A New Comestible Formulation of Parasiticide Fungi to Reduce the Risk of Soil-Transmitted Helminth Infections in a Canine Shelter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Shelter
2.2. Control of Parasites
2.3. Elaboration of Edible Treats with Fungal Chlamydospores
2.4. Study Design
- CD (control dogs): dogs receiving anthelmintic treatment periodically (a single dose of Helm-ex® as previously described) and one gelatin without chlamydospores three times a week (every Tuesday, Thursday and Saturday) for 17 months.
- DRF (dogs receiving fungi): dogs dewormed as in CD. One gelatin containing chlamydospores of the parasiticide fungi was given to each individual, three times a week (every Tuesday, Thursday, and Saturday) for 17 months.
2.5. Evaluation of the Control Measures against Soil-Transmitted Helminths (STHs)
2.6. Acceptance of Edible Formulations with Fungal Spores and Analysis of Harmful Effects
2.7. Statistical Analysis
3. Results
3.1. Efficacy of Deworming
3.2. Kinetics of STHs Fecal Egg-Output
3.3. Effect of the Integrated Control Strategy
3.4. Level of Acceptance of Gelatin and Analysis of Adverse Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dubná, S.; Langrová, I.; Nápravník, J.; Jankovská, I.; Vadlejch, J.; Pekár, S.; Fechtner, J. The prevalence of intestinal parasites in dogs from Prague, rural areas, and shelters of the Czech Republic. Veter. Parasitol. 2007, 145, 120–128. [Google Scholar] [CrossRef]
- Palmer, C.S.; Thompson, R.A.; Traub, R.J.; Rees, R.; Robertson, I.D. National study of the gastrointestinal parasites of dogs and cats in Australia. Veter. Parasitol. 2008, 151, 181–190. [Google Scholar] [CrossRef]
- Alvarado-Esquivel, C.; Romero-Salas, D.; Aguilar-Domínguez, M.; Cruz-Romero, A.; Ibarra-Priego, N.; Pérez-De-León, A. Epidemiological assessment of intestinal parasitic infections in dogs at animal shelter in Veracruz, Mexico. Asian Pac. J. Trop. Biomed. 2015, 5, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Simonato, G.; DI Regalbono, A.F.; Cassini, R.; Traversa, D.; Beraldo, P.; Tessarin, C.; Pietrobelli, M. Copromicroscopic and molecular investigations on intestinal parasites in kenneled dogs. Parasitol. Res. 2015, 114, 1963–1970. [Google Scholar] [CrossRef]
- Sommer, M.F.; Zdravković, N.; Vasić, A.; Grimm, F.; Silaghi, C. Gastrointestinal parasites in shelter dogs from Belgrade, Serbia. Veter. Parasitol. Reg. Stud. Rep. 2017, 7, 54–57. [Google Scholar] [CrossRef]
- Jenkins, E.J.; Castrodale, L.J.; de Rosemond, S.J.; Dixon, B.R.; Elmore, S.A.; Gesy, K.M.; Hoberg, E.P.; Polley, L.; Schurer, J.M.; Simard, M.; et al. Tradition and transition: Parasitic zoonoses of people and animals in Alaska, northern Canada, and Greenland. Adv. Parasitol. 2013, 82, 33–204. [Google Scholar] [CrossRef]
- Patronek, G.J.; Crowe, A. Factors Associated with High Live Release for Dogs at a Large, Open-Admission, Municipal Shelter. Animals 2018, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Raza, A.; Rand, J.; Qamar, A.G.; Jabbar, A.; Kopp, S. Gastrointestinal Parasites in Shelter Dogs: Occurrence, Pathology, Treatment and Risk to Shelter Workers. Animals 2018, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- De Liberato, C.; Berrilli, F.; Odorizi, L.; Scarcella, R.; Barni, M.; Amoruso, C.; Scarito, A.; Di Filippo, M.M.; Carvelli, A.; Iacoponi, F.; et al. Parasites in stray dogs from Italy: Prevalence, risk factors and management concerns. Acta Parasitol. 2018, 63, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Gives, P.M.-D.; López-Arellano, M.E.; Aguilar-Marcelino, L.; Olazarán-Jenkins, S.; Reyes-Guerrero, D.; Ramírez-Várgas, G.; Vega-Murillo, V.E. The nematophagous fungus Duddingtonia flagrans reduces the gastrointestinal parasitic nematode larvae population in faeces of orally treated calves maintained under tropical conditions—Dose/response assessment. Veter. Parasitol. 2018, 263, 66–72. [Google Scholar] [CrossRef]
- Canhão-Dias, M.; Paz-Silva, A.; de Carvalho, L.M. The efficacy of predatory fungi on the control of gastrointestinal parasites in domestic and wild animals—A systematic review. Veter. Parasitol. 2020, 283, 109173. [Google Scholar] [CrossRef]
- Araújo, J.V.; Braga, F.R.; Mendoza-de-Gives, P.; Paz-Silva, A.; Vilela, V.L.R. Recent Advances in the Control of Helminths of Domestic Animals by Helminthophagous Fungi. Parasitologia 2021, 1, 168–176. [Google Scholar] [CrossRef]
- Bojanich, M.V.; Basualdo, J.A.; Giusiano, G. In vitro effect of Chrysosporium indicum and Chrysosporium keratinophylum on Toxocara canis eggs. Rev. Argent. Microbiol. 2018, 50, 249–254. [Google Scholar] [CrossRef]
- Hernández, J.; Cazapal-Monteiro, C.F.; Sanchís, J.; Sánchez-Andrade, R.; Paz-Silva, A.; Arias, M.S. Potential Usefulness of Filamentous Fungi to Prevent Zoonotic Soil-Transmitted Helminths. Vector-Borne Zoonotic Dis. 2018, 18, 690–696. [Google Scholar] [CrossRef]
- Bystrianska, J.; Papajová, I.; Šoltys, J.; Sasáková, N. Contamination of Sandpits with Soil-Transmitted Helminths Eggs in an Urban Environment. Folia Veter. 2019, 63, 60–63. [Google Scholar] [CrossRef] [Green Version]
- Mascarini-Serra, L.M.; Telles, C.A.; Prado, M.S.; Mattos, S.A.; Strina, A.; Alcantara-Neves, N.M.; Barreto, M.L. Reductions in the Prevalence and Incidence of Geohelminth Infections following a City-wide Sanitation Program in a Brazilian Urban Centre. PLoS Neglected Trop. Dis. 2010, 4, e588. [Google Scholar] [CrossRef] [Green Version]
- Otranto, D.; Dantas-Torres, F.; Mihalca, A.D.; Traub, R.J.; Lappin, M.; Baneth, G. Zoonotic Parasites of Sheltered and Stray Dogs in the Era of the Global Economic and Political Crisis. Trends Parasitol. 2017, 33, 813–825. [Google Scholar] [CrossRef]
- Filho, F.D.S.M.; Vieira, J.N.; Berne, M.E.A.; Stoll, F.E.; Nascente, P.D.S.; Pötter, L.; Pereira, D.I.B. Fungal ovicidal activity on Toxocara canis eggs. Rev. Iberoam. Micol. 2013, 30, 226–230. [Google Scholar] [CrossRef]
- Arias, M.S.; Monteiro, C.; Suárez, J.; Miguélez, S.; Francisco, I.; Arroyo, F.L.; Paz-Silva, A.; Sánchez-Andrade, R.; de Gives, P.M. Mixed Production of Filamentous Fungal Spores for Preventing Soil-Transmitted Helminth Zoonoses: A Preliminary Analysis. BioMed Res. Int. 2013, 2013, 567876. [Google Scholar] [CrossRef] [Green Version]
- Viña, C.; Silva, M.I.; Palomero, A.M.; Voinot, M.; Vilá, M.; Hernández, J.Á.; Paz-Silva, A.; Sánchez-Andrade, R.; Cazapal-Monteiro, C.F.; Arias, M.S. The Control of Zoonotic Soil-Transmitted Helminthoses Using Saprophytic Fungi. Pathogens 2020, 9, 1071. [Google Scholar] [CrossRef]
- Traversa, D.; Di Regalbono, A.F.; Di Cesare, A.; La Torre, F.; Drake, J.; Pietrobelli, M. Environmental contamination by canine geohelminths. Parasites Vectors 2014, 7, 67. [Google Scholar] [CrossRef] [Green Version]
- ESCCAP (European Scientific Counsel Companion Animal Parasites). Guideline No. 1. Worm Control in Dogs and Cats Second Edition. 2010. Available online: http://www.esccap.org/uploads/docs/nkzqxmxn_esccapgl1endoguidelines.pdf (accessed on 17 January 2020).
- Rinaldi, L.; Pennacchio, S.; Musella, V.; Maurelli, M.P.; La Torre, F.; Cringoli, G. Helminth control in kennels: Is the combination of milbemycin oxime and praziquantel a right choice? Parasites Vectors 2015, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Mejer, H.; Roepstorff, A. Ascaris suum infections in pigs born and raised on contaminated paddocks. Parasitology 2006, 133, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Steinbaum, L.; Njenga, S.M.; Kihara, J.; Boehm, A.B.; Davis, J.; Null, C.; Pickering, A.J. Soil-Transmitted Helminth Eggs Are Present in Soil at Multiple Locations within Households in Rural Kenya. PLoS ONE 2016, 11, e0157780. [Google Scholar] [CrossRef] [Green Version]
- Azam, D.; Ukpai, O.M.; Said, A.; Abd-Allah, G.A.; Morgan, E.R. Temperature and the development and survival of infective Toxocara canis larvae. Parasitol. Res. 2012, 110, 649–656. [Google Scholar] [CrossRef]
- Truscott, J.; Turner, H.; Farrell, S.; Anderson, R. Soil-Transmitted Helminths: Mathematical Models of Transmission, the Impact of Mass Drug Administration and Transmission Elimination Criteria. Adv. Parasitol. 2016, 94, 133–198. [Google Scholar] [CrossRef] [Green Version]
- Ursache, A.; Mircean, V.; Dumitrache, M.; Andrei, S.; Ştefănuţ, L.; Cozma, V.; Cătană, R.; Cernea, M. Is routine disinfection efficient in preventing contamination with Toxocara canis eggs? J. Helminthol. 2019, 94, e60. [Google Scholar] [CrossRef] [Green Version]
- Castro, P.D.J.; Howell, S.B.; Schaefer, J.J.; Avramenko, R.W.; Gilleard, J.S.; Kaplan, R.M. Multiple drug resistance in the canine hookworm Ancylostoma caninum: An emerging threat? Parasites Vectors 2019, 12, 576. [Google Scholar] [CrossRef] [Green Version]
- Palomero, A.M.; Cazapal-Monteiro, C.F.; Valderrábano, E.; Paz-Silva, A.; Sánchez-Andrade, R.; Arias, M.S. Soil fungi enable the control of gastrointestinal nematodes in wild bovidae captive in a zoological park: A 4-year trial. Parasitology 2020, 147, 791–798. [Google Scholar] [CrossRef]
Soil-Transmitted Helminths (STHs) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Deworming number | Toxocara canis | Toxascaris leonina | ||||||||||
FECR (95% CI) | NRFP (months) | LRFP (months) | FECR (95% CI) | NRFP (months) | LRFP (months) | |||||||
CD | DRF | CD | DRF | CD | DRF | CD | DRF | CD | DRF | CD | DRF | |
1 | 97 (96, 98) | 99 (94, 100) | 0 | 0 | 2 | 2 | 98 (97, 99) | 97 (93, 100) | 0 | 0 | 1 | 0 |
2 | 100 | 99 (94, 100) | 1 | 0 | 2 | 4 | 95 (92, 97) | 96 (93, 99) | 0 | 0 | 2 | 3 |
3 | 95 (94, 97) | 100 | 0 | 1 | 1 | 3 | 95 (93, 97) | 97 (93, 100) | 1 | 0 | 2 | 3 |
4 | 98 (97, 99) | 95 (91, 99) | 0 | 0 | 1 | 2 | 98 (97, 99) | 97 (92, 100) | 0 | 0 | 2 | 3 |
5 | 100 | 98 (92, 100) | 1 | 0 | 2 | 4 | 98 (97, 99) | 95 (92, 99) | 0 | 0 | 1 | 4 |
Trichuris vulpis | Ancylostoma caninum | |||||||||||
FECR (95% CI) | ERP | FECR (95% CI) | ERP | |||||||||
CD | DRF | CD | DRF | CD | DRF | CD | DRF | CD | DRF | CD | DRF | |
1 | 97 (94, 100) | 100 | 0 | 1 | 3 | 3 | 97 (96, 99) | 98 (95,100) | 0 | 0 | 1 | 1 |
2 | 93 (89, 100) | 100 | 0 | 1 | 4 | 4 | 98 (96,100) | 99 (95, 100) | 0 | 0 | 1 | 2 |
3 | 100 | 93 (90, 97) | 0 | 0 | 2 | 3 | 99 (98, 100) | 95 (93, 98) | 0 | 0 | 1 | 1 |
4 | 97 (94, 99) | 100 | 0 | 1 | 3 | 3 | 98 (97, 99) | 96 (92, 100) | 0 | 0 | 2 | 2 |
5 | 94 (89,99) | 90 (85, 95) | 0 | 0 | 1 | 4 | 97 (94, 99) | 100 | 0 | 1 | 1 | 4 |
Month of Study | MAD | Ratio between the EPG Values in DRF and CD | |||
---|---|---|---|---|---|
Toxocara canis | Toxascaris leonina | Trichuris vulpis | Ancylostoma caninum | ||
0 (T) | 0 | 0.97 | 1.15 | 0.67 | 0.94 |
1 | 1 | 0.17 | 1.30 | 0.00 | 0.60 |
2 | 2 | 1.35 | 1.27 | 1.18 | 1.04 |
3 (T) | 3 | 0.67 | 1.01 | 0.67 | 0.90 |
4 | 1 | - | 0.75 | 0.00 | 0.50 |
5 | 2 | 0.83 | 0.68 | 0.88 | 0.61 |
6 | 3 | 0.23 | 0.43 | 0.94 | 0.47 |
7 (T) | 4 | 0.06 | 0.24 | 0.70 | 0.59 |
8 | 1 | 0.00 | 0.13 | - | 5.00 |
9 | 2 | 0.08 | 0.17 | 0.57 | 0.72 |
10 (T) | 3 | 0.10 | 0.10 | 0.31 | 0.32 |
11 | 1 | 0.24 | 0.14 | 0.00 | 0.67 |
12 | 2 | 0.24 | 0.11 | 0.35 | 0.97 |
13 (T) | 3 | 0.24 | 0.10 | 0.30 | 0.55 |
14 | 1 | 0.60 | 0.25 | 0.50 | 0.00 |
15 | 2 | 0.58 | 0.25 | 0.15 | 0.18 |
16 | 3 | 0.16 | 0.21 | 0.63 | 0.12 |
17 | 4 | 0.10 | 0.17 | 0.68 | 0.11 |
Month of Study | Deworming Number | MAD | Toxocara canis | Toxascaris leonina | Trichuris vulpis | Ancylostoma caninum | ||||
---|---|---|---|---|---|---|---|---|---|---|
CD | DRF | CD | DRF | CD | DRF | CD | DRF | |||
0 | 1 | 0 | 18/18 | 18/18 | 18/18 | 18/18 | 13/18 | 13/18 | 18/18 | 18/18 |
1 | 1 | 6/18 | 2/18 | 7/18 | 7/18 | 1/18 | 1/18 | 3/18 | 2/18 | |
2 | 2 | 12/18 | 11/18 | 18/18 | 13/18 | 6/18 | 8/18 | 7/18 | 11/18 | |
3 | 2 | 3 | 18/18 | 18/18 | 18/18 | 18/18 | 7/18 | 7/18 | 13/18 | 14/18 |
4 | 1 | 1/18 | 1/18 | 7/18 | 6/18 | 1/18 | 1/18 | 1/18 | 1/18 | |
5 | 2 | 3/18 | 4/18 | 14/18 | 7/18 * | 7/18 | 7/18 | 8/18 | 7/18 | |
6 | 3 | 15/18 | 5/18 * | 18/18 | 12/18 | 7/18 | 7/18 | 12/18 | 10/18 | |
7 | 3 | 4 | 18/18 | 5/18 * | 18/18 | 12/18 | 7/18 | 7/18 | 16/18 | 13/18 |
8 | 1 | 3/18 | 2/18 | 5/18 | 1/18 | 1/18 | 1/18 | 1/18 | 2/18 | |
9 | 2 | 18/18 | 4/18 * | 18/18 | 7/18 * | 6/18 | 5/18 | 10/18 | 10/18 | |
10 | 4 | 3 | 18/18 | 6/18 * | 18/18 | 8/18 * | 9/18 | 5/18 | 18/18 | 11/18 * |
11 | 1 | 3/18 | 2/18 | 3/18 | 1/18 | 2/18 | 2/18 | 3/18 | 2/18 | |
12 | 2 | 10/18 | 5/18 | 10/18 | 7/18 | 11/18 | 5/18 | 4/18 | 7/18 | |
13 | 5 | 3 | 18/18 | 7/18 * | 18/18 | 8/18 * | 11/18 | 5/18 | 14/18 | 11/18 |
14 | 1 | 1/18 | 1/18 | 3/18 | 1/18 | 2/18 | 1/18 | 2/18 | 2/18 | |
15 | 2 | 5/18 | 4/18 | 18/18 | 8/18 * | 8/18 | 4/18 | 18/18 | 6/18 * | |
16 | 3 | 15/18 | 5/18 * | 14/18 | 8/18 | 13/18 | 6/18 * | 18/18 | 6/18 | |
17 | 4 | 16/18 | 6/18 * | 18/18 | 8/18 * | 11/18 | 7/18 | 18/18 | 7/18 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viña, C.; Salmo, R.; Pena, M.V.; Palomero, A.M.; Hernández, J.Á.; Cazapal-Monteiro, C.; Arias, M.S.; Sánchez-Andrade, R.; Paz-Silva, A. A New Comestible Formulation of Parasiticide Fungi to Reduce the Risk of Soil-Transmitted Helminth Infections in a Canine Shelter. Pathogens 2022, 11, 1391. https://doi.org/10.3390/pathogens11111391
Viña C, Salmo R, Pena MV, Palomero AM, Hernández JÁ, Cazapal-Monteiro C, Arias MS, Sánchez-Andrade R, Paz-Silva A. A New Comestible Formulation of Parasiticide Fungi to Reduce the Risk of Soil-Transmitted Helminth Infections in a Canine Shelter. Pathogens. 2022; 11(11):1391. https://doi.org/10.3390/pathogens11111391
Chicago/Turabian StyleViña, Cándido, Rami Salmo, María Vilá Pena, Antonio Miguel Palomero, José Ángel Hernández, Cristiana Cazapal-Monteiro, María Sol Arias, Rita Sánchez-Andrade, and Adolfo Paz-Silva. 2022. "A New Comestible Formulation of Parasiticide Fungi to Reduce the Risk of Soil-Transmitted Helminth Infections in a Canine Shelter" Pathogens 11, no. 11: 1391. https://doi.org/10.3390/pathogens11111391
APA StyleViña, C., Salmo, R., Pena, M. V., Palomero, A. M., Hernández, J. Á., Cazapal-Monteiro, C., Arias, M. S., Sánchez-Andrade, R., & Paz-Silva, A. (2022). A New Comestible Formulation of Parasiticide Fungi to Reduce the Risk of Soil-Transmitted Helminth Infections in a Canine Shelter. Pathogens, 11(11), 1391. https://doi.org/10.3390/pathogens11111391