Distribution of Opportunistic Pathogens in People Living with HIV at a University Hospital in Istanbul over a One-Year Treatment Period and Its Association with CD4 T Cell Counts
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Framasari, D.A.; Flora, R.; Sitorus, R.J. Infeksi Oportunistik Pada ODHA (Orang Dengan HIV/AIDS) Terhadap Kepatuhan Minum ARV (Anti Retroviral) Di Kota Palembang. Jambi Med. J. J. Kedokt Dan Kesehat. 2020, 8, 67–74. [Google Scholar]
- Mitiku, H.; Weldegebreal, F.; Teklemariam, Z. Magnitude of opportunistic infections and associated factors in HIV-infected adults on antiretroviral therapy in eastern Ethiopia. HIV/AIDS 2015, 7, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Pribadi, G.S.; Cahyono, A.B.F. Characteristics and opportunistic infections of AIDS patients in East Java Province in 2018. J. Berk. Epidemiol. 2021, 9, 96–104. [Google Scholar] [CrossRef]
- Sutini, S.; Rahayu, S.R.; Saefurrohim, M.Z.; Al Ayubi, M.T.A.; Wijayanti, H.; Wandastuti, A.D.; Miarso, D.; Susilastuti, M.S. Prevalence and Determinants of Opportunistic Infections in HIV Patients: A Cross-Sectional Study in the City of Semarang. Ethiop. J. Health Sci. 2022, 32, 809–816. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, T.; Wang, R.; Zhang, H.; Huang, X.; Yin, J.; Zhang, L.; Xu, X.; Wu, H. Plasma IP-10 is associated with rapid disease progression in early HIV-1 infection. Viral Immunol. 2012, 25, 333–337. [Google Scholar] [CrossRef]
- Roberts, L.; Passmore, J.-A.S.; Williamson, C.; Little, F.; Bebell, L.M.; Mlisana, K.; Burgers, W.A.; van Loggerenberg, F.; Walzl, G.; Siawaya, J.F.D.; et al. Plasmacytokine levels during acute HIV-1 infection predict HIV disease progression. AIDS 2010, 24, 819–831. [Google Scholar] [CrossRef]
- Saavedra, A.; Campinha-Bacote, N.; Hajjar, M.; Kenu, E.; Gillani, F.S.; Obo-Akwa, A.; Lartey, M.; Kwara, A. Causes of death and factors associated with early mortality of HIV-infected adults admitted to Korle-Bu Teaching Hospital. Pan Afr. Med. J. 2017, 27, 48. [Google Scholar] [CrossRef]
- Choi, Y.; Choi, B.Y.; Kim, S.M.; Kim, S.I.; Kim, J.; Choi, J.Y.; Kim, S.W.; Song, J.Y.; Kim, Y.J.; Park, D.W.; et al. Epidemiological characteristics of HIV infected Korean: Korea HIV/AIDS Cohort Study. Epidemiol. Health 2019, 41, e2019037. [Google Scholar] [CrossRef]
- Çabalak, M. HIV and Other Opportunistic Infection, 1st ed.; Taşova, Y., Ed.; HIV ve AIDS; Türkiye Klinikleri: Ankara, Turkey, 2021; pp. 98–105. [Google Scholar]
- Paiardini, M.; Müller-Trutwin, M. HIV-associated chronic immune activation. Immunol. Rev. 2013, 254, 78–101. [Google Scholar] [CrossRef]
- Dockrell, D.H.; Edwards, S.; Fisher, M.; Williams, I.; Nelson, M. Evolving controversies and challenges in the management of opportunistic infections in HIV-seropositive individuals. J. Infect. 2011, 63, 177–186. [Google Scholar] [CrossRef]
- Oladele, R.; Ogunsola, F.; Akanmu, A.; Stocking, K.; Denning, D.W.; Govender, N. Opportunistic fungal infections in persons living with advanced HIV disease in Lagos, Nigeria: A 12-year retrospective study. Afr. Health Sci. 2020, 20, 1573–1581. [Google Scholar] [CrossRef]
- Justiz Vaillant, A.A.; Naik, R. HIV-1—Associated Opportunistic Infections. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Yen, Y.F.; Chen, M.; Jen, I.A.; Chuang, P.H.; Lee, C.Y.; Lin, S.I.; Chen, Y.A. Short- and Long-term Risks of Highly Active Antiretroviral Treatment with Incident Opportunistic Infections among People Living with HIV/AIDS. Sci. Rep. 2019, 9, 3476. [Google Scholar] [CrossRef]
- Neto, P.L.F.; Fonseca, R.R.S.; Avelino, M.E.S.; Vilhena, E.M.; Barbosa, M.D.A.A.P.; Lopes, C.A.F.; Gomes, S.T.M.; Sequeira, B.J.; Laurentino, R.V.; Freitas, F.B.; et al. Prevalence and Factors Associated with Syphilis in People Living with HIV/AIDS in the State of Pará, Northern Brazil. Front. Public Health 2021, 9, 646663. [Google Scholar] [CrossRef] [PubMed]
- Kalichman, S.C.; Pellowski, J.; Turner, C. Prevalence of sexually transmitted co-infections in people living with HIV/AIDS: Systematic review with implications for using HIV treatments for prevention. Sex. Transm. Infect. 2011, 87, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Köksal, M.O.; Beka, H.; Evlice, O.; Çiftçi, S.; Keskin, F.; Başaran, S.; Akgül, B.; Eraksoy, H.; Ağaçfidan, A. Syphilis seroprevalence among HIV-infected males in Istanbul, Turkey. Rev. Argent. Microbiol. 2020, 52, 266–271. [Google Scholar] [CrossRef] [PubMed]
- CDC People Coinfected with HIV and Viral Hepatitis. 2023. Available online: https://www.cdc.gov/hepatitis/populations/hiv.htm (accessed on 24 August 2023).
- Omatola, C.A.; Onoja, B.A.; Thomas, T. High Rate of Hepatitis B Virus Surface Antigenemia among People Living with HIV/AIDS in Kakuri, Kaduna State, North West Nigeria. Viral Immunol. 2017, 30, 516–521. [Google Scholar] [CrossRef]
- Audsley, J.; Sasadeusz, J. Challenges and opportunities for hepatitis B cure in the setting of HIV—Hepatitis B virus co-infection. Curr. Opin. HIV AIDS 2020, 15, 193–199. [Google Scholar] [CrossRef]
- Choy, C.Y.; Ang, L.W.; Ng, O.T.; Leo, Y.S.; Wong, C.S. Factors Associated with Hepatitis B and C Co-Infection among HIV-Infected Patients in Singapore, 2006–2017. Trop. Med. Infect. Dis. 2019, 4, 87. [Google Scholar] [CrossRef]
- Akhtar, A.; Fatima, S.; Saeed, H.; Soo, C.T.; Khan, A.H. HIV-HCV Coinfection: Prevalence and Treatment Outcomes in Malaysia. Intervirology 2022, 65, 87–93. [Google Scholar] [CrossRef]
- van Baarle, D.; Hovenkamp, E.; Callan, M.F.; Wolthers, K.C.; Kostense, S.; Tan, L.C.; Niesters, H.G.; Osterhaus, A.D.; McMichael, A.J.; van Oers, M.H.; et al. Dysfunctional Epstein-Barr virus (EBV)-specific CD8(+) T lymphocytes and increased EBV load in HIV-1 infected individuals progressing to AIDS-related non-Hodgkin lymphoma. Blood 2001, 98, 146–155. [Google Scholar] [CrossRef]
- Traore, L.; Nikiema, O.; Ouattara, A.K.; Compaore, T.R.; Soubeiga, S.T.; Diarra, B.; Obiri-Yeboah, D.; Sorgho, P.A.; Djigma, F.W.; Bisseye, C.; et al. EBV and HHV-6 Circulating Subtypes in People Living with HIV in Burkina Faso, Impact on CD4 T cell count and HIV Viral Load. Mediterr. J. Hematol. Infect. Dis. 2017, 9, e2017049. [Google Scholar] [CrossRef] [PubMed]
- Kiros, M.; Geteneh, A.; Andualem, H.; Alemu, D.; Tesfaye, A.; Tefera, D.A.; Mihret, A.; Alemayehu, D.H.; Mulu, A. Human cytomegalovirus infection among treatment-naive HIV-1 infected patients in Ethiopia. PLoS ONE 2021, 16, e0247264. [Google Scholar] [CrossRef] [PubMed]
- Grønborg, H.L.; Jespersen, S.; Hønge, B.L.; Jensen-Fangel, S.; Wejse, C. Review of cytomegalovirus coinfection in HIV-infected individuals in Africa. Rev. Med. Virol. 2017, 27, e1907. [Google Scholar] [CrossRef] [PubMed]
- Grønborg, H.L.; Jespersen, S.; Egedal, J.H.; Correia, F.G.; Medina, C.; Krarup, H.; Hønge, B.L.; Wejse, C.; Bissau HIV Cohort Study Group. Prevalence and clinical characteristics of CMV coinfection among HIV infected individuals in Guinea-Bissau: A cross-sectional study. Trop. Med. Int. Health TM IH 2018, 23, 896–904. [Google Scholar] [CrossRef]
- Zhao, M.; Zhuo, C.; Li, Q.; Liu, L. Cytomegalovirus (CMV) infection in HIV/AIDS patients and diagnostic values of CMV-DNA detection across different sample types. Ann. Palliat. Med. 2020, 9, 2710–2715. [Google Scholar] [CrossRef]
- Kawatsu, L.; Uchimura, K.; Kaneko, N.; Imahashi, M. Epidemiology of coinfection with tuberculosis and HIV in Japan, 2012-2020. West. Pac. Surveill. Response J. WPSAR 2022, 13, 1–8. [Google Scholar] [CrossRef]
- Ali, M.; Razok, A.; Gassim, M.; Elmaki, N.; Goravey, W.; Alkhal, A.; Almaslamani, M.; Alsoub, H. HIV and AIDS-defining opportunistic illnesses in the state of Qatar: A cohort population-based retrospective study covering 17 years (2000–2016). Ann. Med. Surg. 2022, 78, 103842. [Google Scholar] [CrossRef]
- Erfaninejad, M.; Zarei Mahmoudabadi, A.; Maraghi, E.; Hashemzadeh, M.; Fatahinia, M. Epidemiology, prevalence, and associated factors of oral candidiasis in HIV patients from southwest Iran in post-highly active antiretroviral therapy era. Front. Microbiol. 2022, 13, 983348. [Google Scholar] [CrossRef]
- Taverne-Ghadwal, L.; Kuhns, M.; Buhl, T.; Schulze, M.H.; Mbaitolum, W.J.; Kersch, L.; Weig, M.; Bader, O.; Groß, U. Epidemiology and Prevalence of Oral Candidiasis in HIV Patients from Chad in the Post-HAART Era. Front. Microbiol. 2022, 13, 844069. [Google Scholar] [CrossRef]
- Ding, Z.D.; Zheng, J.F.; Song, C.B.; Fu, Y.J.; Xu, J.J.; Jiang, Y.J.; Shang, H.; Zhang, Z.N. Decreased CD4 + CD8low T cells in early HIV infection are associated with rapid disease progression. Cytokine 2020, 125, 154801. [Google Scholar] [CrossRef]
- Xu, L.; Liu, Y.; Song, X.; Li, Y.; Han, Y.; Zhu, T.; Cao, W.; Li, T. Naïve CD4+ cell counts significantly decay and high HIV RNA levels contribute to immunological progression in long-term non-progressors infected with HIV by blood products: A cohort study. BMC Immunol. 2021, 22, 36. [Google Scholar] [CrossRef]
- Soumya, D.; Hima Bindu, A. Opportunistic diseases as a consequence of HIV/AIDS. J. AIDS Clin. Res. 2011, 2, 5. [Google Scholar]
- Chakraborty, H.; Iyer, M.; Duffus, W.A.; Samantapudi, A.V.; Albrecht, H.; Weissman, S. Disparities in viral load and CD4 count trends among HIV-infected adults in South Carolina. AIDS Patient Care STDs 2015, 29, 26–32. [Google Scholar] [CrossRef]
- Klasinc, R.; Rieger, A.; Presterl, E.; Wrba, T.; Diab-Elschahawi, M. Epidemiology of Urinary Tract Infections in HIV Positive Patients at a Tertiary Care University Hospital in Central Europe (2011–2016). Infect. Disord. Drug Targets 2018, 18, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Pati, I.; Mengoli, C.; Pupella, S.; Masiello, F.; Barone, F.; Cruciani, M.; De Angelis, V. Epidemiology of Treponema pallidum and HIV co-infections in the Italian blood donor population: 2009–2021. Blood Transfus. 2023, 21, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.Y.; Gong, H.Z.; Hu, K.R.; Zheng, H.Y.; Wan, X.; Li, J. Effect of syphilis infection on HIV acquisition: A systematic review and meta-analysis. Sex. Transm. Infect. 2021, 97, 525–533. [Google Scholar] [CrossRef]
Baseline Characteristics | n (%) |
---|---|
Sex n (%) | |
Female | 33 (14.3) |
Male | 197 (85.7) |
Residence n (%) | |
Istanbul | 202 (87.8) |
Other | 28 (12.2) |
Age (median and IQR) | 35.11 (27.45–44.9) |
18–29 | 75 |
30–39 | 70 |
40–49 | 45 |
50–59 | 27 |
60–69 | 10 |
≥70 | 3 |
CD4 count at baseline (median and IQR) | 429 (233.5–663.75) |
0–200 cells/µL | 49 |
201–350 cells/µL | 41 |
351–500 cells/µL | 42 |
501–700 cells/µL | 49 |
>700 cells/µL | 49 |
CD8 count at baseline (median and IQR) | 861 (607.75–1245) |
0–350 cells/µL | 18 |
351–600 cells/µL | 37 |
601–900 cells/µL | 69 |
901–1500 cells/µL | 72 |
>1500 cells/µL | 34 |
CD4/CD8 ratio (median and IQR) | 0.46 (0.21–0.78) |
<0.3 | 77 |
∣0.3–0.5∣ | 49 |
∣0.51–0.7∣ | 34 |
∣0.71–1.0∣ | 34 |
>1.0 | 36 |
HIV RNA (median and IQR) | 69,516.5 (5787.5–375,660) |
≤100 (copies/mL) | 35 |
∣101–1000∣ (copies/mL) | 9 |
∣1001–10,000∣ (copies/mL) | 21 |
∣10,001–100,000∣ (copies/mL) | 61 |
>100,000 (copies/mL) | 104 |
Age | T. pallidum | CMV | EBV | HCV | HBV | M. tuberculosis | C. albicans | C. glabrata |
---|---|---|---|---|---|---|---|---|
18–29 | 17 | 5 | 3 | 1 | 1 | 1 | 1 | 1 |
30–39 | 14 | 8 | - | - | 2 | - | 2 | - |
40–49 | 10 | 10 | 1 | 3 | 1 | 3 | - | |
50–59 | 1 | 8 | 4 | 1 | 4 | 1 | 1 | - |
60–69 | 1 | 1 | 1 | - | - | - | - | - |
≥70 | - | - | - | - | - | - | - | - |
Total | 43 | 32 | 9 | 2 | 10 | 3 | 7 | 1 |
Agents | CD4 Counts (Cells/µL) | ||||
---|---|---|---|---|---|
0–50 | 51–200 | 201–500 | ≥500 | Total | |
T. pallidum | 14 | 21 | 35 | ||
CMV + T. pallidum | 1 | 3 | 1 | 1 | 6 |
HBV + T. pallidum | 1 | 1 | 2 | ||
CMV | 4 | 4 | 6 | 4 | 18 |
CMV + HBV | 2 | 2 | |||
CMV + EBV | 3 | 1 | 4 | ||
EBV | 2 | 1 | 1 | 4 | |
HCV | 1 | 1 | |||
HBV | 3 | 3 | 6 | ||
HCV + C. albicans + C. glabrata | 1 | 1 | |||
M. tuberculosis | 1 | 1 | 2 | ||
M. tuberculosis + C. albicans | 1 | 1 | |||
C. albicans | 1 | 1 | 1 | 3 | |
CMV + C. albicans | 1 | 1 | |||
CMV + EBV + C. albicans | 1 | 1 |
Age | CD4 | CD8 | CD4/CD8 | HIV RNA | |
---|---|---|---|---|---|
Age | 1.0 | −0.038 | −0.12 | −0.28 | 0.19 |
CD4 | −0.38 | 1.0 | 0.28 | 0.73 | −0.42 |
CD8 | −0.12 | 0.28 | 1.0 | −0.31 | 0.04 |
CD4/CD8 | −0.28 | 0.73 | −0.31 | 1.0 | −0.43 |
HIV RNA | 0.19 | −0.42 | 0.04 | −0.43 | 1.0 |
CD4 Count | CD4/CD8 Ratio | HIV RNA Load | ||||
---|---|---|---|---|---|---|
rs | p | rs | p | rs | p | |
HIV RNA | −0.421 | <0.001 | −0.421 | <0.001 | ||
T. pallidum | 0.135 | 0.041 | 0.103 | 0.121 | 0.216 | 0.001 |
CMV | −0.341 | <0.001 | −0.337 | <0.001 | 0.225 | 0.001 |
EBV | −0.148 | 0.024 | −0.148 | 0.025 | 0.133 | 0.043 |
HCV | −0.059 | 0.371 | −0.042 | 0.523 | 0.044 | 0.509 |
HBV | −0.054 | 0.413 | −0.004 | 0.952 | −0.025 | 0.705 |
M. tuberculosis | −0.040 | 0.545 | −0.039 | 0.557 | 0.029 | 0.660 |
C. albicans | −0.226 | 0.001 | −0.228 | <0.001 | 0.141 | 0.033 |
C. glabrata | −0.099 | 0.134 | −0.099 | 0.136 | 0.107 | 0.105 |
AUC | p | 95%CI | Sensitivity % | Specificity % | ||
---|---|---|---|---|---|---|
T. pallidum | CD4/CD8 | 0.576 | 0.121 | 0.485–0.667 | ||
HIVRNA | 0.692 | <0.001 | 0.622–0.763 | 90.7 | 52.2 | |
CMV | CD4/CD8 | 0.558 | 0.091 | 0.489–0.686 | ||
HIVRNA | 0.669 | 0.001 | 0.595–0.744 | 55.9 | 78.1 | |
EBV | CD4/CD8 | 0.280 | 0.026 | 0.150–0.411 | 100 | 4.5 |
HIVRNA | 0.698 | 0.044 | 0.523–0.874 | 66.7 | 77.4 | |
HCV | CD4/CD8 | 0.368 | 0.522 | 0.000–0.787 | ||
HIVRNA | 0.636 | 0.508 | 0.172–1.000 | |||
HBV | CD4/CD8 | 0.494 | 0.952 | 0.267–0.721 | ||
HIVRNA | 0.465 | 0.705 | 0.341–0.588 | |||
M. tuberculosis | CD4/CD8 | 0.401 | 0.55 | 0.251–0.550 | ||
HIVRNA | 0.574 | 0.659 | 0.275–0.873 | |||
C. albicans | CD4/CD8 | 0.117 | 0.001 | 0.040–0.194 | 100 | 1.3 |
HIVRNA | 0.737 | 0.033 | 0.504–0.969 | 71.4 | 80.3 | |
C. glabrata | CD4/CD8 | 0.068 | 0.136 | 0.034–0.101 | ||
HIVRNA | 0.969 | 0.105 | 0.947–0.992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirkoyun Uysal, H.; Koksal, M.O.; Sarsar, K.; Soguksu, P.; Erkose Genc, G.; Yapar, G.; Ozdemir, E.; Onel, M.; Mese, S.; Demirci, M.; et al. Distribution of Opportunistic Pathogens in People Living with HIV at a University Hospital in Istanbul over a One-Year Treatment Period and Its Association with CD4 T Cell Counts. Pathogens 2023, 12, 1226. https://doi.org/10.3390/pathogens12101226
Kirkoyun Uysal H, Koksal MO, Sarsar K, Soguksu P, Erkose Genc G, Yapar G, Ozdemir E, Onel M, Mese S, Demirci M, et al. Distribution of Opportunistic Pathogens in People Living with HIV at a University Hospital in Istanbul over a One-Year Treatment Period and Its Association with CD4 T Cell Counts. Pathogens. 2023; 12(10):1226. https://doi.org/10.3390/pathogens12101226
Chicago/Turabian StyleKirkoyun Uysal, Hayriye, Muammer Osman Koksal, Kutay Sarsar, Pinar Soguksu, Gonca Erkose Genc, Gizem Yapar, Evrim Ozdemir, Mustafa Onel, Sevim Mese, Mehmet Demirci, and et al. 2023. "Distribution of Opportunistic Pathogens in People Living with HIV at a University Hospital in Istanbul over a One-Year Treatment Period and Its Association with CD4 T Cell Counts" Pathogens 12, no. 10: 1226. https://doi.org/10.3390/pathogens12101226
APA StyleKirkoyun Uysal, H., Koksal, M. O., Sarsar, K., Soguksu, P., Erkose Genc, G., Yapar, G., Ozdemir, E., Onel, M., Mese, S., Demirci, M., Erturan, Z., Yurtseven, E., Eraksoy, O. H., & Agacfidan, A. (2023). Distribution of Opportunistic Pathogens in People Living with HIV at a University Hospital in Istanbul over a One-Year Treatment Period and Its Association with CD4 T Cell Counts. Pathogens, 12(10), 1226. https://doi.org/10.3390/pathogens12101226