Gastrointestinal Parasite Infections and Environmental Sustainability of the Ovine Sector: Eimeria spp. Infections and Nitrogen and Phosphorus Excretions in Dairy Sheep in Italy
Abstract
:1. Introduction
Emissions | Characterization Factor | Environmental Impact |
---|---|---|
CH4 | 28 | Global warming potential, expressed as kg CO2 eq [23] |
N2O | 265 | |
NO3 | 0.1 | Eutrophication, expressed as kg PO4− eq [24] |
P2O3 | 3.06 | |
NH3 | 1.6 | Acidification, expressed as kg SO2 eq [25] |
NOx | 0.76 |
2. Materials and Methods
2.1. Farms and Animals
2.2. Sampling and Parasitological Analysis
2.3. N and P Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Rancourt, M.; Fois, N.; Lavín, M.P.; Tchakérian, E.; Vallerand, F. Mediterranean sheep and goat production: An uncertain future. Small Rumin. Res. 2006, 62, 167–179. [Google Scholar] [CrossRef]
- Odintsov Vaintrub, M.; Levit, H.; Chincarini, M.; Fusaro, I.; Giammarco, M.; Vignola, G. Review: Precision livestock farming, automats and new technologies: Possible applications in extensive dairy sheep farming. Animal 2021, 15, 100143. [Google Scholar] [CrossRef] [PubMed]
- Altomonte, I.; Conte, G.; Serra, A.; Mele, M.; Cannizzo, L.; Salari, F.; Martini, M. Nutritional characteristics and volatile components of sheep milk products during two grazing seasons. Small Rumin. Res. 2019, 180, 41–49. [Google Scholar] [CrossRef]
- Maurizio, A.; Perrucci, S.; Tamponi, C.; Scala, A.; Cassini, R.; Rinaldi, L.; Bosco, A. Control of gastrointestinal helminths in small ruminants to prevent anthelmintic resistance: The Italian experience. Parasitology 2023, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bangoura, B.; Bardsley, K.D. Ruminant Coccidiosis. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 187–203. [Google Scholar] [CrossRef]
- Charlier, J.; Bartley, D.J.; Sotiraki, S.; Martinez-Valladares, M.; Claerebout, E.; von Samson-Himmelstjerna, G.; Thamsborg, S.M.; Hoste, H.; Morgan, E.R.; Rinaldi, L. Anthelmintic resistance in ruminants: Challenges and solutions. Adv. Parasitol. 2022, 115, 171–227. [Google Scholar] [PubMed]
- Chartier, C.; Paraud, C. Coccidiosis due to Eimeria in sheep and goats, a review. Small Rumin. Res. 2012, 103, 84–92. [Google Scholar] [CrossRef]
- Houdijk, J.G.M.; Tolkamp, B.J.; Rooke, J.A.; Hutchings, M.R. Animal health and greenhouse gas intensity: The paradox of periparturient parasitism. Int. J. Parasitol. 2017, 47, 633–641. [Google Scholar] [CrossRef]
- Louie, K.; Vlassoff, A.; Mackay, A.D. Gastrointestinal nematode parasites of sheep: A dynamic model for their effect on liveweight gain. Int. J. Parasitol. 2007, 37, 233–241. [Google Scholar] [CrossRef]
- Hoste, H.; Meza-Ocampos, G.; Marchand, S.; Sotiraki, S.; Sarasti, K.; Blomstrand, B.M.; Williams, A.R.; Thamsborg, S.M.; Athanasiadou, S.; Enemark, H.L.; et al. Use of agro-industrial by-products containing tannins for the integrated control of gastrointestinal nematodes in ruminants. Parasite 2022, 29, 10. [Google Scholar] [CrossRef]
- Zaiss, M.M.; Harris, N.L. Interactions between the intestinal microbiome and helminth parasites. Parasite Immunol. 2016, 38, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Gregory, M.W.; Catchpole, J. Ovine coccidiosis: Pathology of Eimeria ovinoidalis infection. Int. J. Parasitol. 1987, 17, 1099–1111. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.A.; Catchpole, J.; Marshall, J.; Marshall, R.N.; Hoeben, D. Histopathological observations on the activity of diclazuril (Vecoxan®) against the endogenous stages of Eimeria crandallis in sheep. Vet. Parasitol. 2003, 116, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Gouet, P.; Yvore, P.; Naciri, M.; Contrepois, M. Influence of digestive microflora on parasite development and the pathogenic effect of Eimeria ovinoidalis in the axenic, gnotoxenic and conventional lamb. Res. Vet. Sci. 1984, 36, 21–23. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Yan, Y.; Jian, F.; Ning, C. Coccidia-Microbiota Interactions and Their Effects on the Host. Front. Cell. Infect. Microbiol. 2021, 11, 751481. [Google Scholar] [CrossRef] [PubMed]
- Al-Neama, R.T.; Bown, K.J.; Blake, D.P.; Birtles, R.J. Determinants of Eimeria and Campylobacter infection dynamics in UK domestic sheep: The role of co-infection. Parasitology 2021, 148, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Bangoura, B.; Bhuiya, M.A.I.; Kilpatrick, M. Eimeria infections in domestic and wild ruminants with reference to control options in domestic ruminants. Parasitol. Res. 2022, 121, 2207–2232. [Google Scholar] [CrossRef] [PubMed]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Singaravadivelan, A.; Sachin, P.B.; Harikumar, S.; Vijayakumar, P.; Vindhya, M.V.; Farhana, F.M.B.; Rameesa, K.K.; Mathew, J. Life cycle assessment of greenhouse gas emission from the dairy production system—Review. Trop Anim Health Prod. 2023, 55, 320. [Google Scholar] [CrossRef]
- IPCC—International Panel on Climate Change. Climate Change 2007: Synthesis Report; Contribution of Working Groups I, II and III to the Fourth Assessment Report; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Nemecek, T.; Kägi, T. Life Cycle Inventories of Agricultural Production Systems; Ecoinvent report No. 15; Agrosope Reckenholz-Tänikon Research Station ART, Swiss Centre for Life Cycle Inventories: Zürich, Switzerland; Dübendorf, Switzerland, 2007. [Google Scholar]
- FAO—Food and Agriculture Organization of the United Nations. Greenhouse Gas Emissions and Fossil Energy Use from Small Ruminant Supply Chains: Guidelines for Assessment; Livestock Environmental Assessment and Performance Partnership: Rome, Italy, 2016. [Google Scholar]
- IPCC—International Panel on Climate Change. Chapter 11: N2O emissions from managed soils, and CO2 emissions from lime and urea application. In Agriculture, Forestry and Other Land Use; Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2019; Volume 4, pp. 1–54. [Google Scholar]
- Heijungs, R.; Guinee, J.B.; Huppes, G.; Lankreijer, R.M.; Udo de Haes, H.A.; Wegener-Sleeswijk, A.; Ansems, A.M.M.; Eggels, P.G.; van Duin, R.; de Goede, H.P. Environmental Life Cycle Assessment of Products: Guide and Backgrounds; Centre of Environmental Science (CML), Leiden University: Leiden, The Netherlands, 1992. [Google Scholar]
- Huijbregts, M. Life-cycle Impact Assessment of Acidifying and Eutrophying Air Pollutants. In Calculation of Equivalency Factors with RAINS-LCA; Interfaculty Department of Environmental Science, Faculty of Environmental Science, University of Amsterdam: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Lascano, E.A.; Cárdenas, E.A. Alternatives for methane emission mitigation in livestock systems. Rev. Bras. De Zootec. 2010, 39, 175–182. [Google Scholar] [CrossRef]
- Basarab, J.A.; Beauchemin, K.A.; Baron, V.S.; Ominski, K.H.; Guan, L.L.; Miller, S.P.; Crowley, J.J. Reducing GHG emissions through genetic improvement for feed efficiency: Effects on economically important traits and enteric methane production. Animal 2013, 7, 303–315. [Google Scholar] [CrossRef]
- Kenyon, F.; Dick, J.M.; Smith, R.I.; Coulter, D.G.; McBean, D.; Skuce, P.J. Reduction in Greenhouse Gas Emissions Associated with Worm Control in Lambs. Agriculture 2013, 3, 271–284. [Google Scholar] [CrossRef]
- Fox, N.J.; Smith, L.A.; Houdijk, J.G.M.; Athanasiadou, S.; Hutchings, M.R. Ubiquitous parasites drive a 33% increase in methane yield from livestock. Int. J. Parasitol. 2018, 48, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- Italian National Livestock Registry. 2021. Available online: https://www.vetinfo.it/j6_statistiche/index.html#/report-pbi/29 (accessed on 14 November 2023).
- Russel, A.J.F.; Doney, J.M.; Gunn, R.G. Subjective assessment of body fat in live sheep. J. Agric. Sci. 1969, 72, 451–454. [Google Scholar] [CrossRef]
- Rinaldi, L.; Levecke, B.; Bosco, A.; Ianniello, D.; Pepe, P.; Charlier, J.; Cringoli, G.; Vercruysse, J. Comparison of individual and pooled faecal samples in sheep for the assessment of gastrointestinal strongyle infection intensity and anthelmintic drug efficacy using McMaster and Mini-FLOTAC. Vet. Parasitol. 2014, 205, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Maurizio, A.; Marchiori, E.; Tessarin, C.; Cassini, R. Comparing pooled and individual samples for estimation of gastrointestinal strongyles burden and treatment efficacy in small ruminants. Vet. Parasitol. 2023, 318, 109935. [Google Scholar] [CrossRef] [PubMed]
- Bosco, A.; Kießler, J.; Amadesi, A.; Varady, M.; Hinney, B.; Ianniello, D.; Maurelli, M.P.; Cringoli, G.; Rinaldi, L. The threat of reduced efficacy of anthelmintics against gastrointestinal nematodes in sheep from an area considered anthelmintic resistance-free. Parasit. Vectors 2020, 13, 457. [Google Scholar] [CrossRef] [PubMed]
- AOAC—Association of Official Analytical Chemist. Official Methods of Analysis, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Dessì, G.; Tamponi, C.; Varcasia, A.; Sanna, G.; Pipia, A.P.; Carta, S.; Salis, F.; Díaz, P.; Scala, A. Cryptosporidium infections in sheep farms from Italy. Parasitol. Res. 2020, 119, 4211–4218. [Google Scholar] [CrossRef]
- Lianou, D.T.; Arsenopoulos, K.V.; Michael, C.K.; Papadopoulos, E.; Fthenakis, G.C. Protozoan Parasites in Adult Dairy Small Ruminants and Potential Predictors for Their Presence in Faecal Samples. Microorganisms 2022, 10, 1931. [Google Scholar] [CrossRef]
- Lianou, D.T.; Arsenopoulos, K.V.; Michael, C.K.; Mavrogianni, V.S.; Papadopoulos, E.; Fthenakis, G.C. Helminth Infections in Dairy Sheep Found in an Extensive Countrywide Study in Greece and Potential Predictors for Their Presence in Faecal Samples. Microorganisms 2023, 11, 571. [Google Scholar] [CrossRef]
- Platzer, B.; Prosl, H.; Cieslicki, M.; Joachim, A. Epidemiology of Eimeria infections in an Austrian milking sheep flock and control with diclazuril. Vet. Parasitol. 2005, 129, 1–9. [Google Scholar] [CrossRef]
- Tzanidakis, N.; Sotiraki, S.; Claerebout, E.; Ehsan, A.; Voutzourakis, N.; Kostopoulou, D.; Stijn, C.; Vercruysse, J.; Geurden, T. Occurrence and molecular characterization of Giardia duodenalis and Cryptosporidium spp. in sheep and goats reared under dairy husbandry systems in Greece. Parasite 2014, 21, 45. [Google Scholar] [CrossRef] [PubMed]
- IPCC—International Panel on Climate Change. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Chapter 10, Emissions From Livestock And Manure Management. In Agriculture, Forestry and Other Land Use; IPCC: Geneva, Switzerland, 2019; Volume 4, pp. 1–87. [Google Scholar]
- Smith, K.A.; Frost, J.P. Nitrogen excretion by farm livestock with respect to land spreading requirements and controlling nitrogen losses to ground and surface waters. Part 1: Cattle and sheep, Bioresour. Technol. 2000, 71, 173–181. [Google Scholar]
- Foreyt, W.J. Coccidiosis and cryptosporidiosis in sheep and goats. Vet. Clin. N. Am. Food Anim. Pract. 1990, 6, 655–670. [Google Scholar] [CrossRef] [PubMed]
- Carrau, T.; Silva, L.M.R.; Pérez, D.; Failing, K.; Martínez-Carrasco, C.; Macías, J.; Taubert, A.; Hermosilla, C.; de Ybáñez, R.R. Associated risk factors influencing ovine Eimeria infections in southern Spain. Vet. Parasitol. 2018, 263, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Keeton, S.T.N.; Navarre, C.B. Coccidiosis in Large and Small Ruminants. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, 201–208. [Google Scholar] [CrossRef]
- Barger, I.A. Influence of sex and reproductive status on susceptibility of ruminants to nematode parasitism. Int. J. Parasitol. 1993, 23, 463–469. [Google Scholar] [CrossRef]
- Xiao, L.H.; Herd, R.P.; McClure, K.E. Periparturient rise in the excretion of Giardia sp. cysts and Cryptosporidium parvum oocysts as a source of infection for lambs. J. Parasitol. 1994, 80, 55–59. [Google Scholar] [CrossRef]
- Agyei, A.D.; Sapong, D.; Probert, A.J. Periparturient rise in faecal nematode egg counts in west African dwarf sheep in southern Ghana in the absence of arrested strongyle larvae. Vet. Parasitol. 1991, 1991 39, 79–88. [Google Scholar] [CrossRef]
- Mavrot, F.; Hertzberg, H.; Torgerson, P. Effect of gastro-intestinal nematode infection on sheep performance: A systematic review and meta-analysis. Parasit. Vectors 2015, 8, 557. [Google Scholar] [CrossRef]
- Cringoli, G.; Rinaldi, L.; Veneziano, V.; Mezzino, L.; Vercruysse, J.; Jackson, F. Evaluation of targeted selective treatments in sheep in Italy: Effects on faecal worm egg count and milk production in four case studies. Vet. Parasitol. 2009, 16, 36–43. [Google Scholar] [CrossRef]
Farm n. | Flock Size | Rearing System | N. Pooled Fecal Samples * | |
---|---|---|---|---|
<1 Year ** | >1 Year *** | |||
* 1 | 301–500 heads | I | 1 | 2 |
2 | >500 heads | I | 1 | 2 |
3 | >500 heads | I | 1 | 1 |
4 | >500 heads | I | 1 | 2 |
5 | 101–300 heads | E | - | 2 |
6 | 101–300 heads | E | 1 | 2 |
7 | 301–500 heads | E | 1 | 1 |
8 | 301–500 heads | E | - | 3 |
9 | 301–500 heads | E | 1 | 1 |
10 | 101–300 heads | I | 1 | 2 |
11 | 301–500 heads | E | - | 1 |
12 | >500 heads | I | 1 | 3 |
13 | 101–300 heads | E | - | 2 |
14 | 101–300 heads | E | - | 2 |
15 | >500 heads | E | 1 | 1 |
16 | >500 heads | E | - | 2 |
17 | 101–300 heads | E | 1 | 1 |
18 | 301–500 heads | E | - | 2 |
19 | 101–300 heads | E | - | 1 |
Parasite | Overall | Flock Size | Rearing System | Age of Animals | ||||
---|---|---|---|---|---|---|---|---|
101–300 | 301–500 | >500 | Intensive | Extensive | <1 Year | >1 Year | ||
Eimeria spp. (Coccidia) | 86.36% (38/44) | 94.12% (16/17) | 75.00% (9/12) | 86.66% (13/15) | 86.95% (20/23) | 85.71% (18/21) | 100% (11/11) | 81.81% (27/33) |
Gastrointestinal strongyles | 54.55% (24/44) | 41.17% (7/17) | 75.00% (9/12) | 53.33% (8/15) | 26.09% (6/23) | 85.71% (18/21) | 27.27% (3/11) | 63.63% (21/33) |
Strongyloides papillosus | 22.72% (10/44) | 29.41% (5/17) | 16.66% (2/12) | 20.00% (3/15) | 26.09% (6/23) | 19.05% (4/21) | 18.18% (2/11) | 24.24% (8/33) |
Giardia duodenalis | 9.00% (4/44) | 0.00% (0/17) | 0.00% (0/12) | 26.66% (4/15) | 17.39% (4/23) | 0.00% (0/21) | 27.27% (3/11) | 3.03% (1/33) |
Moniezia spp. | 4.55% (2/44) | 5.88% (1/17) | 8.33% (1/12) | 0.00% (0/15) | 0.00% (0/23) | 9.52% (2/21) | 0.00% (0/11) | 6.06% (2/33) |
Trichuris spp. | 2.27% (1/44) | 5.88% (1/17) | 0.00% (0/12) | 0.00% (0/15) | 4.35% (1/23) | 0.00% (0/21) | 0.00% (0/11) | 3.03% (1/33) |
Parameter | Flock Size | Rearing System | Age of Animals | ||||
---|---|---|---|---|---|---|---|
101–300 | 301–500 | >500 | Intensive | Extensive | <1 Year | >1 Year | |
N | 2.59 ± 0.383 a | 2.41 ± 0.415 ab | 2.14 ± 0.485 b | 2.33 ± 0.470 | 2.46 ± 0.454 | 2.33 ± 0.421 | 2.40 ± 0.472 |
P | 0.58 ± 0.172 | 0.57 ± 0.108 | 0.45 ± 0.125 | 0.53 ± 0.162 | 0.49 ± 0.141 | 0.63 ± 0.199 a | 0.48 ± 0.125 b |
Eimeria OPG | 2283.33 ± 6957.446 | 413.89 ± 843.937 | 2837.50 ± 8492.033 | 3454.69 ± 8447.538 | 281.67 ± 716.938 | 7689.29 ± 12,315.013 a | 236.46 ± 561.973 b |
GIS EPG | 43.75 ± 85.480 b | 511.11 ± 604.060 a | 35.00 ± 78.351 b | 3.13 ± 28.115 b | 361.67 ± 520.925 a | 0.00 ± 0.000 | 228.125 ± 433.221 |
Milk | 130.33 ± 64.791 B | 195.78 ± 74.095 B | 345.90 ± 143.580 A | 242.63 ± 191.977 | 193.53 ± 63.710 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sodi, I.; Martini, M.; Salari, F.; Perrucci, S. Gastrointestinal Parasite Infections and Environmental Sustainability of the Ovine Sector: Eimeria spp. Infections and Nitrogen and Phosphorus Excretions in Dairy Sheep in Italy. Pathogens 2023, 12, 1459. https://doi.org/10.3390/pathogens12121459
Sodi I, Martini M, Salari F, Perrucci S. Gastrointestinal Parasite Infections and Environmental Sustainability of the Ovine Sector: Eimeria spp. Infections and Nitrogen and Phosphorus Excretions in Dairy Sheep in Italy. Pathogens. 2023; 12(12):1459. https://doi.org/10.3390/pathogens12121459
Chicago/Turabian StyleSodi, Irene, Mina Martini, Federica Salari, and Stefania Perrucci. 2023. "Gastrointestinal Parasite Infections and Environmental Sustainability of the Ovine Sector: Eimeria spp. Infections and Nitrogen and Phosphorus Excretions in Dairy Sheep in Italy" Pathogens 12, no. 12: 1459. https://doi.org/10.3390/pathogens12121459
APA StyleSodi, I., Martini, M., Salari, F., & Perrucci, S. (2023). Gastrointestinal Parasite Infections and Environmental Sustainability of the Ovine Sector: Eimeria spp. Infections and Nitrogen and Phosphorus Excretions in Dairy Sheep in Italy. Pathogens, 12(12), 1459. https://doi.org/10.3390/pathogens12121459