 73 (64,77) | 68 (64,72) | 68 (64,72) | 69 (60.5,77) | 68 (65,72) |
Male, no. (column percent) | 39 (75) | 19 (73) | 20 (77) | 51 (84) | 28 (88) | 23 (79) |
Veteran, no. (column percent) | 38 (73) | 18 (69) | 20 (77) | 50 (82) | 27 (84) | 23 (79) |
ln (EC50 a) or Ratio, Mean (SD b) | ||||
---|---|---|---|---|
Total | Control (n = 26) | Colonized (n = 26) | p Value c, Colonized vs. Control | |
anti-O25b IgG, ln (EC50 a) | 8.8 (1.6) | 8.0 (1.2) | 9.5 (1.6) | <0.001 |
anti-O6 IgG, ln (EC50 a) | 7.3 (1.3) | 7.3 (1.4) | 7.3 (1.2) | 0.36 |
anti-O25b/anti-O6 IgG ratio | 1.2 (0.3) | 1.1 (0.2) | 1.3 (0.3) | 0.007 |
Cytokine Release after Stimulation with JJ1886 (ST131-H30R, O25b:K+:H4) a | Cytokine Release after Stimulation with CFT073 (ST73, O6:K2:H1) a | JJ1886/CFT073 Cytokine Release Ratio a | |||||||
---|---|---|---|---|---|---|---|---|---|
Median (IQR b) | Median (IQR b) | Median (IQR b) | |||||||
Variable | Control | H30R-Colonized | p Value c | Control | H30R- colonized | p Value c | Control | H30R-colonized | p Value c |
IFNγ (pg/mL) or JJ1886/CFT073 IFNγ ratio | 184 (518) d | 194 (538) e | 0.61 | 426 (743) d | 442 (978) e | 0.58 | 0.50 (0.26) | 0.44 (0.32) | 0.47 |
TNFα (pg/mL) or JJ1886/CFT073 TNFα ratio | 9353 (5429) f | 7804 (6204) g | 0.48 | 11,451 (2092) f | 12,546 (4606) g | 0.04 | 0.83 (0.39) | 0.53 (0.34) | 0.009 |
IL-10 (pg/mL) or JJ1886/CFT073 IL-10 ratio | 623 (664) | 408 (323) | 0.06 | 2590 (2252) | 2485 (1332) | 0.87 | 0.26 (0.18) | 0.17 (0.10) | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnston, B.D.; Clabots, C.; Bender, T.; Porter, S.B.; van den Dobbelsteen, G.; Poolman, J.; Thuras, P.; Johnson, J.R. Colonization with Escherichia coli ST131-H30R (H30R) Corresponds with Increased Serum Anti-O25 IgG Levels and Decreased TNFα and IL-10 Responsiveness to H30R. Pathogens 2023, 12, 603. https://doi.org/10.3390/pathogens12040603
Johnston BD, Clabots C, Bender T, Porter SB, van den Dobbelsteen G, Poolman J, Thuras P, Johnson JR. Colonization with Escherichia coli ST131-H30R (H30R) Corresponds with Increased Serum Anti-O25 IgG Levels and Decreased TNFα and IL-10 Responsiveness to H30R. Pathogens. 2023; 12(4):603. https://doi.org/10.3390/pathogens12040603
Chicago/Turabian StyleJohnston, Brian D., Connie Clabots, Tricia Bender, Stephen B. Porter, Germie van den Dobbelsteen, Jan Poolman, Paul Thuras, and James R. Johnson. 2023. "Colonization with Escherichia coli ST131-H30R (H30R) Corresponds with Increased Serum Anti-O25 IgG Levels and Decreased TNFα and IL-10 Responsiveness to H30R" Pathogens 12, no. 4: 603. https://doi.org/10.3390/pathogens12040603
APA StyleJohnston, B. D., Clabots, C., Bender, T., Porter, S. B., van den Dobbelsteen, G., Poolman, J., Thuras, P., & Johnson, J. R. (2023). Colonization with Escherichia coli ST131-H30R (H30R) Corresponds with Increased Serum Anti-O25 IgG Levels and Decreased TNFα and IL-10 Responsiveness to H30R. Pathogens, 12(4), 603. https://doi.org/10.3390/pathogens12040603