Effects of Neighborhood-Scale Acaricidal Treatments on Infection Prevalence of Blacklegged Ticks (Ixodes scapularis) with Three Zoonotic Pathogens
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Tick Collection
2.3. Pathogen Detection
2.4. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ostfeld, R.S.; Price, A.; Hornbostel, V.L.; Benjamin, M.A.; Keesing, F. Controlling ticks and tick-borne zoonoses with biological and chemical agents. Bioscience 2006, 56, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Eisen, L.; Stafford, K.C. Barriers to effective tick management and tick-bite prevention in the United States (Acari: Ixodidae). J. Med. Entomol. 2021, 58, 1588–1600. [Google Scholar] [CrossRef] [PubMed]
- Sonenshine, D.E.; Mather, T.N. Ecological Dynamics of Tick-Borne Zoonoses; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Benjamin, M.A.; Zhioua, E.; Ostfeld, R.S. Laboratory and field evaluation of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycetes) for controlling questing adult Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 2002, 39, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Hinckley, A.F.; Meek, J.I.; Ray, J.A.E.; Niesobecki, S.A.; Connally, N.P.; Feldman, K.A.; Jones, E.H.; Backenson, P.B.; White, J.L.; Lukacik, G.; et al. Effectiveness of residential acaricides to prevent Lyme and other tick-borne diseases in humans. J. Infect. Dis. 2016, 214, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keesing, F.; Mowry, S.; Bremer, W.; Duerr, S.; Evans, A.S.; Fischhoff, I.R.; Hinckley, A.F.; Hook, S.A.; Keating, F.; Pendleton, J.; et al. Effects of tick-control interventions on tick abundance, human encounters with ticks, and incidence of tickborne diseases in residential neighborhoods, New York, USA. Emerg. Infect. Dis. 2022, 28, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Hersh, M.H.; Ostfeld, R.S.; McHenry, D.J.; Tibbetts, M.; Brunner, J.L.; Killilea, M.E.; LoGiudice, K.; Schmidt, K.A.; Keesing, F. Co-infection of blacklegged ticks with Babesia microti and Borrelia burgdorferi is higher than expected and acquired from small mammal hosts. PLoS ONE 2014, 9, 9–13. [Google Scholar] [CrossRef]
- Prusinski, M.A.; Kokas, J.E.; Hukey, K.T.; Kogut, S.J.; Lee, J.; Backenson, P.B. Prevalence of borrelia burgdorferi (spirochaetales: Spirochaetaceae), anaplasma phagocytophilum (rickettsiales: Anaplasmataceae), and babesia microti (piroplasmida: Babesiidae) in ixodes scapularis (acari: Ixodidae) collected from recreational lands in Hudson Valley Region, New York State. J. Med. Entomol. 2014, 51, 226–236. [Google Scholar]
- Hutchinson, M.L.; Strohecker, M.D.; Simmons, T.W.; Kyle, A.D.; Helwig, M.W. Prevalence rates of Borrelia burgdorferi (Spirochaetales: Spirochaetaceae), Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), and Babesia microti (Piroplasmida: Babesiidae) in host-seeking Ixodes scapularis (Acari: Ixodidae) from Pennsylvania. J. Med. Entomol. 2015, 52, 693–698. [Google Scholar] [CrossRef]
- Ostfeld, R.S.; Keesing, F. The function of biodiversity in the ecology of vector-borne zoonotic diseases. Can. J. Zool. 2000, 78, 2061–2078. [Google Scholar] [CrossRef]
- LoGiudice, K.; Ostfeld, R.S.; Schmidt, K.A.; Keesing, F. The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proc. Natl. Acad. Sci. USA 2003, 100, 567–571. [Google Scholar] [CrossRef] [Green Version]
- Keesing, F.; Brunner, J.; Duerr, S.; Killilea, M.; LoGiudice, K.; Schmidt, K.; Vuong, H.; Ostfeld, R.S. Hosts as ecological traps for the vector of Lyme disease. Proc. R. Soc. B Biol. Sci. 2009, 276, 3911–3919. [Google Scholar] [CrossRef]
- Hersh, M.H.; Tibbetts, M.; Strauss MOstfeld, R.S.; Keesing, F. Reservoir competence of wildlife host species for Babesia microti. Emerg. Infect. Dis. 2012, 18, 1951–1957. [Google Scholar] [CrossRef]
- Keesing, F.; Hersh, M.H.; Tibbetts, M.; McHenry, D.J.; Duerr, S.; Brunner, J.; Killilea, M.; LoGiudice, K.; Schmidt, K.A.; Ostfeld, R.S. Reservoir competence of vertebrate hosts for Anaplasma phagocytophilum. Emerg. Infect. Dis. 2012, 18, 2013–2016. [Google Scholar] [CrossRef] [PubMed]
- Levi, T.; Keesing, F.; Holt, R.D.; Barfield, M.; Ostfeld, R.S. Quantifying dilution and amplification in a community of hosts for tick-borne pathogens. Ecol. Appl. 2016, 26, 484–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schauber, E.M.; Ostfeld, R.S. Modeling the effects of reservoir competence decay and demographic turnover in Lyme disease ecology. Ecol. Appl. 2002, 12, 1142–1162. [Google Scholar] [CrossRef]
- Keesing, F.; Ostfeld, R.S. The Tick Project: Testing environmental methods of preventing tick-borne diseases. Trends Parasitol. 2018, 34, 447–450. [Google Scholar] [CrossRef]
- Ostfeld, R.S.; Mowry, S.; Bremer, W.; Duerr, S.; Evans, A.S.; Jr Fischhoff, I.R.; Hinckley, A.F.; Hook, S.A.; Keating, F.; Pendleton, J.; et al. Impacts over time of neighborhood-scale interventions to control ticks and tick-borne disease incidence. Vector-Borne Zoonotic Dis. 2023, in press. [Google Scholar]
- Dolan, M.C.; Maupin, G.O.; Schneider, B.S.; Denatale, C.; Hamon, N.; Cole, C.; Zeidner, N.S.; Stafford, K.C. Control of immature Ixodes scapularis (Acari: Ixodidae) on rodent reservoirs of Borrelia burgdorferi in a residential community of Southeastern Connecticut. J. Med. Entomol. 2004, 41, 1043–1054. [Google Scholar] [CrossRef] [Green Version]
- Fischhoff, I.R.; Keesing, F.; Ostfeld, R.S. The tick biocontrol agent Metarhizium brunneum (=M. anisopliae) (strain F52) does not reduce non-target arthropods. PLoS ONE 2017, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Bharadwaj, A.; Stafford, K.C. Evaluation of Metarhizium anisopliae Strain F52 (Hypocreales: Clavicipitaceae) for control of Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 2010, 47, 862–867. [Google Scholar] [CrossRef] [Green Version]
- Ostfeld, R.S.; Levi, T.; Keesing, F.; Oggenfuss, K.; Canham, C.D. Tick-borne disease risk in a forest food web. Ecology 2018, 99, 1562–1573. [Google Scholar] [CrossRef] [PubMed]
- Rulison, E.L.; Kuczaj, I.; Pang, G.; Hickling, G.J.; Tsao, J.I.; Ginsberg, H.S. Flagging versus dragging as sampling methods for nymphal Ixodes scapularis (Acari: Ixodidae). J. Vector Ecol. 2013, 38, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Graham, C.B.; Maes, S.E.; Hojgaard, A.; Fleshman, A.C.; Sheldon, S.W.; Eisen, R.J. A molecular algorithm to detect and differentiate human pathogens infecting Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae). Ticks Tick. Borne. Dis. 2018, 9, 390–403. [Google Scholar] [CrossRef]
- Courtney, J.W.; Kostelnik, L.M.; Zeidner, N.S.; Massung, R.F. Multiplex real-time PCR for detection of anaplasma phagocytophilum and Borrelia burgdorferi. J. Clin. Microbiol. 2004, 42, 3164–3168. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Wickham, H.; Henry, L. Tidyr: Tidy Messy Data, R package version 1.1.0; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Wickham, H.; Francois, R.; Henry, L.; Muller, K. Dplyr: A Grammar of Data Manipulation, R package version 1.0.0; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Wickham, H. Forcats: Tools for Working with Categorical Variables (Factors), R package version 0.5.0; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2016. [Google Scholar]
- Bolker, B.; Robinson, D. Broom.Mixed: Tidying Methods for Mixed Models, R package version 0.2.6; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Schulze, T.L.; Jordan, R.A.; Williams, M.; Dolan, M.C. Evaluation of the SELECT tick control system (TCS), a host-targeted bait box, to reduce exposure to Ixodes scapularis (Acari: Ixodidae) in a Lyme disease endemic area of New Jersey. J. Med. Entomol. 2017, 54, 1019–1024. [Google Scholar] [CrossRef] [Green Version]
- Jordan, R.A.; Schulze, T.L. Ability of two commercially available host-targeted technologies to reduce abundance of Ixodes scapularis (Acari: Ixodidae) in a residential landscape. J. Med. Entomol. 2019, 56, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.C.; Little, E.A.H.; Stafford, K.C.; Molaei, G.; Linske, M.A. Integrated control of juvenile Ixodes scapularis parasitizing Peromyscus leucopus in residential settings in Connecticut, United States. Ticks Tick. Borne. Dis. 2018, 9, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.C.; Stafford, K.C.; Molaei, G.; Linske, M.A. Integrated control of nymphal Ixodes scapularis: Effectiveness of white-tailed deer reduction, the entomopathogenic fungus Metarhizium anisopliae, and fipronil-based rodent bait boxes. Vector-Borne Zoonotic Dis. 2018, 18, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Little, E.A.H.; Williams, S.C.; Stafford, K.C.; Linske, M.A.; Molaei, G. Evaluating the effectiveness of an integrated tick management approach on multiple pathogen infection in Ixodes scapularis questing nymphs and larvae parasitizing white-footed mice. Exp. Appl. Acarol. 2020, 80, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Kaptchuk, T.J. The double-blind, randomized, placebo-controlled trial. J. Clin. Epidemiol. 2001, 54, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Grimes, D.A.; Schulz, K.F. Bias and causal associations in observational research. Lancet 2002, 359, 248–252. [Google Scholar] [CrossRef]
- Hinckley, A.F.; Niesobecki, S.A.; Connally, N.P.; Hook, S.A.; Biggerstaff, B.J.; Horiuchi, K.A.; Hojgaard, A.; Mead, P.S.; Meek, J.I. Prevention of Lyme and other tickborne diseases using a rodent-targeted approach: A randomized controlled trial in Connecticut. Zoonoses Public Health 2021, 68, 578–587. [Google Scholar] [CrossRef]
- Previtali, M.A.; Ostfeld, R.S.; Keesing, F.; Jolles, A.E.; Hanselmann, R.; Martin, L.B. Relationship between pace of life and immune responses in wild rodents. Oikos 2012, 121, 1483–1492. [Google Scholar] [CrossRef]
- Goethert, H.K.; Mather, T.N.; Johnson, R.W.; Telford, S.R. Incrimination of shrews as a reservoir for Powassan virus. Commun. Biol. 2021, 4, 1319. [Google Scholar] [CrossRef]
2017–2021 | Sum Sq | NumDF | DenDF | F Value | Pr(>F) |
Year | 0.0213 | 1 | 61.95 | 21.81 | 0.00 |
BaitBox | 0.0019 | 1 | 15.95 | 1.92 | 0.18 |
Met52 | 0.0033 | 1 | 15.93 | 3.39 | 0.08 |
BaitBox × Met52 | 0.0043 | 1 | 15.94 | 4.37 | 0.05 |
2018–2021 | Sum Sq | NumDF | DenDF | F value | Pr(>F) |
Year | 0.0029 | 1 | 42.65 | 3.63 | 0.06 |
BaitBox | 0.0010 | 1 | 18.12 | 1.27 | 0.28 |
Met52 | 0.0065 | 1 | 18.12 | 8.21 | 0.01 |
BaitBox × Met52 | 0.0019 | 1 | 18.15 | 2.47 | 0.13 |
2017–2021 | Sum Sq | NumDF | DenDF | F Value | Pr(>F) |
Year | 0.5897 | 1 | 63 | 16.49 | 0.00 |
BaitBox | 0.0044 | 1 | 16 | 0.12 | 0.73 |
Met52 | 0.0342 | 1 | 16 | 0.96 | 0.34 |
BaitBox × Met52 | 0.1129 | 1 | 16 | 3.16 | 0.09 |
2018–2021 | Sum Sq | NumDF | DenDF | F value | Pr(>F) |
Year | 1.274822 | 1 | 60 | 42.43 | 0.00 |
BaitBox | 0.000431 | 1 | 60 | 0.01 | 0.91 |
Met52 | 0.017934 | 1 | 60 | 0.60 | 0.44 |
BaitBox × Met52 | 0.029452 | 1 | 60 | 0.98 | 0.33 |
2017–2021 | Sum Sq | NumDF | DenDF | F Value | Pr(>F) |
Year | 0.1057 | 1 | 63 | 5.75 | 0.02 |
BaitBox | 0.0518 | 1 | 17 | 2.82 | 0.11 |
Met52 | 0.0456 | 1 | 17 | 2.48 | 0.13 |
BaitBox × Met52 | 0.0453 | 1 | 17 | 2.47 | 0.13 |
2018–2021 | Sum Sq | NumDF | DenDF | F value | Pr(>F) |
Year | 0.0428 | 1 | 40 | 2.22 | 0.14 |
BaitBox | 0.0655 | 1 | 16 | 3.40 | 0.08 |
Met52 | 0.0310 | 1 | 16 | 1.61 | 0.22 |
BaitBox × Met52 | 0.0497 | 1 | 16 | 2.58 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostfeld, R.S.; Adish, S.; Mowry, S.; Bremer, W.; Duerr, S.; Evans, A.S., Jr.; Fischhoff, I.R.; Keating, F.; Pendleton, J.; Pfister, A.; et al. Effects of Neighborhood-Scale Acaricidal Treatments on Infection Prevalence of Blacklegged Ticks (Ixodes scapularis) with Three Zoonotic Pathogens. Pathogens 2023, 12, 172. https://doi.org/10.3390/pathogens12020172
Ostfeld RS, Adish S, Mowry S, Bremer W, Duerr S, Evans AS Jr., Fischhoff IR, Keating F, Pendleton J, Pfister A, et al. Effects of Neighborhood-Scale Acaricidal Treatments on Infection Prevalence of Blacklegged Ticks (Ixodes scapularis) with Three Zoonotic Pathogens. Pathogens. 2023; 12(2):172. https://doi.org/10.3390/pathogens12020172
Chicago/Turabian StyleOstfeld, Richard S., Sahar Adish, Stacy Mowry, William Bremer, Shannon Duerr, Andrew S. Evans, Jr., Ilya R. Fischhoff, Fiona Keating, Jennifer Pendleton, Ashley Pfister, and et al. 2023. "Effects of Neighborhood-Scale Acaricidal Treatments on Infection Prevalence of Blacklegged Ticks (Ixodes scapularis) with Three Zoonotic Pathogens" Pathogens 12, no. 2: 172. https://doi.org/10.3390/pathogens12020172
APA StyleOstfeld, R. S., Adish, S., Mowry, S., Bremer, W., Duerr, S., Evans, A. S., Jr., Fischhoff, I. R., Keating, F., Pendleton, J., Pfister, A., Teator, M., & Keesing, F. (2023). Effects of Neighborhood-Scale Acaricidal Treatments on Infection Prevalence of Blacklegged Ticks (Ixodes scapularis) with Three Zoonotic Pathogens. Pathogens, 12(2), 172. https://doi.org/10.3390/pathogens12020172