Effect of Dexamethasone on the Expression of the α2,3 and α2,6 Sialic Acids in Epithelial Cell Lines
Abstract
:1. Introduction
2. Material and Methods
2.1. Cell Lines
2.2. Lectins
2.3. Dexamethasone Treatment
2.4. Flow Cytometric Analysis of Lectin Binding
2.5. Statistical Analysis
3. Results
3.1. Two-Color Flow Cytometry Analysis of the expression of Siaα2,3, Siaα2,6, and Galβ1–3GalNAc Glycans on A549 Cells
3.2. Two-Color Flow Cytometry Analysis of the Expression of Siaα2,3 and Siaα2,6 Glycans on A549, Vero, and MDCK Cells
3.3. Effect of Dexamethasone on the Expression of Siaα2,6 and Siaα2,3 Glycans on A549, Vero, and MDCK Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alvarez, G.; Lascurain, R.; Perez, A.; Degand, P.; Montano, L.F.; Martinez-Cairo, S.; Zenteno, E. Relevance of sialoglycoconjugates in murine thymocytes during maturation and selection in the thymus. Immunol. Investig. 1999, 28, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Woronowicz, A.; Amith, S.R.; De Vusser, K.; Laroy, W.; Contreras, R.; Basta, S.; Szewczuk, M.R. Dependence of neurotrophic factor activation of Trk tyrosine kinase receptors on cellular sialidase. Glycobiology 2007, 17, 10–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.; Park, H.M.; Kim, Y.W.; Kim, Y.H.; Varghese, S.; Seok, H.K.; Kim, Y.G.; Kim, S.H. Control of mesenchymal stem cell phenotype and differentiation depending on cell adhesion mechanism. Eur. Cell Mater. 2014, 28, 387–403. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, T.D.; Frayne, M.E.; Clasper, S.; Banerji, S.; Jackson, D.G. A mechanism of sialylation functionally silences the hyaluronan receptor LYVE-1 in lymphatic endothelium. J. Biol. Chem. 2009, 284, 3935–3945. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, T.; Sugimoto, A.; Imazato, N.; Tamura, M.; Nakatani, S.; Kobata, K.; Arata, Y. Glucosamine Suppresses Osteoclast Differentiation through the Modulation of Glycosylation Including O-GlcNAcylation. Biol. Pharm. Bull. 2017, 40, 352–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Gu, J. Significance ofβ-Galactoside α2,6 Sialyltranferase 1 in Cancers. Molecules 2015, 20, 7509–7527. [Google Scholar] [CrossRef] [Green Version]
- Poiroux, G.; Barre, A.; van Damme, E.J.M.; Benoist, H.; Rouge, P. Plant Lectins Targeting O-Glycans at the Cell Surface as Tools for Cancer Diagnosis, Prognosis and Therapy. Int. J. Mol. Sci. 2017, 18, 1232. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Campbell, B.J.; Yu, L.G.; Fernig, D.G.; Milton, J.D.; Goodlad, R.A.; FitzGerald, A.J.; Rhodes, J.M. Cell surface-expressed Thomsen-Friedenreich antigen in colon cancer is predominantly carried on high molecular weight splice variants of CD44. Glycobiology 2001, 11, 587–592. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, Y.; Chammas, R.; Bellis, S.L. Sialylation of beta1 integrins blocks cell adhesion to galectin-3 and protects cells against galectin-3-induced apoptosis. J. Biol. Chem. 2008, 283, 22177–22185. [Google Scholar] [CrossRef]
- Franca, M.; Stallknecht, D.E.; Howerth, E.W. Expression and distribution of sialic acid influenza virus receptors in wild birds. Avian Pathol. 2013, 42, 60–71. [Google Scholar] [CrossRef]
- Suzuki, Y.; Ito, T.; Suzuki, T.; Holland, R.E., Jr.; Chambers, T.M.; Kiso, M.; Ishida, H.; Kawaoka, Y. Sialic acid species as a determinant of the host range of influenza A viruses. J. Virol. 2000, 74, 11825–11831. [Google Scholar] [CrossRef] [Green Version]
- Dubashynskaya, N.V.; Bokatyi, A.N.; Skorik, Y.A. Dexamethasone conjugates: Synthetic approaches and medical prospects. Biomedicines 2021, 9, 341. [Google Scholar] [CrossRef]
- Zen, M.; Canova, M.; Campana, C.; Bettio, S.; Nalotto, L.; Rampudda, M.; Ramonda, R.; Laccarino, L.; Doria, A. The kaleidoscope of glucorticoid effects on immune system. Autoimmun. Rev. 2011, 6, 305–310. [Google Scholar] [CrossRef]
- Mádi, A.; Majai, G.; Koy, C.; Vámosi, G.; Szántó, A.; Glocker, M.O.; Fésüs, L. Altered sialylation on the cell-surface proteins of dexamethasone-treated human macrophages contributes to augmented uptake of apoptotic neutrophils. Immunol. Lett. 2011, 135, 88–95. [Google Scholar] [CrossRef]
- Vandamme, V.; Pierce, A.; Verbert, A.; Delannoy, P. Transcriptional induction of β-galactoside α-2,6-sialyltransferase in rat fibroblast by dexamethasone. Eur. J. Chem. 1993, 211, 135–140. [Google Scholar] [CrossRef]
- Ito, T.; Couceiro, J.N.; Kelm, S.; Baum, L.G.; Krauss, S.; Castrucci, M.R.; Donatelli, I.; Kida, H.; Paulson, J.C.; Webster, R.G.; et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J. Virol. 1998, 72, 7367–7373. [Google Scholar] [CrossRef] [Green Version]
- Sauer, A.K.; Liang, C.H.; Stech, J.; Peeters, B.; Quere, P.; Schwegmann-Wessels, C.; Wu, C.Y.; Wong, C.H.; Herrler, G. Characterization of the sialic acid binding activity of influenza A viruses using soluble variants of the H7 and H9 hemagglutinins. PLoS ONE 2014, 9, e89529. [Google Scholar] [CrossRef] [Green Version]
- Batisse, C.; Marquet, J.; Greffard, A.; Fleury-Feith, J.; Jaurand, M.C.; Pilatte, Y. Lectin-based three-color flow cytometric approach for studying cell surface glycosylation changes that occur during apoptosis. Cytom. A 2004, 62, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, M.; Chava, A.K.; Kohla, G.; Pal, S.; Merling, A.; Hinderlich, S.; Unger, U.; Strasser, P.; Gerwig, G.J.; Kamerling, J.P.; et al. Identification and characterization of adsorbed serum sialoglycans on Leishmania donovani promastigotes. Glycobiology 2003, 13, 351–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, H.K.; Song, K.H.; Jin, U.H.; Seong, H.H.; Chang, Y.C.; Kim, N.H.; Kim, D.S.; Lee, Y.C.; Kim, C.H. Molecular characterization of pig α2,3-Gal-β1,3-GalNAc-α2,6-sialyltransferase (pST6GalNAc IV) gene specific for Neu5Acα2-3Galβ1-3GalNAc trisaccharide structure. Glycoconj. J. 2010, 27, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Kogure, T.; Suzuki, T.; Takahashi, T.; Miyamoto, D.; Hidari, K.I.; Guo, C.T.; Ito, T.; Kawaoka, Y.; Suzuki, Y. Human trachea primary epithelial cells express both sialyl(α2-3)Gal receptor for human parainfluenza virus type 1 and avian influenza viruses, and sialyl(α2-6)Gal receptor for human influenza viruses. Glycoconj. J. 2006, 23, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Kubota, M.; Takeuchi, K.; Watanabe, S.; Ohno, S.; Matsuoka, R.; Kohda, D.; Nakakita, S.I.; Hiramatsu, H.; Suzuki, Y.; Nakayama, T.; et al. Trisaccharide containing alpha2,3-linked sialic acid is a receptor for mumps virus. Proc. Natl. Acad. Sci. USA 2016, 113, 11579–11584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lugovtsev, V.Y.; Melnyk, D.; Weir, J.P. Heterogeneity of the MDCK cell line and its applicability for influenza virus research. PLoS ONE 2013, 8, e75014. [Google Scholar] [CrossRef] [PubMed]
- Lieber, M.; Smith, B.; Szakal, A.; Nelson-Rees, W.; Todaro, G. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int. J. Cancer 1976, 17, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Kobasa, D.; Jones, S.M.; Shinya, K.; Kash, J.C.; Copps, J.; Ebihara, H.; Hatta, Y.; Kim, J.H.; Halfmann, P.; Hatta, M.; et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 2007, 445, 319–323. [Google Scholar] [CrossRef]
- Weinheimer, V.K.; Becher, A.; Tonnies, M.; Holland, G.; Knepper, J.; Bauer, T.T.; Schneider, P.; Neudecker, J.; Ruckert, J.C.; Szymanski, K.; et al. Influenza A viruses target type II pneumocytes in the human lung. J. Infect. Dis. 2012, 206, 1685–1694. [Google Scholar] [CrossRef]
- Gambaryan, A.S.; Robertson, J.S.; Matrosovich, M.N. Effects of egg-adaptation on the receptor-binding properties of human influenza A and B viruses. Virology 1999, 258, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Genzel, Y.; Dietzsch, C.; Rapp, E.; Schwarzer, J.; Reichl, U. MDCK and Vero cells for influenza virus vaccine production: A one-to-one comparison up to lab-scale bioreactor cultivation. Appl. Microbiol. Biotechnol. 2010, 88, 461–475. [Google Scholar] [CrossRef]
- Murakami, S.; Horimoto, T.; Ito, M.; Takano, R.; Katsura, H.; Shimojima, M.; Kawaoka, Y. Enhanced growth of influenza vaccine seed viruses in Vero cells mediated by broadening the optimal pH range for virus membrane fusion. J. Virol. 2012, 86, 1405–1410. [Google Scholar] [CrossRef] [Green Version]
- Rogerieux, F.; Belaise, M.; Terzidis-Trabelsi, H.; Greffard, A.; Pilatte, Y.; Lambre, C.R. Determination of the sialic acid linkage specificity of sialidases using lectins in a solid phase assay. Anal. Biochem. 1993, 211, 200–204. [Google Scholar] [CrossRef]
- Corfield, A.P.; Higa, H.; Paulson, J.C.; Schauer, R. The specificity of viral and bacterial sialidases for α(2–3)- and α(2–6)-linked sialic acids in glycoproteins. Biochim. Biophys. Acta (BBA)—Protein Struct. Mol. Enzymol. 1983, 744, 121–126. [Google Scholar] [CrossRef]
- Reyes-Leyva, J.; Espinosa, B.; Hernandez, J.; Zenteno, R.; Vallejo, V.; Hernandez-Jauregui, P.; Zenteno, E. NeuAc α2,3gal-glycoconjugate expression determines cell susceptibility to the porcine rubulavirus LPMV. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1997, 118, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Harduin-Lepers, A.; Vallejo-Ruiz, V.; Krzewinski-Recchi, M.A.; Samyn-Petit, B.; Julien, S.; Delannoy, P. The human sialyltransferase family. Biochimie 2001, 83, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Qian, Y.; Li, Z.J. Sialylation enhancement of CTLA4-Ig fusion protein in Chinese hamster ovary cells by dexamethasone. Biotechnol. Bioeng. 2010, 107, 488–496. [Google Scholar] [CrossRef]
- Bork, K.; Weidemann, W.; Berneck, B.; Kuchta, M.; Bennmann, D.; Thate, A.; Huber Otmar Gnanapragassam, V.S.; Horstkorte, R. The expression of sialyltransferases is regulated by the bioavailability and biosynthesis of sialic acids. Gene Expr. Patterns 2017, 23–24, 52–58. [Google Scholar] [CrossRef]
- Smith, D.F.; Song, X.; Cummings, R.D. Use of glycan microarrays to explore specificity of glycan-binding proteins. Methods Enzymol. 2010, 480, 417–444. [Google Scholar]
- Mariethoz, J.; Khatib, K.; Alocci, D.; Campbell, M.P.; Karlsson, N.G.; Packer, N.H.; Mullen, E.H.; Lisacek, F. SugarBindDB, a resource of glycan-mediated host-pathogen interactions. Nucleic Acids Res. 2016, 44, D1243–D1250. [Google Scholar] [CrossRef]
Lectins | Conjugated Fluorochrome | Color Signal | Sialydated Residue | Manufacturer |
---|---|---|---|---|
Sambucus nigra | FITC | Green | Siaα2,6 | Vector |
Maackia amurensis II | Biotin/PE-streptavidin | Red | Siaα2,3 | Vector |
Peanut agglutinin | Biotin/PE-streptavidin | Red | Galβ1-3GalNAc | Vector |
Peanut agglutinin | FITC | Green | Galβ1-3GalNAc | Sigma-Aldrich |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vicente-Fermín, O.; Zenteno, E.; Ramos-Martínez, I.; Espitia, C.; Sánchez-Betancourt, J.I.; Huerta, L. Effect of Dexamethasone on the Expression of the α2,3 and α2,6 Sialic Acids in Epithelial Cell Lines. Pathogens 2022, 11, 1518. https://doi.org/10.3390/pathogens11121518
Vicente-Fermín O, Zenteno E, Ramos-Martínez I, Espitia C, Sánchez-Betancourt JI, Huerta L. Effect of Dexamethasone on the Expression of the α2,3 and α2,6 Sialic Acids in Epithelial Cell Lines. Pathogens. 2022; 11(12):1518. https://doi.org/10.3390/pathogens11121518
Chicago/Turabian StyleVicente-Fermín, Onasis, Edgar Zenteno, Ivan Ramos-Martínez, Clara Espitia, José Ivan Sánchez-Betancourt, and Leonor Huerta. 2022. "Effect of Dexamethasone on the Expression of the α2,3 and α2,6 Sialic Acids in Epithelial Cell Lines" Pathogens 11, no. 12: 1518. https://doi.org/10.3390/pathogens11121518