Brucella abortus Rough-Type Mutant Induces Ferroptosis and More Oxidative Stress in Infected Macrophages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Bacterial Strains and Cell Lines
2.3. Sample Collection and Preparation
2.4. RNA Isolation, Library Preparation, and Sequencing
2.5. Data Analysis
2.6. GO Enrichment and Differential Expression Analysis
2.7. Cell Infection and Survival Assays
2.8. Lactate Dehydrogenase Release Assay
2.9. RNA Extraction and Quantitative Real-Time PCR
2.10. Immunoblot Analysis
2.11. Immunofluorescence Assay
2.12. Lipid Peroxidation Assay
2.13. Measurement of ROS
2.14. GSH Assay
2.15. Statistical Analysis
3. Results and Discussion
3.1. Rough Mutant RB14 Infection Reduced Its Intracellular Survival in RAW264.7 Cells and Increased the Death of Macrophages, in Contrast to B. abortus S2308
3.2. Identification of DEGs in Macrophages Infected with B. abortus S2308 and Its Rough Mutant RB14
3.3. GO Analysis of Differential Host Gene Expression after Infection with Rough Mutant RB14 and B. abortus S2308
3.4. Rough Mutant RB14 Caused Stronger Oxidative Stress Than B. abortus S2308
3.5. Rough Mutant RB14 Induced More Expression of Ferroptosis-Associated Genes Than B. abortus S2308
3.6. Rough Mutant RB14 Induced Macrophage Ferroptosis Soon after Infection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salcedo, S.P.; Marchesini, M.I.; Lelouard, H.; Fugier, E.; Jolly, G.; Balor, S.; Muller, A.; Lapaque, N.; Demaria, O.; Alexopoulou, L.; et al. Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1. PLoS Pathog. 2008, 4, e21. [Google Scholar] [CrossRef] [PubMed]
- Salcedo, S.P.; Marchesini, M.I.; Degos, C.; Terwagne, M.; Von Bargen, K.; Lepidi, H.; Herrmann, C.K.; Santos Lacerda, T.L.; Imbert, P.R.C.; Pierre, P.; et al. BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions. Front. Cell. Infect. Microbiol. 2013, 3, 28. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.A.; Khan, M.; Magnani, D.D.; Harms, J.S.; Durward, M.; Radhakrishnan, G.K.; Liu, Y.-P.; Splitter, G.A. Brucella induces an unfolded protein response via TcpB that supports intracellular replication in macrophages. PLoS Pathog. 2013, 9, e1003785. [Google Scholar] [CrossRef] [PubMed]
- Byndloss, M.X.; Tsai, A.Y.; Walker, G.T.; Miller, C.N.; Young, B.M.; English, B.C.; Seyffert, N.; Kerrinnes, T.; de Jong, M.F.; Atluri, V.L.; et al. Brucella abortus Infection of Placental Trophoblasts Triggers Endoplasmic Reticulum Stress-Mediated Cell Death and Fetal Loss via Type IV Secretion System-Dependent Activation of CHOP. mBio 2019, 10, e01538-19. [Google Scholar] [CrossRef]
- Starr, T.; Child, R.; Wehrly, T.D.; Hansen, B.; Hwang, S.; López-Otin, C.; Virgin, H.W.; Celli, J. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 2012, 11, 33–45. [Google Scholar] [CrossRef]
- Pei, J.; Kahl-McDonagh, M.; Ficht, T.A. Brucella dissociation is essential for macrophage egress and bacterial dissemination. Front. Cell. Infect. Microbiol. 2014, 4, 23. [Google Scholar] [CrossRef]
- Tian, M.; Yin, Y.; Lian, Z.; Li, Z.; Song, M.; Hu, H.; Guan, X.; Ding, C.; Wang, S.; Li, T.; et al. A rough Brucella mutant induced macrophage death depends on secretion activity of T4SS, but not on cellular Txnip- and Caspase-2-mediated signaling pathway. Vet. Microbiol. 2020, 244, 108648. [Google Scholar] [CrossRef]
- Zhang, M.; Han, X.; Liu, H.; Tian, M.; Ding, C.; Song, J.; Sun, X.; Liu, Z.; Yu, S. Inactivation of the ABC transporter ATPase gene in Brucella abortus strain 2308 attenuated the virulence of the bacteria. Vet. Microbiol. 2013, 164, 322–329. [Google Scholar] [CrossRef]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; Van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef]
- Kan, X.; Yin, Y.; Song, C.; Tan, L.; Qiu, X.; Liao, Y.; Liu, W.; Meng, S.; Sun, Y.; Ding, C. Newcastle-disease-virus-induced ferroptosis through nutrient deprivation and ferritinophagy in tumor cells. iScience 2021, 24, 102837. [Google Scholar] [CrossRef]
- López-Pérez, W.; Sai, K.; Sakamachi, Y.; Parsons, C.; Kathariou, S.; Ninomiya-Tsuji, J. TAK1 inhibition elicits mitochondrial ROS to block intracellular bacterial colonization. Proc. Natl. Acad. Sci. USA 2021, 118, e2023647118. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.F.; Pidwill, G.R.; Carnell, O.T.; Surewaard, B.G.J.; Shamarina, D.; Sutton, J.A.F.; Jeffery, C.; Derré-Bobillot, A.; Archambaud, C.; Siggins, M.K.; et al. Commensal bacteria augment Staphylococcus aureus infection by inactivation of phagocyte-derived reactive oxygen species. PLoS Pathog. 2021, 17, e1009880. [Google Scholar] [CrossRef]
- Callera, G.E.; Tostes, R.C.; Yogi, A.; Montezano, A.C.I.; Touyz, R.M. Endothelin-1-induced oxidative stress in DOCA-salt hypertension involves NADPH-oxidase-independent mechanisms. Clin. Sci. 2006, 110, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, C.S.; Wang, C.; Wang, D. Endothelin-1-Induced Microvascular ROS and Contractility in Angiotensin-II-Infused Mice Depend on COX and TP Receptors. Antioxidants 2019, 8, 193. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Fan, J.; Li, Y.; Wu, W.; Yan, Q.; Zheng, Q. ABCG1 Attenuates Oxidative Stress Induced by H2O2 through the Inhibition of NADPH Oxidase and the Upregulation of Nrf2-Mediated Antioxidant Defense in Endothelial Cells. Anal. Cell. Pathol. 2020, 2020, 2095645. [Google Scholar] [CrossRef]
- Herb, M.; Schramm, M. Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants 2021, 10, 313. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.-H.; Yen, C.-H.; Hsieh, T.-H.; Kao, T.-J.; Chiu, J.-Y.; Chiang, Y.-H.; Hoffer, B.J.; Chang, W.-C.; Chou, S.-Y. CCL5 via GPX1 activation protects hippocampal memory function after mild traumatic brain injury. Redox Biol. 2021, 46, 102067. [Google Scholar] [CrossRef]
- Arechederra, M.; Carmona, R.; González-Nuñez, M.; Gutiérrez-Uzquiza, Á.; Bragado, P.; Cruz-González, I.; Cano, E.; Guerrero, C.; Sánchez, A.; López-Novoa, J.M.; et al. Met signaling in cardiomyocytes is required for normal cardiac function in adult mice. Biochim. Biophys. Acta 2013, 1832, 2204–2215. [Google Scholar] [CrossRef]
- Chen, F.; He, Y. Caspase-2 mediated apoptotic and necrotic murine macrophage cell death induced by rough Brucella abortus. PLoS ONE 2009, 4, e6830. [Google Scholar] [CrossRef]
- Abuaita, B.H.; Chen, X.; Fitzgerald, K.A.; Nuñez, G.; He, Y.; Yin, X.-M.; O’Riordan, M.X.D. Endoplasmic Reticulum Stress Activates the Inflammasome via NLRP3- and Caspase-2-Driven Mitochondrial Damage. Immunity 2015, 43, 451–462. [Google Scholar]
- Ferrero, M.C.; Fossati, C.A.; Baldi, P.C. Smooth Brucella strains invade and replicate in human lung epithelial cells without inducing cell death. Microbes Infect. 2009, 11, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Cui, G.; Wei, P.; Zhao, Y.; Guan, Z.; Yang, L.; Sun, W.; Wang, S.; Peng, Q. Brucella infection inhibits macrophages apoptosis via Nedd4-dependent degradation of calpain2. Vet. Microbiol. 2014, 174, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Doll, S.; Freitas, F.P.; Shah, R.; Aldrovandi, M.; da Silva, M.C.; Ingold, I.; Grocin, A.G.; da Silva, T.N.X.; Panzilius, E.; Scheel, C.H.; et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 2019, 575, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Amaral, E.P.; Costa, D.L.; Namasivayam, S.; Riteau, N.; Kamenyeva, O.; Mittereder, L.; Mayer-Barber, K.D.; Andrade, B.B.; Sher, A. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J. Exp. Med. 2019, 216, 556–570. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Chen, X.; Tan, Q.; Zhou, H.; Xu, J.; Gu, Q. Inhibiting Ferroptosis through Disrupting the NCOA4-FTH1 Interaction: A New Mechanism of Action. ACS Cent. Sci. 2021, 7, 980–989. [Google Scholar] [CrossRef]
- Mertens, C.; Kuchler, L.; Sola, A.; Guiteras, R.; Grein, S.; Brüne, B.; von Knethen, A.; Jung, M. Macrophage-Derived Iron-Bound Lipocalin-2 Correlates with Renal Recovery Markers Following Sepsis-Induced Kidney Damage. Int. J. Mol. Sci. 2020, 21, 7527. [Google Scholar] [CrossRef]
- Mertens, C.; Schnetz, M.; Rehwald, C.; Grein, S.; Elwakeel, E.; Weigert, A.; Brüne, B.; Jung, M. Iron-Bound Lipocalin-2 from Tumor-Associated Macrophages Drives Breast Cancer Progression Independent of Ferroportin. Metabolites 2021, 11, 180. [Google Scholar] [CrossRef]
- Chang, B.; Guan, H.; Wang, X.; Chen, Z.; Zhu, W.; Wei, X.; Li, S. Cox4i2 Triggers an Increase in Reactive Oxygen Species, Leading to Ferroptosis and Apoptosis in HHV7 Infected Schwann Cells. Front. Mol. Biosci. 2021, 8, 660072. [Google Scholar] [CrossRef]
- Gaschler, M.M.; Stockwell, B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017, 482, 419–425. [Google Scholar] [CrossRef]
- Nguyên-Nhu, N.T.; Knoops, B. Mitochondrial and cytosolic expression of human peroxiredoxin 5 in Saccharomyces cerevisiae protect yeast cells from oxidative stress induced by paraquat. FEBS Lett. 2003, 544, 148–152. [Google Scholar] [CrossRef]
- Ge, M.-H.; Tian, H.; Mao, L.; Li, D.-Y.; Lin, J.-Q.; Hu, H.-S.; Huang, S.-C.; Zhang, C.-J.; Mei, X.-F. Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway. CNS Neurosci. Ther. 2021, 27, 1023–1040. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.S.; SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014, 156, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Gorelenkova Miller, O.; Mieyal, J.J. Critical Roles of Glutaredoxin in Brain Cells-Implications for Parkinson’s Disease. Antioxid. Redox Signal. 2019, 30, 1352–1368. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, Y.; Wang, X.; Tian, H.; Wang, Y.; Jin, J.; Shan, Z.; Liu, Y.E.; Cai, Z.; Tong, X.; et al. Stem Cell Factor SOX2 Confers Ferroptosis Resistance in Lung Cancer via Upregulation of SLC7A11. Cancer Res. 2021, 81, 5217–5229. [Google Scholar] [CrossRef] [PubMed]
- Koppula, P.; Zhang, Y.; Zhuang, L.; Gan, B. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun. 2018, 38, 12. [Google Scholar] [CrossRef]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef]
- Zhang, Y.; Swanda, R.V.; Nie, L.; Liu, X.; Wang, C.; Lee, H.; Lei, G.; Mao, C.; Koppula, P.; Cheng, W.; et al. mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat. Commun. 2021, 12, 1589. [Google Scholar] [CrossRef]
- Yang, W.S.; Stockwell, B.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 2008, 15, 234–245. [Google Scholar] [CrossRef]
- D’Anastasio, R.; Staniscia, T.; Milia, M.L.; Manzoli, L.; Capasso, L. Origin, evolution and paleoepidemiology of brucellosis. Epidemiol. Infect. 2011, 139, 149–156. [Google Scholar] [CrossRef]
- Campos, P.C.; Gomes, M.T.R.; Guimarães, G.; Franco, M.M.S.C.; Marim, F.M.; Oliveira, S.C. Brucella abortus DNA is a major bacterial agonist to activate the host innate immune system. Microbes Infect. 2014, 16, 979–984. [Google Scholar] [CrossRef]
- Skendros, P.; Pappas, G.; Boura, P. Cell-mediated immunity in human brucellosis. Microbes Infect. 2011, 13, 134–142. [Google Scholar] [CrossRef]
- Gaupp, R.; Ledala, N.; Somerville, G.A. Staphylococcal response to oxidative stress. Front. Cell. Infect. Microbiol. 2012, 2, 33. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell. Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef] [PubMed]
- Hornback, M.L.; Roop, R.M., 2nd. The Brucella abortus xthA-1 gene product participates in base excision repair and resistance to oxidative killing but is not required for wild-type virulence in the mouse model. J. Bacteriol. 2006, 188, 1295–1300. [Google Scholar] [CrossRef]
- Hu, H.; Tian, M.; Li, P.; Guan, X.; Lian, Z.; Yin, Y.; Shi, W.; Ding, C.; Yu, S. Brucella Infection Regulates Thioredoxin-Interacting Protein Expression to Facilitate Intracellular Survival by Reducing the Production of Nitric Oxide and Reactive Oxygen Species. J. Immunol. 2020, 204, 632–643. [Google Scholar] [CrossRef]
- Hu, H.; Tian, M.; Yin, Y.; Zuo, D.; Guan, X.; Ding, C.; Yu, S. Brucella induces heme oxygenase-1 expression to promote its infection. Transbound. Emerg. Dis. 2021, 69, 2697–2711. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Tian, M.; Li, P.; Bao, Y.; Guan, X.; Lian, Z.; Yin, Y.; Ding, C.; Yu, S. Brucella infection regulates peroxiredoxin-5 protein expression to facilitate intracellular survival by reducing the production of nitric oxide and reactive oxygen species. Biochem. Biophys. Res. Commun. 2019, 516, 82–88. [Google Scholar] [CrossRef]
- Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lambeth, J.D.; Neish, A.S. Nox enzymes and new thinking on reactive oxygen: A double-edged sword revisited. Annu. Rev. Pathol. 2014, 9, 119–145. [Google Scholar] [CrossRef]
- Sarniak, A.; Lipińska, J.; Tytman, K.; Lipińska, S. Endogenous mechanisms of reactive oxygen species (ROS) generation. Adv. Hyg. Exp. Med. 2016, 70, 1150–1165. [Google Scholar] [CrossRef]
- Köhler, S.; Porte, F.; Jubier-Maurin, V.; Ouahrani-Bettache, S.; Teyssier, J.; Liautard, J.-P. The intramacrophagic environment of Brucella suis and bacterial response. Vet. Microbiol. 2002, 90, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Ficht, T.A. Brucella abortus rough mutants are cytopathic for macrophages in culture. Infect. Immun. 2004, 72, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Bronner, D.N.; O’Riordan, M.X.; He, Y. Caspase-2 mediates a Brucella abortus RB51-induced hybrid cell death having features of apoptosis and pyroptosis. Front. Cell. Infect. Microbiol. 2013, 3, 83. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Ferroptosis in infection, inflammation, and immunity. J. Exp. Med. 2021, 218, e20210518. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Lu, J.; Hao, X.; Li, H.; Zhang, G.; Liu, X.; Li, X.; Zhao, C.; Kuang, W.; Chen, D.; et al. FTH1 Inhibits Ferroptosis through Ferritinophagy in the 6-OHDA Model of Parkinson’s Disease. Neurotherapeutics 2020, 17, 1796–1812. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.R.; Bogdan, A.R.; Miyazawa, M.; Hashimoto, K.; Tsuji, Y. Siderophores in Iron Metabolism: From Mechanism to Therapy Potential. Trends Mol. Med. 2016, 22, 1077–1090. [Google Scholar] [CrossRef] [PubMed]
- Kuang, F.; Liu, J.; Tang, D.; Kang, R. Oxidative Damage and Antioxidant Defense in Ferroptosis. Front. Cell Dev. Biol. 2020, 8, 586578. [Google Scholar] [CrossRef]
- Lee, J.-J.; Chang-Chien, G.-P.; Lin, S.; Hsiao, Y.-T.; Ke, M.-C.; Chen, A.; Lin, T.-K. 5-Lipoxygenase Inhibition Protects Retinal Pigment Epithelium from Sodium Iodate-Induced Ferroptosis and Prevents Retinal Degeneration. Oxid. Med. Cell. Longev. 2022, 2022, 1792894. [Google Scholar] [CrossRef]
- Conrad, M.; Pratt, D.A. The chemical basis of ferroptosis. Nat. Chem. Biol. 2019, 15, 1137–1147. [Google Scholar] [CrossRef]
- Doll, S.; Proneth, B.; Tyurina, Y.Y.; Panzilius, E.; Kobayashi, S.; Ingold, I.; Irmler, M.; Beckers, J.; Aichler, M.; Walch, A.; et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 2017, 13, 91–98. [Google Scholar] [CrossRef]
- Tang, D.; Kroemer, G. Ferroptosis. Curr. Biol. 2020, 30, R1292–R1297. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Kon, N.; Li, T.; Wang, S.-J.; Su, T.; Hibshoosh, H.; Baer, R.; Gu, W. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 2015, 520, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Cui, G.; Lu, Q.; Yang, L.; Guan, Z.; Sun, W.; Zhao, Y.; Wang, S.; Peng, Q. A20 promotes Brucella intracellular growth via inhibition of macrophage cell death and activation. Vet. Microbiol. 2015, 175, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Fang, L.; Chen, L.; Wang, X.; Jiang, J.; Gao, L. Ferroptotic stress promotes macrophages against intracellular bacteria. Theranostics 2022, 12, 2266–2289. [Google Scholar] [CrossRef]
Sample | Raw Reads | Clean Reads | Clean Bases | Q20 | GC Content | Error Rate (%) |
---|---|---|---|---|---|---|
S4 | 91,790,708 | 84,130,842 | 12.62 G | 96.39 | 47.31 | 0.02 |
S8 | 92,109,518 | 88,440,564 | 13.27 G | 96.94 | 47.23 | 0.02 |
S24 | 89,970,192 | 86,345,302 | 12.95 G | 96.79 | 47.98 | 0.02 |
S48 | 88,759,706 | 84,500,112 | 12.68 G | 96.45 | 47.19 | 0.02 |
D4 | 93,288,264 | 84,880,934 | 12.73 G | 96.54 | 47.25 | 0.02 |
D8 | 99,077,544 | 95,205,488 | 14.28 G | 96.83 | 47.4 | 0.02 |
D24 | 90,294,254 | 86,709,478 | 13.01 G | 96.9 | 47.33 | 0.02 |
D48 | 87,797,844 | 83,468,526 | 12.52 G | 96.67 | 47.59 | 0.02 |
Gene | Transcriptome Data | Real-Time RT-PCR | |
---|---|---|---|
log2 (Fold Change) | p-Value | Fold Change | |
EDN1 (4 H) | 3.29317 | 0.0140227 | 1.94 |
PLK2 | 1.67528 | 0.037466 | 3.43 |
TNF (8 H) | 2.4 | 0.00925408 | 14.62 |
PLK3 | 2.42564 | 0.013572 | 5.69 |
PHLDA1 | 2.96505 | 0.000950341 | 14.82 |
CCL3 | 2.1174 | 0.0447028 | 10.41 |
PDP1 | −5.66545 | 0.0125231 | 0.56 |
PRDX5 (24 H) | −2.76565 | 0.00357265 | 0.49 |
PLAUR | −2.50673 | 0.002 | 0.61 |
HGF | −4.73832 | 0.010 | 0.46 |
Genes | log2 (Fold Change) | p-Value | Description |
---|---|---|---|
Response to oxidative stress (4 h) | |||
HNRNPK | Inf | 0.0322088 | Heterogeneous nuclear ribonucleoprotein-K |
EIF5A | 3.32074 | 0.0026443 | Translation elongation factor, IF5A |
EDN1 | 3.29317 | 0.0140227 | Endothelin-1 |
PLK2 | 1.67528 | 0.037466 | Polo-like kinase 2 |
MADD | −7.44332 | 0.0102399 | dDENN domain |
HAX1 | −3.75837 | 0.0148648 | HS1-associating protein X-1 |
Response to oxidative stress (8 h) | |||
EDN1 | 5.24481 | 5.52 × 10−5 | Endothelin-1 |
PTGS2 | 3.60541 | 0.000294431 | Haem peroxidase |
PLK2 | 2.97997 | 0.000497573 | Polo-like kinase 2 |
PLK3 | 2.42564 | 0.013572 | Polo-like kinase 3 |
PLAUR | 2.04848 | 0.0122223 | Urokinase plasminogen activator surface receptor |
PDP1 | −5.66545 | 0.0125231 | Pyruvate dehydrogenase phosphatase 1 |
Response to oxidative stress (24 h) | |||
COX4I2 | 4.67318 | 0.0440457 | Complex IV subunit 4 isoform 2 |
MTFP1 | 3.64855 | 0.0250454 | Mitochondrial fission process 1 |
SESN1 | 3.06352 | 0.00987441 | AhpD-like II Sestrin |
SLC8A1 | 2.98886 | 0.0471702 | Sodium/calcium exchanger 1 |
PARP1 | 2.37893 | 0.00630785 | Poly [ADP-ribose] polymerase 1 |
ALOX5 | 2.04461 | 0.0462303 | Lipoxygenase |
AOX2 | −2.89137 | 0.0266167 | Aldehyde oxidase |
SLC7A11 | −8.50415 | 6.94 × 10−7 | L-type amino acid transporter |
MET | −6.95446 | 4.77 × 10−5 | Hepatocyte growth factor receptor |
TGM2 | −6.30984 | 7.52 × 10−5 | Transglutaminase-2 |
AKAP12 | −4.89105 | 0.000236997 | A-kinase anchor protein 12 |
HGF | −4.73832 | 0.0100114 | Hepatocyte growth factor |
IFIT3 | −4.22289 | 2.16 × 10−5 | Interferon-induced protein with tetratricopeptide repeats 3 |
ERCC1 | −3.92249 | 0.00065049 | DNA excision repair protein ERCC-1 |
SRXN1 | −3.6182 | 0.0001 | Sulfiredoxin |
SRC | −3.43942 | 0.0263683 | Protein kinase domain |
HAO1 | −3.04748 | 0.0079316 | 2-Hydroxyacid oxidase 1 |
IER3 | −2.92629 | 0.00043274 | Radiation-inducible immediate-early gene IEX-1 |
PRDX5 | −2.76565 | 0.00357265 | Peroxiredoxin-5 |
GLRX | −2.69232 | 0.000932574 | Glutaredoxin-1 |
OGT | −2.60033 | 0.00849352 | Tetratricopeptide repeat |
HMOX1 | −2.4394 | 0.00320755 | Heme oxygenase 1 |
MMP9 | −2.35686 | 0.0320668 | Matrix Metalloproteinase 9 |
NFKB1 | −1.73443 | 0.0462194 | NF-kappa-B/Dorsal |
Response to oxidative stress (48 h) | |||
DNM2 | 4.92666 | 0.000780525 | Dynamin, GTPase domain |
NR4A1 | 2.5619 | 0.0196435 | Nuclear hormone receptor |
HERC2 | 2.83 | 0.032 | HECT domain and RCC1-like domain 2 |
CSDE1 | -inf | 0.00981001 | Cold shock protein |
ABCG1 | −2.0581 | 0.0466713 | ATP-binding cassette transporter G1 |
Genes | log2 (Fold Change) | p-Value | Description |
---|---|---|---|
Ferroptosis | |||
MET | −6.95446 | 4.77 × 10−5 | Hepatocyte growth factor receptor |
COX4I2 | 4.67318 | 0.0440457 | Complex IV subunit 4 isoform 2 |
ALOX5 | 2.04461 | 0.0462303 | Lipoxygenase 5 |
PRDX5 | −2.76565 | 0.00357265 | Peroxiredoxin-5 |
HMOX1 | −2.4394 | 0.00320755 | Heme oxygenase 1 |
SLC7A11 | −2.50673 | 0.002 | L-type amino acid transporter |
TRP53 | 5.08989 | 0.0124723 | p53 tumor suppressor |
FTH1 | −2.91328 | 0.0137136 | Ferritin heavy chain |
LCN2 | −6.2905 | 0.00278457 | Lipocalin 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Zhang, G.; Tian, M.; Guan, X.; Yin, Y.; Ding, C.; Yu, S. Brucella abortus Rough-Type Mutant Induces Ferroptosis and More Oxidative Stress in Infected Macrophages. Pathogens 2023, 12, 1189. https://doi.org/10.3390/pathogens12101189
Hu H, Zhang G, Tian M, Guan X, Yin Y, Ding C, Yu S. Brucella abortus Rough-Type Mutant Induces Ferroptosis and More Oxidative Stress in Infected Macrophages. Pathogens. 2023; 12(10):1189. https://doi.org/10.3390/pathogens12101189
Chicago/Turabian StyleHu, Hai, Guangdong Zhang, Mingxing Tian, Xiang Guan, Yi Yin, Chan Ding, and Shengqing Yu. 2023. "Brucella abortus Rough-Type Mutant Induces Ferroptosis and More Oxidative Stress in Infected Macrophages" Pathogens 12, no. 10: 1189. https://doi.org/10.3390/pathogens12101189
APA StyleHu, H., Zhang, G., Tian, M., Guan, X., Yin, Y., Ding, C., & Yu, S. (2023). Brucella abortus Rough-Type Mutant Induces Ferroptosis and More Oxidative Stress in Infected Macrophages. Pathogens, 12(10), 1189. https://doi.org/10.3390/pathogens12101189