The Prevalence of Alert Pathogens and Microbial Resistance Mechanisms: A Three-Year Retrospective Study in a General Hospital in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Collection
- Skin swabs, including the swabs of wound (superficial, postoperative, post-traumatic swabs), skin lesion swabs, ulceration swabs, pressure ulcer swabs, diabetic foot swabs, burn swabs, navel swabs, and nail plate swabs;
- Body fluid cultures included abdominal fluid, maxillary sinus fluid, pericardial fluid, synovial fluid, pleural fluid, and bile culture;
- Ear cultures, including right and left ear swabs;
- Nasal cultures included nasal swabs on the left and right nostril and nasopharyngeal swabs;
- Throat cultures: tonsil swab, oral swab, and general throat swab;
- Vaginal cultures, including general vaginal swabs and cervical swabs;
- “Other materials”, including the culture of material from the pancreas, a swab from a tumour, a swab from the urethra, and a swab from the fistula.
2.2. Microbiological Reports
2.3. Statistical Analysis
3. Results
3.1. General Characteristics
3.1.1. Diagnostic Materials
3.1.2. Diagnostic Materials according to Hospital Departments in 2019–2021
3.2. Isolated Microorganisms
3.3. Alert Pathogens and Mechanisms of Resistance
3.4. Hospital Department vs. Microorganism
3.5. Hospital Department vs. Alert Pathogens
3.6. Hospital Department vs. Resistance Mechanism
3.7. Age of Patients vs. Prevalence of Alert Pathogens and Resistance Mechanisms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gravenkemper, C.F.; Brodie, J.L.; Kirby, W.M. Resistance of coagulase-positive staphylococci to methicillin and oxacillin. J. Bacteriol. 1965, 89, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Alonso, D.; Escosa-García, L.; Epalza, C.; Bravo-Queipo-de-Llano, B.; Camil Olteanu, F.; Cendejas-Bueno, E.; Orellana, M.Á.; Cercenado, E.; Saavedra-Lozano, J. Antibiotic resistance in bloodstream isolates from high-complexity paediatric units in Madrid, Spain: 2013–2021. J. Hosp. Infect. 2023, 39, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Dadgostar, P. Antimicrobial resistance: Implications and costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance. 2014. Available online: https://apps.who.int/iris/handle/10665/112642 (accessed on 11 May 2023).
- Gow, N.A.R.; Johnson, C.; Berman, J.; Coste, A.T.; Cuomo, C.A.; Perlin, D.S.; Bicanic, T.; Harrison, T.S.; Wiederhold, N.; Bromley, M.; et al. The importance of antimicrobial resistance in medical mycology. Nat. Commun. 2022, 13, 5352. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. Expected Resistant Phenotypes V 1.2 (13 January 2023). Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Expert_Rules/2023/Expected_Resistant_Phenotypes_v1.2_20230113.pdf (accessed on 15 May 2023).
- Lynch, J.P., 3rd; Zhanel, G.G.; Clark, N.M. Emergence of antimicrobial resistance among Pseudomonas aeruginosa: Implications for therapy. Semin. Respir. Crit. Care Med. 2017, 38, 326–345. [Google Scholar] [CrossRef] [PubMed]
- Dzierżanowska, D. Antybiotykoterapia Praktyczna, 6th ed.; Alfa Medica Press: Bielsko-Biała, Poland, 2018. [Google Scholar]
- van Hoek, A.H.; Mevius, D.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H.J. Acquired antibiotic resistance genes: An overview. Front. Microbiol. 2011, 2, 203. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Feng, X.; Li, M.; Shen, Z. In vivo adaptive antimicrobial resistance in Klebsiella pneumoniae during antibiotic therapy. Front. Microbiol. 2023, 4, 1159912. [Google Scholar] [CrossRef]
- Sethuvel, D.P.M.; Bakthavatchalam, Y.D.; Karthik, M.; Irulappan, M.; Shrivastava, R.; Periasamy, H.; Veeraraghavan, B. β-lactam resistance in ESKAPE pathogens mediated through modifications in penicillin-binding proteins: An overview. Infect. Dis. Ther. 2023, 12, 829–841. [Google Scholar] [CrossRef]
- Rizzo, K.; Horwich-Scholefield, S.; Epson, E. Carbapenem and cephalosporin resistance among Enterobacteriaceae in Healthcare-associated infections, California, USA. Emerg. Infect. Dis. 2019, 25, 1389–1393. [Google Scholar] [CrossRef]
- Pfeifer, E.; Bonnin, R.A.; Rocha, E.P.C. Phage-plasmids spread antibiotic resistance genes through infection and lysogenic conversion. mBio 2022, 13, e0185122. [Google Scholar] [CrossRef]
- Tipper, D.J. Mode of action of beta-lactam antibiotics. Pharmacol. Ther. 1985, 27, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. β-Lactamases and β-lactamase inhibitors in the 21st Century. J. Mol. Biol. 2019, 431, 3472–3500. [Google Scholar] [CrossRef] [PubMed]
- Karanika, S.; Karantanos, T.; Arvanitis, M.; Grigoras, C.; Mylonakis, E. Fecal colonization with extended-spectrum beta-lactamase-producing Enterobacteriaceae and risk factors among healthy individuals: A systematic review and meta-analysis. Clin. Infect. Dis. 2016, 63, 310–318. [Google Scholar] [CrossRef] [PubMed]
- One Health Report on Antimicrobial Utilisation and Resistance. 2017. Available online: https://www.moh.gov.sg/docs/librariesprovider5/resources-statistics/reports/one-health-report-on-antimicrobial-utilisation-and-resistance-2017.pdf (accessed on 1 June 2023).
- Nordmann, P.; Poirel, L.; Toleman, M.A.; Walsh, T.R. Does broad-spectrum beta-lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by Gram-negative bacteria? J. Antimicrob. Chemother. 2011, 66, 689–692. [Google Scholar] [CrossRef]
- Wang, D.; Berglund, B.; Li, Q.; Shangguan, X.; Li, J.; Liu, F.; Yao, F.; Li, X. Transmission of clones of carbapenem-resistant Escherichia coli between a hospital and an urban wastewater treatment plant. Environ. Pollut. 2023, 24, 122455. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Hussein, N.H.; Mohammed Kareem, S.; Hussein Al-Kakei, S.N.; Taha, B.M. The predominance of Klebsiella pneumoniae carbapenemase (KPC-type) gene among high-level carbapenem-resistant Klebsiella pneumoniae isolates in Baghdad, Iraq. Mol. Biol. Rep. 2022, 49, 4653–4658. [Google Scholar] [CrossRef]
- Abd El-Baky, R.M.; Ibrahim, R.A.; Mohamed, D.S.; Ahmed, E.F.; Hashem, Z.S. Prevalence of virulence genes and their association with antimicrobial resistance among pathogenic E. coli isolated from Egyptian patients with different clinical infections. Infect. Drug Resist. 2020, 13, 1221–1236. [Google Scholar] [CrossRef]
- Lakhundi, S.; Zhang, K. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef]
- Zehra, A.; Gulzar, M.; Singh, R.; Kaur, S.; Gill, J.P.S. Comparative analysis of Methicillin-Resistant Staphylococcus aureus (MRSA) and Borderline oxacillin resistant Staphylococcus aureus (BORSA) in community and food of animal origin. FEMS Microbiol. Lett. 2020, 367, fnaa201. [Google Scholar] [CrossRef]
- Le Bouter, A.; Leclercq, R.; Cattoir, V. Molecular basis of resistance to macrolides, lincosamides and streptogramins in Staphylococcus saprophyticus clinical isolates. Int. J. Antimicrob. Agents 2011, 37, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Blane, B.; Coll, F.; Raven, K.; Allen, O.; Kappeler, A.R.M.; Pai, S.; Floto, R.A.; Peacock, S.J.; Gouliouris, T. Impact of a new hospital with close to 100% single-occupancy rooms on environmental contamination and incidence of vancomycin-resistant Enterococcus faecium colonization or infection: A genomic surveillance study. J. Hosp. Infect. 2023, 39, 192–200. [Google Scholar] [CrossRef] [PubMed]
- CDC. About Antimicrobial Resistance. Available online: https://www.cdc.gov/drugresistance/about.html (accessed on 10 June 2023).
- Załącznik nr 1 do Rozporządzenia Ministra Zdrowia w Sprawie Listy Czynników Alarmowych, Rejestrów Zakażeń Szpitalnych i Czynników Alarmowych Oraz Raportów o Bieżącej Sytuacji Epidemiologicznej Szpitala z Dnia 23 Grudnia 2011 r. (Dz.U. Nr 294, poz. 1741 z późn. zm.). 2021. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20210000240/O/D20210240.pdf (accessed on 17 May 2023).
- Santino, I.; Teggi, A.; Marangi, M.; Montesano, M.; Petrucca, A.; Bertamino, E.; Zerbetto, A.; Sandorfi, F.; Iachini, M.; Orsi, G.B. Surveillance of healthcare-acquired infections by “alert microorganisms”: Preliminary results. Ann. Ig. 2019, 31, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Kasiakou, S.K. Correct use of the term ‘pan-drug-resistant’ (PDR) Gram-negative bacteria. Clin. Microbiol. Infect. 2005, 11, 1049–1050. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 2020. Available online: https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf (accessed on 20 May 2023).
- Chiș, A.A.; Rus, L.L.; Morgovan, C.; Arseniu, A.M.; Frum, A.; Vonica-Țincu, A.L.; Gligor, F.G.; Mureșan, M.L.; Dobrea, C.M. Microbial resistance to antibiotics and effective antibiotherapy. Biomedicines 2022, 10, 1121. [Google Scholar] [CrossRef] [PubMed]
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial resistance: A global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 2017, 57, 2857–2876. [Google Scholar] [CrossRef]
- Li, J.; Xie, S.; Ahmed, S.; Wang, F.; Gu, Y.; Zhang, C.; Chai, X.; Wu, Y.; Cai, J.; Cheng, G. Antimicrobial activity and resistance: Influencing factors. Front. Pharmacol. 2017, 8, 364. [Google Scholar] [CrossRef]
- Zarauz, J.M.; Zafrilla, P.; Ballester, P.; Cerda, B. Study of the drivers of inappropriate use of antibiotics in community pharmacy: Request for antibiotics without a prescription, degree of adherence to treatment and correct recycling of leftover treatment. Infect. Drug Resist. 2022, 15, 6773–6783. [Google Scholar] [CrossRef]
- McEwen, S.A.; Collignon, P.J. Antimicrobial resistance: A one health perspective. Microbiol. Spectr. 2018, 6, 1–26. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. 2019. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_9.0_Breakpoint_Tables.pdf (accessed on 15 January 2019).
- European Committee on Antimicrobial Susceptibility Testing. 2020. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf (accessed on 13 January 2020).
- European Committee on Antimicrobial Susceptibility Testing. 2021. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_11.0_Breakpoint_Tables.pdf (accessed on 12 January 2021).
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)-Annual Epidemiological Report 2019; ECDC: Stockholm, Sweden, 2020. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/TQ-AC-20-001-EN-N_0.pdf (accessed on 12 May 2023).
- Sokół-Leszczyńska, B.; Leszczyński, P. Wielolekooporne pałeczki Gram-ujemne z punktu widzenia mikrobiologa—Część 1. Biul. SHL 2014, 48, 6–17. [Google Scholar]
- Lee, C.R.; Lee, J.H.; Park, K.S.; Kim, Y.B.; Jeong, B.C.; Lee, S.H. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: Epidemiology, genetic context, treatment options, and detection methods. Front. Microbiol. 2016, 7, 895. [Google Scholar] [CrossRef] [PubMed]
- Ince, D.; Fiawoo, S.; Choudhury, R.; Cosgrove, S.E.; Dobrzynski, D.; Gold, H.; Lee, J.H.; Percival, K.M.; Shulder, S.; Sony, D.; et al. Epidemiology of Gram-negative bloodstream infections in the United States: Results from a cohort of 24 hospitals. Open Forum Infect. Dis. 2023, 10, ofad265. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Chen, H.; Chen, Y.; Dong, S.; Mai, H.; Lopes, B.; Liu, S.; Wen, F. Trends in antibiotic resistance patterns and burden of Escherichia coli infections in young children: A retrospective cross-sectional study in Shenzhen, China from 2014-2018. Infect. Drug Resist. 2023, 16, 5501–5510. [Google Scholar] [CrossRef] [PubMed]
- Lagacé-Wiens, P.R.S.; Adam, H.J.; Poutanen, S.; Baxter, M.R.; Denisuik, A.J.; Golden, A.R.; Nichol, K.A.; Walkty, A.; Karlowsky, J.A.; Mulvey, M.R.; et al. Canadian Antimicrobial Resistance Alliance (CARA) and CANWARD. Trends in antimicrobial resistance over 10 years among key bacterial pathogens from Canadian hospitals: Results of the CANWARD study 2007–2016. J. Antimicrob. Chemother. 2019, 74 (Suppl. S4), iv22–iv31. [Google Scholar] [CrossRef] [PubMed]
- Shaik, S.; Ranjan, A.; Tiwari, S.K.; Hussain, A.; Nandanwar, N.; Kumar, N.; Jadhav, S.; Semmler, T.; Baddam, R.; Islam, M.A.; et al. Comparative Genomic Analysis of Globally Dominant ST131 Clone with Other Epidemiologically Successful Extraintestinal Pathogenic Escherichia coli (ExPEC) Lineages. mBio 2017, 8, e01596-17. [Google Scholar] [CrossRef]
- Fadlallah, M.; Salem Sokhn, E. Epidemiology and resistance profiles of Enterobacterales in a tertiary care hospital in Lebanon: A 4-year retrospective study. J. Infect. Dev. Ctries. 2023, 17, 986–993. [Google Scholar] [CrossRef]
- Liu, G.; Qin, M. Analysis of the Distribution and Antibiotic Resistance of Pathogens Causing Infections in Hospitals from 2017 to 2019. Evid. Based Complement. Altern. Med. eCAM 2022, 2020, 3512582. [Google Scholar] [CrossRef]
- Gales, A.C.; Stone, G.; Sahm, D.F.; Wise, M.G.; Utt, E. Incidence of ESBLs and carbapenemases among Enterobacterales and carbapenemases in Pseudomonas aeruginosa isolates collected globally: Results from ATLAS 2017–2019. J. Antimicrob. Chemother. 2023, 78, 1606–1615. [Google Scholar] [CrossRef]
- Stoltidis-Claus, C.; Rosenberger, K.D.; Mandraka, F.; Quante, X.; Gielen, J.; Hoffmann, D.; Wisplinghoff, H.; Jazmati, N. Antimicrobial resistance of clinical Enterobacterales isolates from urine samples, Germany, 2016 to 2021. Euro Surveill. 2023, 28, 2200568. [Google Scholar] [CrossRef]
- Yang, X.; Guo, R.; Zhang, B.; Xie, B.; Zhou, S.; Zhang, B.; Lai, Q. Retrospective analysis of drug resistance characteristics and infection-related risk factors of multidrug-resistant organisms (MDROs) isolated from the orthopedics department of a tertiary hospital. Sci. Rep. 2023, 13, 2199. [Google Scholar] [CrossRef] [PubMed]
- Meybodi, M.M.E.; Foroushani, A.R.; Zolfaghari, M.; Abdollahi, A.; Alipour, A.; Mohammadnejad, E.; Mehrjardi, E.Z.; Seifi, A. Antimicrobial resistance pattern in healthcare-associated infections: Investigation of in-hospital risk factors. Iran. J. Microbiol. 2021, 13, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, U.; Al-Anazi, M.; Alanazi, Z.; Rodríguez-Baño, J. Impact of COVID-19 pandemic on multidrug resistant gram positive and gram-negative pathogens: A systematic review. J. Infect. Public Health 2023, 16, 320–331. [Google Scholar] [CrossRef] [PubMed]
- van der Steen, M.; Leenstra, T.; Kluytmans, J.A.; van der Bij, A.K.; ISIS-AR study group. Trends in Expanded-Spectrum Cephalosporin-Resistant Escherichia coli and Klebsiella pneumoniae among Dutch Clinical Isolates, from 2008 to 2012. PLoS ONE 2015, 10, e0138088. [Google Scholar] [CrossRef] [PubMed]
- Harbarth, S.; Balkhy, H.H.; Goossens, H.; Jarlier, V.; Kluytmans, J.; Laxminarayan, R.; Saam, M.; Van Belkum, A.; Pittet, D.; World Healthcare-Associated Infections Resistance Forum participants. Antimicrobial resistance: One world, one fight! Antimicrob. Resist. Infect. Control 2015, 4, 49. [Google Scholar] [CrossRef]
- Blanco, J.; Mora, A.; Mamani, R.; López, C.; Blanco, M.; Dahbi, G.; Herrera, A.; Blanco, J.; Alonso, M.P.; García-Garrote, F.; et al. National survey of Escherichia coli causing extraintestinal infections reveals the spread of drug-resistant clonal groups O25b:H4-B2-ST131, O15:H1-D-ST393 and CGA-D-ST69 with high virulence gene content in Spain. J. Antimicrob. Chemother. 2011, 66, 2011–2021. [Google Scholar] [CrossRef] [PubMed]
- Larcher, R.; Maury, C.; Faivre, G.; Dagod, G.; Dumont, Y.; Le Moing, V.; Villiet, M.; Capdevila, X.; Charbit, J. Acquisition of extended-spectrum cephalosporin-resistant Gram-negative bacteria: Epidemiology and risk factors in a 6-year cohort of 507 severe trauma patients. J. Glob. Antimicrob. Resist. 2022, 31, 363–370. [Google Scholar] [CrossRef]
- Bonomo, R.A.; Burd, E.M.; Conly, J.; Limbago, B.M.; Poirel, L.; Segre, J.A.; Westblade, L.F. Carbapenemase-Producing organisms: A global scourge. Clin. Infect. Dis. 2018, 66, 1290–1297. [Google Scholar] [CrossRef]
- Tilahun, M.; Kassa, Y.; Gedefie, A.; Ashagire, M. Emerging carbapenem-resistant Enterobacteriaceae infection, its epidemiology and novel treatment options: A review. Infect. Drug. Resist. 2021, 14, 4363–4374. [Google Scholar] [CrossRef]
- Increase in Escherichia coli Isolates Carrying blaNDM-5 in the European Union/European Economic Area, 2012–2022. Available online: https://www.ecdc.europa.eu/en/publications-data/increase-escherichia-coli-isolates-carrying-blandm-5-european-unioneuropean (accessed on 16 August 2023).
- Raport KORDL. Available online: https://korld.nil.gov.pl/wp-content/uploads/2021/03/CPE-w-Polsce-2011-2018.pdf (accessed on 16 August 2023).
- Ura, L.; Deja-Makara, B.; Pajdziński, M.; Gottwald, L. The occurence and pathogenicity of B-class Carbapenemase–producing Enterobacteriaceae–Klebsiella Pneumoniae strains (MBL/NDM) in patients hospitalized and treated in Mazowiecki Memorial Hospital of Radom between 2016–2018. Long-Term Care Nurs. 2020, 5, 239–249. [Google Scholar] [CrossRef]
- Hallal Ferreira Raro, O.; Nordmann, P.; Dominguez Pino, M.; Findlay, J.; Poirel, L. Emergence of Carbapenemase-Producing Hypervirulent Klebsiella pneumoniae in Switzerland. Antimicrob. Agents Chemother. 2023, 67, e0142422. [Google Scholar] [CrossRef] [PubMed]
- Kardaś-Słoma, L.; Fournier, S.; Dupont, J.C.; Rochaix, L.; Birgand, G.; Zahar, J.R.; Lescure, F.X.; Kernéis, S.; Durand-Zaleski, I.; Lucet, J.C. Cost-effectiveness of strategies to control the spread of carbapenemase-producing Enterobacterales in hospitals: A modelling study. Antimicrob. Resist. Infect. Control 2022, 11, 117. [Google Scholar] [CrossRef] [PubMed]
- Diekema, D.J.; Pfaller, M.A.; Shortridge, D.; Zervos, M.; Jones, R.N. Twenty-Year trends in antimicrobial susceptibilities among Staphylococcus aureus from the SENTRY Antimicrobial Surveillance Program. Open Forum Infect. Dis. 2019, 6 (Suppl. S1), S47–S53. [Google Scholar] [CrossRef] [PubMed]
- Segal, B.; Langham, A.; Klevansky, R.; Patel, N.; Mokoena, T.; Nassiep, M.; Ramatlo, O.; Ahmad, A.; Duse, A.G. Analysis of the trends of Methicillin-Resistant Staphylococcus aureus in Gauteng public hospitals from 2009 to 2018. Microbiol. Spectr. 2023, 11, e0362322. [Google Scholar] [CrossRef] [PubMed]
- Bolikas, E.; Astrinaki, E.; Panagiotaki, E.; Vitsaxaki, E.; Saplamidou, S.; Drositis, I.; Stafylaki, D.; Chamilos, G.; Gikas, A.; Kofteridis, D.P.; et al. Impact of SARS-CoV-2 preventive measures against healthcare-associated infections from antibiotic-resistant ESKAPEE Pathogens: A Two-Center, Natural Quasi-Experimental Study in Greece. Antibiotics 2023, 12, 1088. [Google Scholar] [CrossRef]
- Sugiyama, K.; Watanuki, H.; Futamura, Y.; Matsuyama, K. Prosthetic valve endocarditis caused by silent infection of methicillin-resistant coagulase-negative staphylococci. BMJ Case Rep. 2021, 14, e236383. [Google Scholar] [CrossRef]
- Zhou, M.J.; Li, J.; Salmasian, H.; Zachariah, P.; Yang, Y.X.; Freedberg, D.E. The local hospital milieu and healthcare-associated vancomycin-resistant enterococcus acquisition. J. Hosp. Infect. 2019, 101, 69–75. [Google Scholar] [CrossRef]
- Chen, C.H.; Lin, L.C.; Chang, Y.J.; Chang, C.Y. Clinical and microbiological characteristics of vancomycin-resistant Enterococcus faecium bloodstream infection in Central Taiwan. Medicine 2017, 96, e9000. [Google Scholar] [CrossRef]
- Kramer, T.S.; Remschmidt, C.; Werner, S.; Behnke, M.; Schwab, F.; Werner, G.; Gastmeier, P.; Leistner, R. The importance of adjusting for Enterococcus species when assessing the burden of vancomycin resistance: A cohort study including over 1000 cases of enterococcal bloodstream infections. Antimicrob. Resist. Infect. Control 2018, 7, 133. [Google Scholar] [CrossRef]
- Dubler, S.; Lenz, M.; Zimmermann, S.; Richter, D.C.; Weiss, K.H.; Mehrabi, A.; Mieth, M.; Bruckner, T.; Weigand, M.A.; Brenner, T.; et al. Does vancomycin resistance increase mortality in Enterococcus faecium bacteraemia after orthotopic liver transplantation? A retrospective study. Antimicrob. Resist. Infect. Control 2020, 9, 22. [Google Scholar] [CrossRef]
- Bender, J.K.; Cattoir, V.; Hegstad, K.; Sadowy, E.; Coque, T.M.; Westh, H.; Hammerum, A.M.; Schaffer, K.; Burns, K.; Murchan, S.; et al. Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist. Updates 2018, 40, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Krull, M.; Klare, I.; Ross, B.; Trenschel, R.; Beelen, D.W.; Todt, D.; Steinmann, E.; Buer, J.; Rath, P.M.; Steinmann, J. Emergence of linezolid- and vancomycin-resistant Enterococcus faecium in a department for hematologic stem cell transplantation. Antimicrob. Resist. Infect. Control 2016, 5, 31. [Google Scholar] [CrossRef] [PubMed]
- Werner, G.; Coque, T.M.; Franz, C.M.; Grohmann, E.; Hegstad, K.; Jensen, L.; van Schaik, W.; Weaver, K. Antibiotic-resistant enterococci-tales of a drug resistance gene trafficker. Int. J. Med. Microbiol. 2013, 303, 360–379. [Google Scholar] [CrossRef] [PubMed]
- Neumann, B.; Bender, J.K.; Maier, B.F.; Wittig, A.; Fuchs, S.; Brockmann, D.; Semmler, T.; Einsele, H.; Kraus, S.; Wieler, L.H.; et al. Comprehensive integrated NGS-based surveillance and contact-net-work modeling unravels transmission dynamics of vancomycin-resistant enterococci in a high-risk population within a tertiary care hospital. PLoS ONE 2020, 15, e0235160. [Google Scholar] [CrossRef]
- Chhatwal, P.; Ebadi, E.; Thol, F.; Koenecke, C.; Beutel, G.; Ziesing, S.; Schlüter, D.; Bange, F.C.; Baier, C. Prospective infection surveillance and systematic screening for vancomycin-resistant enterococci in hematologic and oncologic patients-findings of a German tertiary care centre. J. Glob. Antimicrob. Resist. 2020, 22, 102–105. [Google Scholar] [CrossRef]
- Ioannou, P.; Maraki, S.; Koumaki, D.; Manios, G.A.; Koumaki, V.; Kassotakis, D.; Zacharopoulos, G.V.; Kofteridis, D.P.; Manios, A.; de Bree, E. A six-year retrospective study of microbiological characteristics and antimicrobial resistance in specimens from a tertiary hospital’s surgical ward. Antibiotics 2023, 12, 490. [Google Scholar] [CrossRef]
Variable | 2019 | 2020 | 2021 | Total | p | |
---|---|---|---|---|---|---|
Age, years | 53.3 ± 28.5 | 56.7 ± 26.6 | 53.9 ± 27.8 | 54.6 ± 27.6 | <0.001 | |
Sex | Female, N (%) | 3402 (50.43) | 1824 (47.70) | 2030 (52.04) | 7256 (50.14) | NS |
Male, N (%) | 3344 (49.57) | 2000 (52.30) | 1871 (47.96) | 7215 (49.86) | NS | |
Total identifications, N (%) | 6746 (46.62) | 3824 (26.43) | 3901 (26.96) | 14,471 | <0.001 | |
Positive identifications, N (%) | 1832 (27.16) | 1087 (28.43) | 1079 (27.66) | 3998 | <0.05 |
Diagnostic Material | 2019 | 2020 | 2021 | Total |
---|---|---|---|---|
N (%) | N (%) | N (%) | N | |
Blood | 1354 (20.07) | 924 (24.16) | 1146 (29.38) | 3424 |
Urine | 1205 (17.86) | 798 (20.87) | 801 (20.53) | 2804 |
Stool | 1170 (17.34) | 636 (16.63) | 763 (19.56) | 2569 |
Throat swab | 967 (14.33) | 310 (8.11) | 188 (4.82) | 1465 |
Skin swab | 540 (8.00) | 281 (7.35) | 227 (5.82) | 1048 |
Pus | 188 (2.79) | 180 (4.71) | 243 (6.23) | 611 |
Rectal swab (CPE) | 345 (5.11) | 159 (4.16) | 84 (2.15) | 588 |
Body fluids for culture | 161 (2.39) | 123 (3.22) | 99 (2.54) | 383 |
Nose swab | 211 (3.13) | 73 (1.91) | 55 (1.41) | 339 |
Vaginal swab | 94 (1.39) | 77 (2.01) | 132 (3.38) | 303 |
BAL | 111 (1.65) | 86 (2.25) | 52 (1.33) | 249 |
Sputum | 161 (2.39) | 60 (1.57) | 25 (0.64) | 246 |
Tracheotomy/endotracheal tube swab | 85 (1.26) | 12 (0.31) | 7 (0.18) | 104 |
Vaginal and rectal swabs (GBS) | 33 (0.49) | 32 (0.84) | 26 (0.67) | 91 |
Catheter | 27 (0.40) | 22 (0.58) | 19 (0.49) | 68 |
Ear swab | 32 (0.47) | 11 (0.29) | 11 (0.28) | 54 |
Cerebrospinal fluid | 23 (0.34) | 15 (0.39) | 12 (0.31) | 50 |
Cannula | 13 (0.19) | 16 (0.42) | 4 (0.10) | 33 |
Drain | 12 (0.19) | 4 (0.10) | 2 (0.05) | 18 |
Eye swab | 9 (0.13) | 1 (0.03) | 4 (0.10) | 14 |
Others | 5 (0.07) | 4 (0.10) | 1 (0.03) | 10 |
Total, N (%) | 6746 (100) | 3824 (100) | 3901 (100) | 14,471 (100) |
Department | 2019 | 2020 | 2021 | Total |
---|---|---|---|---|
N (%) | N (%) | N (%) | N | |
IM | 2631 (39.00) | 1532 (40.06) | 1179 (30.22) | 5342 |
Paediatrics | 1397 (20.71) | 619 (16.19) | 722 (18.51) | 2738 |
ICU | 441 (6.54) | 278 (7.27) | 311 (7.97) | 1030 |
Surgery | 453 (6.72) | 326 (8.53) | 236 (6.05) | 1015 |
Neurology | 325 (4.82) | 241 (6.30) | 214 (5.49) | 780 |
Gynecology | 260 (3.85) | 219 (5.73) | 230 (5.90) | 709 |
Orthopedics | 345 (5.11) | 113 (2.96) | 209 (5.36) | 667 |
Oncology | 285 (4.22) | 144 (3.77) | 173 (4.43) | 602 |
Cardiology | 208 (3.08) | 122 (3.19) | 78 (2.00) | 408 |
ICU-COVID | NA | NA | 281 (7.20) | 281 |
Neonatology | 125 (1.85) | 87 (2.28) | 66 (1.69) | 278 |
Otolaryngology | 175 (2.59) | 60 (1.57) | 40 (1.03) | 275 |
Rheumatology | 66 (0.98) | 49 (1.28) | 130 (3.33) | 245 |
Emergency | 32 (0.47) | 33 (0.86) | 26 (0.67) | 91 |
Ophthalmology | 3 (0.04) | 1 (0.03) | 6 (0.15) | 10 |
Total, N (%) | 6746 (100) | 3824 (100) | 3901 (100) | 14,471 (100) |
Microorganism | N (%) | Total, N | The Average Annual Rate of Change (%) | ||
---|---|---|---|---|---|
2019 | 2020 | 2021 | |||
Escherichia coli | 384 (20.96) | 247 (22.72) | 274 (25.39) | 905 | ↑10.06 |
Staphylococcusaureus | 245 (13.37) | 152 (13.98) | 130 (12.05) | 527 | ↓5.06 * |
Enterococcus faecalis | 120 (6.55) | 72 (6.62) | 104 (9.64) | 296 | ↑21.32 * |
Klebsiella pneumoniae | 108 (5.90) | 66 (6.07) | 78 (7.23) | 252 | ↑10.70 |
Proteus mirabilis | 78 (4.26) | 48 (4.42) | 63 (5.84) | 189 | ↑17.09 |
Staphylococcus epidermidis | 68 (3.71) | 57 (5.24) | 50 (4.63) | 175 | (−) |
Pseudomonas aeruginosa | 88 (4.80) | 38 (3.50) | 48 (4.45) | 174 | (−) |
Enterobacter cloacae | 49 (2.67) | 34 (3.13) | 33 (3.06) | 116 | ↑7.05 |
Staphylococcus hominis | 47 (2.57) | 41 (3.77) | 26 (2.41) | 114 | (−) |
Salmonella spp. | 50 (2.73) | 22 (2.02) | 16 (1.48) | 88 | ↓26.37 |
Enterococcus faecium | 29 (1.58) | 22 (2.02) | 27 (2.50) | 78 | ↑25.79 |
Candida albicans | 57 (3.11) | 15 (1.38) | 5 (0.46) | 77 | ↓61.54 |
Streptococcus agalactiae | 34 (1.86) | 19 (1.75) | 23 (2.13) | 76 | ↑7.01 |
Staphylococcus haemolyticus | 19 (1.04) | 20 (1.84) | 23 (2.13) | 62 | ↑43.11 |
Haemophilusinfluenzae | 52 (2.84) | 5 (0.46) | 1 (0.09) | 58 | ↓82.20 |
Morganella morganii | 17 (0.93) | 21 (1.93) | 17 (1.58) | 55 | ↑30.34 * |
Acinetobacter baumannii | 17 (0.93) | 16 (1.47) | 14 (1.30) | 47 | ↑18.23 * |
Serratia marcescens | 8 (0.44) | 17 (1.56) | 20 (1.85) | 45 | ↑105.05 |
Clostridioides difficile | 18 (0.98) | 10 (0.92) | 12 (1.11) | 40 | (−) |
Others | 339 (18.50) | 165 (15.18) | 113 (10.47) | 617 | ↓24.77 |
Total, N (%) | 1832 (100) | 1087 (100) | 1079 (100) | 3998 (100) |
Year | 2019 | 2020 | 2021 | The Average Annual Rate of Change (%) |
---|---|---|---|---|
Department | Microorganism (N) | |||
IM | E. coli (163) | E. coli (85) | E. coli (83) | ↑9.54 |
S. aureus (67) | S. aureus (30) | S. aureus (23) | ↓10.04 | |
K. pneumoniae (47) | K. pneumoniae (30) | K. pneumoniae (29) | ↑20.56 | |
E. faecalis (44) | E. faecalis (28) | E. faecalis (28) | ↑22.38 | |
Neurology | E. coli (31) | E. coli (18) | E. coli (23) | (−) |
S. aureus (13) | S. aureus (10) | S. aureus (8) | ↓5.39 | |
E. faecalis (10) | E. faecalis (5) | E. faecalis (8) | ↑7.85 | |
P. mirabilis (9) | K. pneumoniae (7) | K. pneumoniae (6) | NA | |
Paediatrics | E. coli (56) | E. coli (36) | E. coli (36) | ↑15.57 |
S. aureus (37) | S. aureus (23) | S. aureus (9) | ↓28.92 | |
Salmonella spp. (21) | Salmonella spp. (11) | Salmonella spp. (10) | (−) | |
S. pneumoniae (19) | S. pneumoniae (5) | P. aeruginosa (5) | NA | |
ICU | S. aureus (19) | S. aureus (23) | S. marcescens (12) | NA |
K. pneumoniae (19) | K. pneumoniae (12) | K. pneumoniae (17) | ↑13.12 | |
C. albicans (17) | E. coli (12) | S. epidermidis (12) | NA | |
S. epidermidis (14) | S. marcescens (11) | P. aeruginosa (13) | NA | |
Surgery | E. coli (61) | E. coli (58) | E. coli (45) | (−) |
S. aureus (34) | S. aureus (35) | S. aureus (24) | (−) | |
E. cloacae (15) | P. mirabilis (20) | P. mirabilis (20) | NA | |
E. faecalis (22) | E. faecalis (15) | E. faecalis (19) | ↑12.67 |
Department | 2019 | 2020 | 2021 | TPC | Prevalence (Overall) (%) | The Average Annual Rate of Change (%) | p |
---|---|---|---|---|---|---|---|
N | |||||||
IM | 181 | 122 | 114 | 1157 | 36.04 | ↑34.38 | <0.01 |
ICU | 57 | 44 | 63 | 380 | 43.16 | ↑20.88 | <0.001 |
Surgery | 48 | 34 | 32 | 839 | 13.59 | ↑(-) | NS |
Neurology | 20 | 18 | 22 | 220 | 27.27 | ↑27.50 | NS |
Paediatrics | 7 | 1 | 8 | 160 | 10.00 | ↑41.59 | NS |
ICU-COVID | NA | NA | 62 | 86 | 72.09 | NA | NA |
Department | Year | Prevalence (Overall) (%) | The Average Annual Rate of Change (%) | p | ||
---|---|---|---|---|---|---|
2019 | 2020 | 2021 | ||||
IM | ||||||
ESBL | 46 | 42 | 43 | 18.04 | ↑34.54 | <0.001 |
AmpC | 14 | 11 | 3 | 3.86 | ↓33.59 | NS |
VRE | 14 | 5 | 5 | 16.90 | ↓24.28 | <0.001 |
HLAR | 13 | 10 | 1 | |||
MRSA | 10 | 0 | 0 | |||
MLSb-inductive | 4 | 2 | 0 | |||
MRCNS | 3 | 1 | 2 | |||
OXA | 1 | 0 | 0 | |||
MLSb-constitutive | 2 | 4 | 0 | |||
MBL | 1 | 0 | 0 | |||
ICU | ||||||
ESBL | 16 | 8 | 25 | 25.52 | ↑28.62 | <0.01 |
MRSA | 8 | 5 | 1 | 29.79 | ↓3.18 | NS |
AmpC | 6 | 13 | 2 | 10.94 | ↓40.48 | NS |
VRE | 4 | 2 | 5 | 23.40 | ↓31.08 | NS |
MRCNS | 4 | 2 | 4 | |||
HLAR | 3 | 3 | 1 | |||
MLSb-constitutive | 5 | 3 | 0 | |||
KPC | 1 | 0 | 0 | |||
MLSb-inductive | 1 | 3 | 1 | |||
MBL | 1 | 0 | 4 | |||
Surgery | ||||||
ESBL | 13 | 16 | 15 | 8.8 | ↓0.32 | NS |
AmpC | 18 | 8 | 10 | 7.2 | ↓30.81 | NS |
MRSA | 8 | 3 | 3 | 10.61 | ↓25.05 | NS |
VRE | 2 | 0 | 2 | |||
MLSb-constitutive | 14 | 5 | 1 | |||
HLAR | 7 | 0 | 0 | |||
MRCNS | 2 | 5 | 2 | |||
MBL | 0 | 0 | 0 | |||
MLSb-inductive | 1 | 7 | 0 | |||
Neurology | ||||||
ESBL | 4 | 6 | 5 | 10.79 | ↑28.31 | NS |
AmpC | 1 | 3 | 2 | 4.32 | ↑62.64 | NS |
MRSA | 2 | 0 | 0 | |||
MLSb-constitutive | 2 | 0 | 0 | |||
HLAR | 1 | 0 | 1 | |||
MRCNS | 1 | 0 | 3 | |||
Paediatrics | ||||||
MRSA | 0 | 0 | 0 | |||
MLSb-constitutive | 1 | 1 | 0 | |||
MLSb- inductive | 0 | 0 | 0 | |||
VRE | 1 | 0 | 0 | |||
ESBL | 0 | 0 | 1 | |||
AmpC | 0 | 0 | 1 | |||
MRCNS | 0 | 0 | 0 | |||
ICU-COVID | ||||||
ESBL | 13 | 40.63 | ||||
VRE | 2 | 10.53 | ||||
HLAR | 4 | |||||
MBL | 0 | |||||
MRCNS | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tenderenda, A.; Łysakowska, M.E.; Gawron-Skarbek, A. The Prevalence of Alert Pathogens and Microbial Resistance Mechanisms: A Three-Year Retrospective Study in a General Hospital in Poland. Pathogens 2023, 12, 1401. https://doi.org/10.3390/pathogens12121401
Tenderenda A, Łysakowska ME, Gawron-Skarbek A. The Prevalence of Alert Pathogens and Microbial Resistance Mechanisms: A Three-Year Retrospective Study in a General Hospital in Poland. Pathogens. 2023; 12(12):1401. https://doi.org/10.3390/pathogens12121401
Chicago/Turabian StyleTenderenda, Anna, Monika Eliza Łysakowska, and Anna Gawron-Skarbek. 2023. "The Prevalence of Alert Pathogens and Microbial Resistance Mechanisms: A Three-Year Retrospective Study in a General Hospital in Poland" Pathogens 12, no. 12: 1401. https://doi.org/10.3390/pathogens12121401
APA StyleTenderenda, A., Łysakowska, M. E., & Gawron-Skarbek, A. (2023). The Prevalence of Alert Pathogens and Microbial Resistance Mechanisms: A Three-Year Retrospective Study in a General Hospital in Poland. Pathogens, 12(12), 1401. https://doi.org/10.3390/pathogens12121401