Antimicrobial Resistance and Virulence Characteristics of Klebsiella pneumoniae Isolates in Kenya by Whole-Genome Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Study Samples
2.3. DNA Extraction and Sequencing
2.4. De novo Assembly of Raw Reads and Database Querying
3. Results
3.1. Epidemiological and Clinical Characteristics of K. pneumoniae Isolates
3.2. Genomic Characteristics of K. pneumoniae Isolates
3.3. Multilocus Sequence Types and Distribution of K. pneumoniae Isolates
3.4. Antimicrobial Resistance
3.4.1. Phenotypic Resistance Profiles
3.4.2. Genetic Determinants of Resistance
3.5. Virulence Factors Associated with the K. pneumoniae Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Gomez-Simmonds, A.; Uhlemann, A.-C. Clinical Implications of Genomic Adaptation and Evolution of Carbapenem-Resistant Klebsiella pneumoniae. J. Infect. Dis. 2017, 215 (Suppl. 1), S18–S27. [Google Scholar] [CrossRef] [PubMed]
- Wyres, K.L.; Lam, M.M.C.; Holt, K.E. Population genomics of Klebsiella pneumoniae. Nat. Rev. Microbiol. 2020, 18, 344–359. [Google Scholar] [CrossRef] [PubMed]
- Girometti, N.; Lewis, R.E.; Giannella, M.; Ambretti, S.; Bartoletti, M.; Tedeschi, S.; Tumietto, F.; Cristini, F.; Trapani, F.; Gaibani, P.; et al. Klebsiella pneumoniae Bloodstream Infection: Epidemiology and Impact of Inappropriate Empirical Therapy. Medicine 2014, 93, 298–309. [Google Scholar] [CrossRef] [PubMed]
- WHO. National Action Plan on Prevention and Containment of Antimicrobial Resistance, 2017–2022; Regional Office for Africa: Brazzaville, Republic of Congo, 2020; Available online: https://www.afro.who.int/publications/national-action-plan-prevention-and-containment-antimicrobial-resistance-2017-2022 (accessed on 3 March 2020).
- Chen, L.; Mathema, B.; Chavda, K.D.; DeLeo, F.; Bonomo, R.A.; Kreiswirth, B.N. Carbapenemase-producing Klebsiella pneumoniae: Molecular and genetic decoding. Trends Microbiol. 2014, 22, 686–696. [Google Scholar] [CrossRef] [Green Version]
- Henson, S.P.; Boinett, C.J.; Ellington, M.J.; Kagia, N.; Mwarumba, S.; Nyongesa, S.; Mturi, N.; Kariuki, S.; Scott, J.A.G.; Thomson, N.R.; et al. Molecular epidemiology of Klebsiella pneumoniae invasive infections over a decade at Kilifi County Hospital in Kenya. Int. J. Med. Microbiol. 2017, 307, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Rawat, D.; Nair, D. Extended-spectrum ß-lactamases in gram negative bacteria. J. Glob. Infect. Dis. 2010, 2, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Wyres, K.L.; Wick, R.R.; Gorrie, C.; Jenney, A.; Follador, R.; Thomson, N.R.; Holt, K.E. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb. Genom. 2016, 2, e000102. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Taitt, C.R.; Leski, T.; Erwin, D.P.; Odundo, E.A.; Kipkemoi, N.C.; Ndonye, J.N.; Kirera, R.K.; Ombogo, A.N.; Walson, J.L.; Pavlinac, P.B.; et al. Antimicrobial resistance of Klebsiella pneumoniae stool isolates circulating in Kenya. PLoS ONE 2017, 12, e0178880. [Google Scholar] [CrossRef] [Green Version]
- Kyany’a, C.; Musila, L. Colistin Resistance Gene mcr-8 in a High-Risk Sequence Type 15 Klebsiella pneumoniae Isolate from Kenya. Microbiol. Resour. Announc. 2020, 9, e00783-20. [Google Scholar] [CrossRef]
- Poirel, L.; Revathi, G.; Bernabeu, S.; Nordmann, P. Detection of NDM-1-Producing Klebsiella pneumoniae in Kenya. Antimicrob. Agents Chemother. 2011, 55, 934–936. [Google Scholar] [CrossRef] [Green Version]
- Apondi, O.E.; Oduor, O.C.; Gye, B.K.; Kipkoech, M.K. High Prevalence of Multi-Drug Resistant Klebsiella pneumoniae in a Tertiary Teaching Hospital in Western Kenya. Afr. J. Infect. Dis. 2016, 10, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Decano, A.G.; Pettigrew, K.; Sabiiti, W.; Sloan, D.; Neema, S.; Bazira, J.; Kiiry, J.; Onyango, H.; Asiimwe, B.; Holden, M.T.G. Pan-resistome characterization of uropathogenic Escherichia coli and Klebsiella pneumoniae strains circulating in Uganda and Kenya isolated from 2017–2018. Antibiotics 2021, 10, 1547. [Google Scholar] [CrossRef]
- Maina, D.; Revathi, G.; Whitelaw, A.C. Molecular characterization of multidrug-resistant Klebsiella pneumoniae and Escherichia coli harbouring extended spectrum beta-lactamases and carbapenemases genes at a tertiary hospital, Kenya. Microbiol. Med. 2017, 32. [Google Scholar] [CrossRef] [Green Version]
- Bururia, J.M.; Kinyanjui, P.N.; Waiyaki, P.G.; Kariuki, S.M. Resistance of Klebsiella Species Isolates From Two Institutions in Nairobi, Kenya, to Commonly Prescribed Antimicrobial Agents. East Cent. Afr. J. Pharm. Sci. 2007, 10, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Maina, D.; Revathi, G.; Kariuki, S.; Ozwara, H. Genotypes and cephalosporin susceptibility in extended-spectrum beta-lactamase producing Enterobacteriaceae in the community. J. Infect. Dev. Ctries. 2012, 6, 470–477. [Google Scholar] [CrossRef] [Green Version]
- Maina, J.; Ndung’U, P.; Muigai, A.; Kiiru, J. Antimicrobial resistance profiles and genetic basis of resistance among non-fastidious Gram-negative bacteria recovered from ready-to-eat foods in Kibera informal housing in Nairobi, Kenya. Access Microbiol. 2021, 3, 000236. [Google Scholar] [CrossRef]
- Musila, L.; Kyany’a, C.; Maybank, R.; Stam, J.; Oundo, V.; Sang, W. Detection of diverse carbapenem and multidrug resistance genes and high-risk strain types among carbapenem non-susceptible clinical isolates of target gram-negative bacteria in Kenya. PLoS ONE 2021, 16, e0246937. [Google Scholar] [CrossRef]
- Alcántar-Curiel, M.D.; Ledezma-Escalante, C.A.; Jarillo-Quijada, M.D.; Gayosso-Vázquez, C.; Morfín-Otero, R.; Rodríguez-Noriega, E.; Cedillo-Ramírez, M.L.; Santos-Preciado, J.I.; Giron, J.A. Association of Antibiotic Resistance, Cell Adherence, and Biofilm Production with the Endemicity of Nosocomial Klebsiella pneumoniae. BioMed Res. Int. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, V.A.A.; Lery, L.M.S. Insights into Klebsiella pneumoniae type VI secretion system transcriptional regulation. BMC Genom. 2019, 20, 506. [Google Scholar] [CrossRef] [Green Version]
- Huynh, D.T.N.; Kim, A.-Y.; Kim, Y.-R. Identification of Pathogenic Factors in Klebsiella pneumoniae Using Impedimetric Sensor Equipped with Biomimetic Surfaces. Sensors 2017, 17, 1406. [Google Scholar] [CrossRef] [PubMed]
- Ni, R.T.; Onishi, M.; Mizusawa, M.; Kitagawa, R.; Kishino, T.; Matsubara, F.; Tsuchiya, T.; Kuroda, T.; Ogawa, W. The role of RND-type efflux pumps in multidrug-resistant mutants of Klebsiella pneumoniae. Sci. Rep. 2020, 10, 10876. [Google Scholar] [CrossRef] [PubMed]
- Paczosa, M.K.; Mecsas, J. Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiol. Mol. Biol. Rev. 2016, 80, 629–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellington, M.J.; Ekelund, O.; Aarestrup, F.M.; Canton, R.; Doumith, M.; Giske, C.; Grundman, H.; Hasman, H.; Holden, M.T.G.; Hopkins, K.L.; et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: Report from the EUCAST Subcommittee. Clin. Microbiol. Infect. 2017, 23, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Sui, W.; Zhou, H.; Du, P.; Wang, L.; Qin, T.; Wang, M.; Ren, H.; Huang, Y.; Hou, J.; Chen, C.; et al. Whole genome sequence revealed the fine transmission map of carbapenem-resistant Klebsiella pneumonia isolates within a nosocomial outbreak. Antimicrob. Resist. Infect. Control 2018, 7, 70. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, M.P. M100-Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S.; Krueger, F.; Segonds-Pichon, A.; Biggins, L.; Krueger, C.; Wingett, S. FastQC: A Quality Control Tool for High Throughput Sequence Data; Babraham Bioinformatics: Cambridge, UK, 2010. [Google Scholar]
- Seemann, T. Shovill: Faster SPAdes Assembly of Illumina Reads, version 1.1.0. 2018. Available online: https://github.com/tseemann/shovill(accessed on 30 June 2021).
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef]
- Medaka, version 1.3.2; Oxford Nanopore Technologies: Oxford, UK, 2021.
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Seemann, T. ABRicate, version 1.0.1. 2022. Available online: https://github.com/tseemann/abricate(accessed on 30 June 2021).
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Yu, J.; Yao, Z.; Sun, L.; Shen, Y.; Jin, Q. VFDB: A reference database for bacterial virulence factors. Nucleic Acids Res. 2005, 33, D325–D328. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A.; Zankari, E.; Garcìa-Fernandez, A.; Larsen, M.; Lund, O.; Voldby Villa, L.; Møller Aarestrup, F.; Hasman, H. In Silico Detection and Typing of Plasmids. Antimicrob using PlasmidFinder and plasmid multilocus sequence typing. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. mlst, version 2.19. 2021. Available online: https://github.com/tseemann/mlst(accessed on 30 June 2021).
- Lam, M.M.C.; Wick, R.R.; Watts, S.C.; Cerdeira, L.T.; Wyres, K.L.; Holt, K.E. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat. Commun. 2021, 12, 4188. [Google Scholar] [CrossRef]
- Wick, R.R.; Heinz, E.; Holt, K.E.; Wyres, K.L. Kaptive Web: User-Friendly Capsule and Lipopolysaccharide Serotype Prediction for Klebsiella Genomes. J. Clin. Microbiol. 2018, 56, e00197-18. [Google Scholar] [CrossRef] [Green Version]
- Treangen, T.J.; Ondov, B.D.; Koren, S.; Phillippy, A.M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014, 15, 524. [Google Scholar] [CrossRef] [Green Version]
- flextable package-RDocumentation n.d. Available online: https://www.rdocumentation.org/packages/flextable/versions/0.7.0 (accessed on 20 November 2021).
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Li, P.; Jiang, X.; Bi, D.; Xie, Y.; Tai, C.; Deng, Z.; Rajakumar, K.; Ou, H.-Y. Complete Genome Sequence of Klebsiella pneumoniae subsp. pneumoniae HS11286, a Multidrug-Resistant Strain Isolated from Human Sputum. J. Bacteriol. 2012, 194, 1841–1842. [Google Scholar] [CrossRef] [Green Version]
- Lam, M.M.C.; Wyres, K.L.; Judd, L.M.; Wick, R.R.; Jenney, A.; Brisse, S.; Holt, K.E. Tracking key virulence loci encoding aerobactin and salmochelin siderophore synthesis in Klebsiella pneumoniae. Genome Med. 2018, 10, 77. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.-T.; Chuang, Y.-P.; Shun, C.-T.; Chang, S.-C.; Wang, J.-T. A Novel Virulence Gene in Klebsiella pneumoniae Strains Causing Primary Liver Abscess and Septic Metastatic Complications. J. Exp. Med. 2004, 199, 697–705. [Google Scholar] [CrossRef] [Green Version]
- Hennequin, C.; Robin, F. Correlation between antimicrobial resistance and virulence in Klebsiella pneumoniae. Eur. J. Clin. Microbiol. 2016, 35, 333–341. [Google Scholar] [CrossRef]
- Heinz, E.; Brindle, R.; Morgan-McCalla, A.; Peters, K.; Thomson, N.R. Caribbean multi-centre study of Klebsiella pneumoniae: Whole-genome sequencing, antimicrobial resistance and virulence factors. Microb. Genom. 2019, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Holt, K.E.; Wertheim, H.; Zadoks, R.N.; Baker, S.; Whitehouse, C.A.; Dance, D.; Jenney, A.; Connor, T.R.; Hsu, L.Y.; Severin, J.; et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl. Acad. Sci. USA 2015, 112, E3574–E3581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musicha, P.; Msefula, C.; Mather, A.E.; Chaguza, C.; Cain, A.; Peno, C.; Kallonen, T.; Khonga, M.; Denis, B.; Gray, K.J.; et al. Genomic analysis of Klebsiella pneumoniae isolates from Malawi reveals acquisition of multiple ESBL determinants across diverse lineages. J. Antimicrob. Chemother. 2019, 74, 1223–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imai, K.; Ishibashi, N.; Kodana, M.; Tarumoto, N.; Sakai, J.; Kawamura, T.; Takeuchi, S.; Taji, Y.; Ebihara, Y.; Ikebuchi, K.; et al. Clinical characteristics in blood stream infections caused by Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae: A comparative study, Japan, 2014–2017. BMC Infect. Dis. 2019, 19, 946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maatallah, M.; Vading, M.; Kabir, M.H.; Bakhrouf, A.; Kalin, M.; Nauclér, P.; Brisse, S.; Giske, C.G. Klebsiella variicola is a frequent cause of bloodstream infection in the stockholm area, and associated with higher mortality compared to K. pneumoniae. PLoS ONE 2014, 9, e113539. [Google Scholar] [CrossRef] [Green Version]
- Elliott, A.G.; Ganesamoorthy, D.; Coin, L.; Cooper, M.A.; Cao, M.D. Complete Genome Sequence of Klebsiella quasipneumoniae subsp. similipneumoniae Strain ATCC 700603. Genome Announc. 2016, 4, e00438-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolás, M.F.; Ramos, P.I.P.; De Carvalho, F.M.; Camargo, D.R.A.; Alves, C.D.F.M.; De Morais, G.L.; Almeida, L.; Souza, R.C.; Ciapina, L.P.; Vicente, A.C.P.; et al. Comparative Genomic Analysis of a Clinical Isolate of Klebsiella quasipneumoniae subsp. similipneumoniae, a KPC-2 and OKP-B-6 Beta-Lactamases Producer Harboring Two Drug-Resistance Plasmids from Southeast Brazil. Front. Microbiol. 2018, 9, 220. [Google Scholar] [CrossRef]
- Furlan, J.P.R.; Gallo, I.F.L.; De Campos, T.A.; Stehling, E.G. Genomic Characterization of a Multidrug-Resistant and Hypermucoviscous/Hypervirulent Klebsiella quasipneumoniae subsp. similipneumoniae ST4417 Isolated from a Sewage Treatment Plant. Microb. Drug Resist. 2020, 26, 1321–1325. [Google Scholar] [CrossRef] [Green Version]
- Li, C.F.; Tang, H.L.; Chiou, C.S.; Tung, K.C.; Lu, M.C.; Lai, Y.C. Draft genome sequence of CTX-M-type β-lactamase-producing Klebsiella quasipneumoniae subsp. similipneumoniae isolated from a Box turtle. J. Glob. Antimicrob. Resist. 2018, 12, 235–236. [Google Scholar] [CrossRef]
- De Lagarde, M.; Vanier, G.; Arsenault, J.; Fairbrother, J.M. High Risk Clone: A Proposal of Criteria Adapted to the One Health Context with Application to Enterotoxigenic Escherichia coli in the Pig Population. Antibiotics 2021, 10, 244. [Google Scholar] [CrossRef]
- Giske, C.G.; Fröding, I.; Hasan, C.M.; Turlej-Rogacka, A.; Toleman, M.; Livermore, D.; Woodford, N.; Walsh, T.R. Diverse Sequence Types of Klebsiella pneumoniae Contribute to the Dissemination of blaNDM-1 in India, Sweden, and the United Kingdom. Antimicrob. Agents Chemother. 2012, 56, 2735–2738. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-R.; Lee, J.H.; Park, K.S.; Jeon, J.H.; Kim, Y.B.; Cha, C.-J.; Jeong, B.C.; Lee, S.H. Antimicrobial Resistance of Hypervirulent Klebsiella pneumoniae: Epidemiology, Hypervirulence-Associated Determinants, and Resistance Mechanisms. Front. Cell. Infect. Microbiol. 2017, 7, 483. [Google Scholar] [CrossRef] [Green Version]
- Mshana, S.E.; Hain, T.; Domann, E.; Lyamuya, E.F.; Chakraborty, T.; Imirzalioglu, C. Predominance of Klebsiella pneumoniae ST14 carrying CTX-M-15 causing neonatal sepsis in Tanzania. BMC Infect. Dis. 2013, 13, 466. [Google Scholar] [CrossRef] [Green Version]
- Sonda, T.; Kumburu, H.; van Zwetselaar, M.; Alifrangis, M.; Mmbaga, B.T.; Lund, O.; Kibiki, G.S.; Aarestrup, F.M. Molecular epidemiology of virulence and antimicrobial resistance determinants in Klebsiella pneumoniae from hospitalised patients in Kilimanjaro, Tanzania. Eur. J. Clin. Microbiol. 2018, 37, 1901–1914. [Google Scholar] [CrossRef]
- Peltier, F.; Choquet, M.; Decroix, V.; Adjidé, C.C.; Castelain, S.; Guiheneuf, R.; Pluquet, E. Characterization of a multidrug-resistant Klebsiella pneumoniae ST607-K25 clone responsible for a nosocomial outbreak in a neonatal intensive care unit. J. Med. Microbiol. 2019, 68, 67–76. [Google Scholar] [CrossRef]
- Carattoli, A. Resistance plasmid families in Enterobacteriaceae. Antimicrob. Agents Chemother. 2009, 53, 2227–2238. [Google Scholar] [CrossRef] [Green Version]
- Rozwandowicz, M.; Brouwer, M.S.M.; Fischer, J.; Wagenaar, J.A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D.J.; Hordijk, J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 1121–1137. [Google Scholar] [CrossRef] [Green Version]
- Villa, L.; García-Fernández, A.; Fortini, D.; Carattoli, A. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J. Antimicrob. Chemother. 2010, 65, 2518–2529. [Google Scholar] [CrossRef] [Green Version]
- Papagiannitsis, C.C.; Miriagou, V.; Giakkoupi, P.; Tzouvelekis, L.S.; Vatopoulos, A.C. Characterization of pKP1433, a novel KPC-2-encoding plasmid from Klebsiella pneumoniae sequence type 340. Antimicrob. Agents Chemother. 2013, 57, 3427–3429. [Google Scholar] [CrossRef] [Green Version]
- Perlaza-Jiménez, L.; Wu, Q.; Torres, V.V.L.; Zhang, X.; Li, J.; Rocker, A.; Lithgow, T.; Zhou, T.; Vijaykrishna, D. Forensic genomics of a novel Klebsiella quasipneumoniae type from a neonatal intensive care unit in China reveals patterns of colonization, evolution and epidemiology. Microb. Genom. 2020, 6, e000433. [Google Scholar] [CrossRef]
- Bachman, M.A.; Lenio, S.; Schmidt, L.; Oyler, J.E.; Weiser, J.N. Interaction of lipocalin 2, transferrin, and siderophores determines the replicative niche of Klebsiella pneumoniae during pneumonia. mBio 2012, 3, e00224-11. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, K.S.; Hung, C.S.; Crowley, J.R.; Stapleton, A.E.; Henderson, J.P. The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat. Chem. Biol. 2012, 8, 731–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surgers, L.; Boyd, A.; Girard, P.M.; Arlet, G.; Decré, D. ESBL-Producing Strain of Hypervirulent Klebsiella pneumoniae K2, France. Emerg. Infect. Dis. 2016, 22, 1687–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, T.; Wangkheimayum, J.; Sharma, S.; Kumar, A.; Bhattacharjee, A. Extensively Drug-Resistant Hypervirulent Klebsiella pneumoniae from a Series of Neonatal Sepsis in a Tertiary Care Hospital, India. Front. Med. 2021, 8, 186. [Google Scholar] [CrossRef] [PubMed]
- Cejas, D.; Elena, A.; Nuñez, D.G.; Platero, P.S.; De Paulis, A.; Magariños, F.; Alfonso, C.; Berger, M.A.; Fernández-Canigia, L.; Gutkind, G.; et al. Changing epidemiology of KPC-producing Klebsiella pneumoniae in Argentina: Emergence of hypermucoviscous ST25 and high-risk clone ST307. J. Glob. Antimicrob. Resist. 2019, 18, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Turton, J.; Davies, F.; Turton, J.; Perry, C.; Payne, Z.; Pike, R. Hybrid Resistance and Virulence Plasmids in “High-Risk” Clones of Klebsiella pneumoniae, Including Those Carrying blaNDM-5. Microorganisms 2019, 7, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Li, Y.; Wang, G.; Li, C.; Chang, Y.-F.; Chen, W.; Nian, S.; Mao, Y.; Zhang, J.; Zhong, F.; et al. blaNDM-5 carried by a hypervirulent Klebsiella pneumoniae with sequence type 29. Antimicrob. Resist. Infect. Control 2019, 8, 140. [Google Scholar] [CrossRef]
- Lam, M.; Wyres, K.L.; Wick, R.R.; Judd, L.; Fostervold, A.; Holt, K.E.; Löhr, I.H. Convergence of virulence and MDR in a single plasmid vector in MDR Klebsiella pneumoniae ST15. J. Antimicrob. Chemother. 2019, 74, 1218–1222. [Google Scholar] [CrossRef] [Green Version]
Isolate ID | BIGSdb ID | Species | MLST | gapA | infB | mdh | pgi | phoE | rpoB | tonB |
---|---|---|---|---|---|---|---|---|---|---|
kkp022 | 16011 | K. quasipneumoniae | 5593 | 17 | 19 | 39 | 39 | 552 | 21 | 262 |
kkp034 | 16017 | K. quasipneumoniae | 5594 | 18 | 22 | 56 | 162 | 556 | 13 | 51 |
kkp075 | 16032 | K. variicola | 5595 | 45 | 18 | 21 | 105 | 455 | 22 | 786 |
kkp076 | 16033 | K. pneumoniae | 5596 | 2 | 9 | 2 | 1 | 13 | 1 | 787 |
kkp081 | 16037 | K. variicola | 5597 | 16 | 24 | 21 | 40 | 106 | 17 | 67 |
kkp090 | 16041 | K. variicola | 5598 | 16 | 18 | 21 | 33 | 55 | 17 | 341 |
kkp091 | 16042 | K. pneumoniae | 5599 | 294 | 3 | 1 | 1 | 4 | 331 | 4 |
kkp108 | 16051 | K. variicola | 5600 | 306 | 24 | 21 | 27 | 47 | 22 | 188 |
Isolate ID | Plasmid ID | Plasmid Replicon | AMR Genes | Virulence Genes |
---|---|---|---|---|
kkp001 | kkp001_p002 | IncFII(pKPX1), IncR | aph(3″)-ib, aph(6)-id, CTX-M-15, OXA-181, TEM-181, dfrA, sul2 | |
kkp005 | kkp005_p002 | IncFIA(HI1),IncR | aac(6′)-ib-cr, aph(3″)-ib, aph(6)-id, CTX-M-15, qnrB, TEM-181, aadA, arr3, CatII, dfrA, qacEdelta1, sul1, sul2 | |
kkp006 | kkp006_p003 | IncFIA(HI1), IncR | aac(6′)-ib-cr, aph(3″)-ib, aph(6)-id, qnrB, aadA, arr3, CatII, dfrA, qacEdelta1, sul1, sul2, TetD | |
kkp019 | kkp019_p001 | IncFIA(HI1) | aph(3″)-ib, aph(6)-id | mrkABCDFJ |
kkp020 | kkp020_p001 | IncFIA(HI1) | aph(3″)-ib, aph(6)-id | mrkABCDFJ |
kkp024 | kkp024_p002 | IncFIA(HI1) | mrkABCDFJ | |
kkp026 | kkp026_p001 | IncFIB(K), IncFII(pKP91) | aac(3)-iie, aac(6′)-ib-cr, aph(3″)-ib, aph(6)-id, CTX-M-15, OXA-1, qnrB, TEM-181, dfrA, sul2, TetA | |
kkp032 | kkp032_p001 | IncFIB(K) | aph(3″)-ib, aph(6)-id | mrkABCDFJ |
kkp034 | kkp034_p002 | IncY | TEM-181, aadA, dfrA, qacEdelta1, sul1, sul2 | |
kkp036 | kkp036_p002 | IncN | SHV-134 | |
kkp037 | kkp037_p001 | IncC, IncFIB(K), IncFII(pKP91) | aac(6′)-ib, aph(3″)-ib, aph(3′)-ia, aph(6)-id, floR, mphA, qacEdelta1, sul1, sul2 | |
kkp037 | kkp037_p002 | IncX3 | qnrS, SHV-134 | |
kkp039 | kkp039_p001 | IncFIB(K), IncFII(pKP91) | aadA, dfrA, mphA, qacEdelta1, sul1 | |
kkp043 | kkp043_p001 | repB_KLEB_VIR | iroBCDN, iucABCD, iutA, rmpA, rmpA2 | |
kkp043 | kkp043_p002 | IncFIA(HI1) | dfrA, qacEdelta1, sul1 | |
kkp051 | kkp051_p001 | IncFIB(K)(pCAV1099-114), Col(pHAD28), IncR | aph(3″)-ib, aph(6)-id | |
kkp052 | kkp052_p003 | IncR | aph(3″)-ib, aph(6)-id, dfrA, qacEdelta1, sul1, sul2 | mrkABCDF |
kkp066 | kkp066_p001 | IncFIB(K), IncFII(pKP91) | aph(3″)-ib, aph(6)-id, SHV-120, sul2, TetD | |
kkp068 | kkp068_p001 | IncFIB(K), IncFII(pKP91) | aph(3″)-ib, aph(6)-id, TEM-181, dfrA, mphA, sul2 | |
kkp083 | kkp083_p001 | IncFIB(K) | astA, iroBDEN | |
kkp090 | kkp090_p001 | IncFIB(K), IncFII(pKP91) | OXA-926 | |
kkp094 | kkp094_p002 | IncFIA(HI1) | ant(3″)-iia, dfrA, qacEdelta1, sul1, TetA | |
kkp108 | kkp108_p002 | IncFII(pKP91) | dfrA, qacEdelta1, sul1 | |
kkp0e13 | kkp0e13_p001 | IncFII(pKP91) | aac(3)-iie, aac(6′)-ib-cr, aph(3″)-ib, aph(6)-id, CTX-M-15, OXA-1, qnrB, TEM-181, dfrA, sul2, TetA | |
kkp0e13 | kkp0e13_p002 | IncM2 | aac(3)-IId, CTX-M-15, TEM-181, mphA | |
kkp0e21 | kkp0e21_p004 | Col(pHAD28) | aph(6)-id, dfrA | |
kkp0e27 | kkp0e27_p001 | IncFIB(K), IncFII(pKP91) | aph(3″)-ib, aph(6)-id, CTX-M-15, qnrB, TEM-181, dfrA, sul2, TetA | |
kkp0e7 | kkp0e7_p001 | IncFIB(K), IncFII(pKP91) | aac(3)-iie, CTX-M-15, TEM-181 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muraya, A.; Kyany’a, C.; Kiyaga, S.; Smith, H.J.; Kibet, C.; Martin, M.J.; Kimani, J.; Musila, L. Antimicrobial Resistance and Virulence Characteristics of Klebsiella pneumoniae Isolates in Kenya by Whole-Genome Sequencing. Pathogens 2022, 11, 545. https://doi.org/10.3390/pathogens11050545
Muraya A, Kyany’a C, Kiyaga S, Smith HJ, Kibet C, Martin MJ, Kimani J, Musila L. Antimicrobial Resistance and Virulence Characteristics of Klebsiella pneumoniae Isolates in Kenya by Whole-Genome Sequencing. Pathogens. 2022; 11(5):545. https://doi.org/10.3390/pathogens11050545
Chicago/Turabian StyleMuraya, Angela, Cecilia Kyany’a, Shahiid Kiyaga, Hunter J. Smith, Caleb Kibet, Melissa J. Martin, Josephine Kimani, and Lillian Musila. 2022. "Antimicrobial Resistance and Virulence Characteristics of Klebsiella pneumoniae Isolates in Kenya by Whole-Genome Sequencing" Pathogens 11, no. 5: 545. https://doi.org/10.3390/pathogens11050545
APA StyleMuraya, A., Kyany’a, C., Kiyaga, S., Smith, H. J., Kibet, C., Martin, M. J., Kimani, J., & Musila, L. (2022). Antimicrobial Resistance and Virulence Characteristics of Klebsiella pneumoniae Isolates in Kenya by Whole-Genome Sequencing. Pathogens, 11(5), 545. https://doi.org/10.3390/pathogens11050545