Prevalence, Genetic Structure, and Antifungal Susceptibility of the Cryptococcus neoformans/C. gattii Species Complex Strains Collected from the Arboreal Niche in Poland
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design and Sample Processing
4.2. Molecular Examination/Genotyping
4.3. Identification with the Use of MALDI-TOF MS Method
4.4. Susceptibility to Antifungal Drugs
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khawcharoenporn, T.; Apisarnthanarak, A.; Mundy, L.M. Non-neoformans cryptococcal infections: A systematic review. Infection 2007, 35, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Rajasingham, R.; Smith, R.M.; Park, B.J.; Jarvis, J.N.; Govender, N.P.; Chiller, T.M.; Denning, D.W.; Loyse, A.; Boulware, D.R. Global burden of disease of HIV-associated cryptococcal meningitis: An updated analysis. Lancet Infect. Dis. 2017, 17, 873–881. [Google Scholar] [CrossRef]
- Hagen, F.; Khayhan, K.; Theelen, B.; Kolecka, A.; Polacheck, I.; Sionov, E.; Falk, R.; Parnmen, S.; Lumbsch, H.T.; Boekhout, T. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet. Biol. 2015, 78, 16–48. [Google Scholar] [CrossRef] [PubMed]
- Kwon-Chung, K.J.; Bennett, J.E.; Wickes, B.L.; Meyer, W.; Cuomo, C.A.; Wollenburg, K.R.; Bicanic, T.A.; Castañeda, E.; Chang, Y.C.; Chen, J.; et al. The case for adopting the “species complex” nomenclature for the etiologic agents of cryptococcosis. mSphere 2017, 2, e00357-16. [Google Scholar] [CrossRef] [PubMed]
- Meyer, W.; Aanensen, D.M.; Boekhout, T.; Cogliati, M.; Diaz, M.R.; Esposto, M.C.; Fisher, M.; Gilgado, F.; Hagen, F.; Kaocharoen, S.; et al. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med. Mycol. 2009, 47, 561–570. [Google Scholar] [CrossRef]
- Farrer, R.A.; Chang, M.; Davis, M.J.; van Dorp, L.; Yang, D.H.; Shea, T.; Sewell, T.R.; Meyer, W.; Balloux, F.; Edwards, H.M.; et al. A new lineage of Cryptococcus gattii (VGV) discovered in the central Zambezian Miombo woodlands. mBio 2019, 10, e02306–e02319. [Google Scholar] [CrossRef]
- Kwon-Chung, K.J. Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 1976, 68, 821–833. [Google Scholar] [CrossRef]
- Lin, X.; Hull, C.M.; Heitman, J. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 2005, 434, 1017–1021. [Google Scholar] [CrossRef]
- Firacative, C.; Roe, C.C.; Malik, R.; Ferreira-Paim, K.; Escandón, P.; Sykes, J.E.; Castañón-Olivares, L.R.; Contreras-Peres, C.; Samayoa, B.; Sorrell, T.C.; et al. MLST and whole-genome-based population analysis of Cryptococcus gattii VGIII links clinical, veterinary and environmental strains, and reveals divergent serotype specific sub-populations and distant ancestors. PLoS Negl. Trop. Dis. 2016, 10, e0004861. [Google Scholar] [CrossRef]
- Kidd, S.E.; Hagen, F.; Tscharke, R.L.; Huynh, M.; Bartlett, K.H.; Fyfe, M.; Macdougall, L.; Boekhout, T.; Kwon-Chung, K.J.; Meyer, W. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc. National. Acad. Sci. USA 2004, 101, 17258–17263. [Google Scholar] [CrossRef]
- Chowdhary, A.; Randhawa, H.S.; Boekhout, T.; Hagen, F.; Klaassen, C.H.; Meis, J.F. Temperate climate niche for Cryptococcus gattii in Northern Europe. Emerg. Infecti. Dis. 2012, 18, 172–174. [Google Scholar] [CrossRef]
- Kwon-Chung, K.J.; Fraser, J.A.; Doering, T.L.; Wang, Z.A.; Janbon, G.; Idnurm, A.; Bahn, Y.S. Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb. Perspec. Med. 2014, 4, a019760. [Google Scholar] [CrossRef] [PubMed]
- Cogliati, M.; D’Amicis, R.; Zani, A.; Montagna, M.T.; Caggiano, G.; De Giglio, O.; Balbino, S.; De Donno, A.; Serio, F.; Susever, S.; et al. Environmental distribution of Cryptococcus neoformans and C. gattii around the Mediterranean Basin. FEMS Yeast Res. 2016, 16, 045. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, A.; Randhawa, H.S.; Prakash, A.; Meis, J.F. Environmental prevalence of Cryptococcus neoformans and Cryptococcus gattii in India: An update. Crit. Rev. Microbiol. 2012, 38, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Castro e Silva, D.M.; Santos, D.C.S.; Martins, M.A.; Oliveira, L.; Szeszs, M.W.; Melhem, M.S.C. First isolation of Cryptococcus neoformans genotype VNI MAT-alpha from wood inside hollow trunks of Hymenaea courbaril. Med. Mycol. 2016, 54, 97–102. [Google Scholar] [PubMed]
- Ellis, D.H.; Pfeiffer, T.J. Ecology, life cycle, and infectious propagule of Cryptococcus neoformans. Lancet 1990, 336, 923–925. [Google Scholar] [CrossRef]
- Montagna, M.T.; De Donno, A.; Caggiano, G.; Serio, F.; De Giglio, O.; Bagordo, F.; D’Amicis, R.; Lockhart, S.R.; Cogliati, M. Molecular characterization of Cryptococcus neoformans and Cryptococcus gattii from environmental sources and genetic comparison with clinical isolates in Apulia, Italy. Environ. Res. 2018, 160, 347–352. [Google Scholar] [CrossRef]
- Hurst, S.; Lysen, C.; Cooksey, G.; Vugia, D.J.; Litvintseva, A.P.; Lockhart, S.R. Molecular typing of clinical and environmental isolates of Cryptococcus gattii species complex from southern California, United States. Mycoses 2019, 62, 1029–1034. [Google Scholar] [CrossRef]
- Chen, Y.; Litvintseva, A.P.; Frazzitta, A.E.; Haverkamp, M.R.; Wang, L.; Fang, C.; Muthoga, C.; Mitchell, T.G.; Perfect, J.R. Comparative analyses of clinical and environmental populations of Cryptococcus neoformans in Botswana. Mol. Ecol. 2015, 24, 3559–3571. [Google Scholar] [CrossRef] [PubMed]
- Litvintseva, A.P.; Kestenbaum, L.; Vilgalys, R.; Mitchell, T.G. Comparative analysis of environmental and clinical populations of Cryptococcus neoformans. J. Clin. Microbiol. 2005, 43, 556–564. [Google Scholar] [CrossRef][Green Version]
- Cogliati, M.; Desnos-Ollivier, M.; McCormick-Smith, I.; Rickerts, V.; Ferreira-Paim, K.; Meyer, W.; Boekhout, T.; Hagen, F.; Theelen, B.; Inácio, J.; et al. Genotypes and population genetics of Cryptococcus neoformans and Cryptococcus gattii species complexes in Europe and the Mediterranean Area. Fungal Genet. Biol. 2019, 129, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Hagen, F.; Colom, M.F.; Swinne, D.; Tintelnot, K.; Iatta, R.; Montagna, M.T.; Torres-Rodriguez, J.M.; Cogliati, M.; Velegraki, A.; Burggraaf, A.; et al. Autochthonous and dormant Cryptococcus gattii infections in Europe. Emerg. Infect. Dis. 2012, 18, 1618–1624. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.R.; Albert, N.; Hodge, G.; Wilson, M.D.; Sykes, J.E.; Bays, D.J.; Firacative, C.; Meyer, W.; Kontoyiannis, D.P. Phenotypic differences of Cryptococcus molecular types and their implications for virulence in a Drosophila model of infection. Infect. Immun. 2014, 82, 3058–3065. [Google Scholar] [CrossRef]
- Torres-Rodriguez, J.M.; Morera, Y.; Baro, T.; Corominas, J.M.; Castaneda, E. Pathogenicity of Cryptococcus neoformans var gattii in an immunocompetent mouse model. Med. Mycol. 2003, 41, 59–63. [Google Scholar]
- Song, G.; Liang, G.; Liu, W. Fungal Co-infections Associated with Global COVID-19 Pandemic: A Clinical and Diagnostic Perspective from China. Mycopathologia 2020, 185, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Florek, M.; Nawrot, U.; Korzeniowska-Kowal, A.; Włodarczyk, K.; Wzorek, A.; Woźniak-Biel, A.; Brzozowska, M.; Galli, J.; Bogucka, A.; Król, J. An Analysis of the Population of Cryptococcus Neoformans Strains Isolated From Animals in Poland, in the Years 2015–2019. Sci. Rep. 2021, 11, 6639. [Google Scholar] [CrossRef] [PubMed]
- Florek, M.; Król, J.; Woźniak-Biel, A. Atypical URA5 gene restriction fragment length polymorphism banding profile in Cryptococcus neoformans strains. Folia Microbiol. 2019, 64, 857–860. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing—EUCAST. Available online: https://www.eucast.org/astoffungi/clinicalbreakpointsforantifungals/ (accessed on 4 November 2021).
- Cogliati, M. Global molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii: An atlas of the molecular types. Scientifica 2013, 2013, 675213. [Google Scholar] [CrossRef]
- Maliehe, M.; Ntoi, M.A.; Lahiri, S.; Folorunso, O.S.; Ogundeji, A.O.; Pohl, C.H.; Sebolai, O.M. Environmental factors that contribute to the maintenance of Cryptococcus neoformans pathogenesis. Microorganisms 2020, 8, 180. [Google Scholar] [CrossRef] [PubMed]
- Pini, G.; Faggi, E.; Campisi, E. Enzymatic characterization of clinical and environmental Cryptococcus neoformans strains isolated in Italy. Rev. Iberoam. De Micol. 2017, 34, 77–82. [Google Scholar] [CrossRef]
- Rizzo, J.; Albuquerque, P.C.; Wolf, J.M.; Nascimento, R.; Pereira, M.D.; Nosanchuk, J.D.; Rodrigues, M.L. Analysis of multiple components involved in the interaction between Cryptococcus neoformans and Acanthamoeba castellanii. Fungal Biol. 2017, 121, 602–614. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.S.; Liporagi-Lopes, L.C.; dos Santos, S.R.; Tenor, J.L.; Perfect, J.R.; Cuomo, C.A.; Casadevall, A. Amoeba Predation of Cryptococcus neoformans Results in Pleiotropic Changes to Traits Associated with Virulence. mBio 2021, 12, e00567-21. [Google Scholar] [CrossRef] [PubMed]
- Bosch, C.; Toplis, B.; Vreulink, J.M.; Volschenk, H.; Botha, A. Nitrogen concentration affects amphotericin B and fluconazole tolerance of pathogenic cryptococci. FEMS Yeast Res. 2020, 20, foaa010. [Google Scholar] [CrossRef] [PubMed]
- Linares, C.; Colom, M.F.; Torreblanca, M.; Esteban, V.; Romera, Á.; Hagen, F. Environmental sampling of Ceratonia siliqua (carob) trees in Spain reveals the presence of the rare Cryptococcus gattii genotype AFLP7/VGIV. Rev. Iberoam. Micol. 2015, 32, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Romeo, O.; Scordino, F.; Chillemi, V.; Criseo, G. Cryptococcus neoformans/Cryptococcus gattii species complex in Italy: An overview on the environmental diffusion of serotypes, genotypes and mating-types. Mycopathologia 2012, 174, 283–291. [Google Scholar] [CrossRef]
- Pllana-Hajdari, D.; Cogliati, M.; Čičmak, L.; Pleško, S.; Mlinarić-Missoni, E.; Mareković, I. First isolation, antifungal susceptibility, and molecular characterization of Cryptococcus neoformans from the environment in Croatia. J. Fungi. 2019, 5, 99. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.S.; Sampaio, A.; Maduro, A.P.; Silva, I.; Teles, F.; Martins, M.D.L.; Inácio, J. Genotypic diversity of environmental Cryptococcus neoformans isolates from Northern Portugal. Mycoses 2014, 57, 98–104. [Google Scholar] [CrossRef]
- Vasilyeva, N.V.; Bosak, I.A.; Bogomolova, T.S.; Vybornova, I.V. Environmental isolates of Cryptococcus neoformans in Saint Petersburg, Russia. Mycoses 2009, 52, 54–55. [Google Scholar]
- Wójcik, A.; Błaszkowska, J.; Kurnatowski, P.; Góralska, K. Sandpits as a reservoir of potentially pathogenic fungi for children. Ann. Agric. Environ. Med. 2016, 23, 542–548. [Google Scholar] [CrossRef]
- Wójcik, A.; Kurnatowski, P.; Błaszkowska, J. Potentially pathogenic yeasts from soil of children’s recreational areas in the city of Łódź (Poland). Int. J. Occup. Med. Environ. Health 2013, 26, 477–487. [Google Scholar] [CrossRef]
- Kurnatowski, P.; Rózga, A.; Rózga, B.; Babski, P.; Wójcik, A. Potentially pathogenic fungi in the waters of the Charzykowskie Lake in Zaborski Landscape Park. Wiad. Parazytol. 2007, 53, 109–115. [Google Scholar]
- Dąbrowski, W.; Bogusławska-Wąs, E.; Daczkowska-Kozon, E. Analysis od the Szczecin Lagoon waters fungi. Acta Mycol. 1988, 33, 101–108. [Google Scholar] [CrossRef][Green Version]
- Campisi, E.; Mancianti, F.; Pini, G.; Faggi, E.; Gargani, G. Investigation in central Italy of the possible association between Cryptococcus neoformans var Gattii and Eucalyptus camaldulensis. Eur. J. Epidemiol. 2003, 18, 357–362. [Google Scholar] [CrossRef]
- Cogliati, M.; Puccianti, E.; Montagna, M.T.; De Donno, A.; Susever, S.; Ergin, C.; Velegraki, A.; Ellabib, M.S.; Nardoni, S.; Macci, C.; et al. Fundamental niche prediction of the pathogenic yeasts Cryptococcus neoformans and Cryptococcus gattii in Europe. Environ. Microbiol. 2017, 19, 4318–4325. [Google Scholar] [CrossRef] [PubMed]
- Alaniz, A.J.; Carvajal, J.G.; Carvajal, M.A.; Cogliati, M.; Vergara, P.M. Spatial quantification of the population exposed to Cryptococcus neoformans and Cryptococcus gattii species complexes in Europe: Estimating the immunocompetent and HIV/AIDS patients under risk. Risk Anal. 2020, 40, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Timarán, D.A.V.; Melo, C.J.B.; Caicedo, M.I.M.; Ceballos, A.M.C.; Vallejo, D.; Velásquez, C.A.C. Aislamiento de Cryptococcus neoformans en heces de palomas (Columba livia) en el casco urbano del municipio de Pasto, Colombia. Biosalud 2016, 15, 62–71. [Google Scholar] [CrossRef]
- Granados, D.P.; Castañeda, E. Isolation and characterization of Cryptococcus neoformans varieties recovered from natural sources in Bogotá, Colombia, and study of ecological conditions in the área. Microb. Ecol. 2005, 49, 282–290. [Google Scholar] [CrossRef]
- May, R.C.; Stone, N.R.; Wiesner, D.L.; Bicanic, T.; Nielsen, K. Cryptococcus: From environmental saprophyte to global pathogen. Nat. Rev. Microbiol. 2016, 14, 106–117. [Google Scholar] [CrossRef]
- Viviani, M.A.; Cogliati, M.; Esposto, M.C.; Lemmer, K.; Tintelnot, K.; Colom-Valiente, M.F.; Swinne, D.; Velegraki, A.; Velho, R.; European Confederation of Medical Mycology (ECMM) Cryptococcosis Working Group. Molecular analysis of 311 Cryptococcus neoformans isolates from a 30-month ECMM survey of cryptococcosis in Europe. FEMS Yeast Res. 2006, 6, 614–619. [Google Scholar] [CrossRef][Green Version]
- Cogliati, M.; Zani, A.; Rickerts, V.; McCormick, I.; Desnos-Ollivier, M.; Velegraki, A.; Escandon, P.; Ichikawa, T.; Ikeda, R.; Bienvenue, A.L.; et al. Multilocus sequence typing analysis reveals that Cryptococcus neoformans var neoformans is a recombinant population. Fungal Genet. Biol. 2016, 87, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.U.; Randhawa, H.S.; Kowshik, T.; Chowdhary, A.; Chandy, R. Antifungal susceptibility of Cryptococcus neoformans and Cryptococcus gattii isolates from decayed wood of trunk hollows of Ficus religiosa and Syzygium cumini trees in north-western India. J. Antimicrob. Chemother. 2007, 60, 312–316. [Google Scholar] [CrossRef]
- Movahed, E.; Munusamy, K.; Tan, G.M.Y.; Looi, C.Y.; Tay, S.T.; Wong, W.F. Genome-wide transcription study of Cryptococcus neoformans H99 clinical strain versus environmental strains. PLoS ONE 2015, 10, e0137457. [Google Scholar] [CrossRef] [PubMed]
- Gutch, R.S.; Nawange, S.R.; Singh, S.M.; Yadu, R.; Tiwari, A.; Gumasta, R.; Kavishwar, A. Antifungal susceptibility of clinical and environmental Cryptococcus neoformans and Cryptococcus gattii isolates in Jabalpur, a city of Madhya Pradesh in Central India. Braz. J. Microbiol. 2015, 46, 1125–1133. [Google Scholar] [CrossRef]
- Córdoba, S.; Isla, M.G.; Szusz, W.; Vivot, W.; Altamirano, R.; Davel, G. Susceptibility profile and epidemiological cut-off values of Cryptococcus neoformans species complex from Argentina. Mycoses 2016, 59, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Espinel-Ingroff, A.; Aller, A.I.; Canton, E.; Castañón-Olivares, L.R.; Chowdhary, A.; Cordoba, S.; Cuenca-Estrella, M.; Fothergill, A.; Fuller, J.; Govender, N.; et al. Cryptococcus neoformans-Cryptococcus gattii species complex: An international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for amphotericin B and flucytosine. Antimicrob. Agents Chemother. 2012, 56, 3107–3113. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Selb, R.; Fuchs, V.; Graf, B.; Hamprecht, A.; Hogardt, M.; Sedlacek, L.; Schwarz, R.; Idelevich, E.A.; Becker, S.L.; Held, J.; et al. Molecular typing and in vitro resistance of Cryptococcus neoformans clinical isolates obtained in Germany between 2011 and 2017. Int. J. Med. Microbiol. 2019, 309, 151336. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Messer, S.A.; Boyken, L.; Rice, C.; Tendolkar, S.; Hollis, R.J.; Doern, G.V.; Diekema, D.J. Global trends in the antifungal susceptibility of Cryptococcus neoformans (1990 to 2004). J. Clin. Microbiol. 2005, 43, 2163–2167. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, A.; Randhawa, H.S.; Sundar, G.; Kathuria, S.; Prakash, A.; Khan, Z.; Sun, S.; Xu, J. In vitro antifungal susceptibility profiles and genotypes of 308 clinical and environmental isolates of Cryptococcus neoformans var grubii and Cryptococcus gattii serotype B from north-western India. J. Med. Microbiol. 2011, 60, 961–967. [Google Scholar] [CrossRef]
- Carlson, T.; Lupinacci, E.; Moseley, K.; Chandrasekaran, S. Effects of environmental factors on sensitivity of Cryptococcus neoformans to fluconazole and amphotericin B. FEMS Microbiol. Lett. 2021, 368, fnab040. [Google Scholar] [CrossRef]
- Wang, Y.; Casadevall, A. Decreased susceptibility of melanized Cryptococcus neoformans to UV light. Appl. Environ. Microbiol. 1994, 60, 3864–3866. [Google Scholar] [CrossRef]
- Thompson III, G.R.; Wiederhold, N.P.; Fothergill, A.W.; Vallor, A.C.; Wickes, B.L.; Patterson, T.F. Antifungal susceptibilities among different serotypes of Cryptococcus gattii and Cryptococcus neoformans. Antimicrob. Agents Chemother. 2009, 53, 309–311. [Google Scholar] [CrossRef] [PubMed]
- O’Meara, T.R.; Alspaugh, J.A. The Cryptococcus neoformans capsule: A sword and a shield. Clin. Microbiol. Rev. 2012, 25, 387–408. [Google Scholar] [CrossRef]
- Carneiro, H.C.S.; Ribeiro, N.Q.; Bastos, R.W.; Santos, D.A. Effect of non-antifungal agrochemicals on the pathogenic fungus Cryptococcus gattii. Med. Mycol. 2020, 58, 47–53. [Google Scholar] [CrossRef]
- Bastos, R.W.; Carneiro, H.C.S.; Oliveira, L.V.N.; Rocha, K.M.; Freitas, G.J.C.; Costa, M.C.; Magalhães, T.F.F.; Carvalho, V.S.D.; Rocha, C.E.; Ferreira, G.F.; et al. Environmental triazole induces cross-resistance to clinical drugs and affects morphophysiology and virulence of Cryptococcus gattii and C. neoformans. Antimicrob. Agents Chemother. 2018, 62, e01179-17. [Google Scholar] [CrossRef] [PubMed]
- Gusa, A.; Williams, J.D.; Cho, J.E.; Averette, A.F.; Sun, S.; Shouse, E.M.; Heitman, J.; Alspaugh, J.A.; Jinks-Robertson, S. Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro. Proc. Natl. Acad. Sci. USA 2020, 117, 9973–9980. [Google Scholar] [CrossRef] [PubMed]
- Billmyre, R.B.; Clancey, S.A.; Li, L.X.; Doering, T.L.; Heitman, J. 5-fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis in Cryptococcus. Nat. Commun. 2020, 11, 127. [Google Scholar] [CrossRef]
- Pais, P.; Pires, C.; Costa, C.; Okamoto, M.; Chibana, H.; Teixeira, M.C. Membrane proteomics analysis of the Candida glabrata response to 5-flucytosine: Unveiling the role and regulation of the drug efflux transporters CgFlr1 and CgFlr2. Front. Microbiol. 2016, 7, 2045. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.H.A.; Arthur, I.; Merritt, A.; Leung, M. Molecular types of Cryptococcus neoformans and Cryptococcus gattii in Western Australia and correlation with antifungal susceptibility. Med. Mycol. 2019, 57, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Edwards, H.M.; Cogliati, M.; Kwenda, G.; Fisher, M.C. The need for environmental surveillance to understand the ecology, epidemiology and impact of Cryptococcus infection in Africa. FEMS Microbiol. Ecol. 2021, 97, fiab093. [Google Scholar] [CrossRef] [PubMed]
- Cogliati, M. Global warming impact on the expansion of fundamental niche of Cryptococcus gattii VGI in Europe. Environ. Microbiol. Rep. 2021, 13, 375–383. [Google Scholar] [CrossRef]
- Keesing, F.; Belden, L.K.; Daszak, P.; Dobson, A.; Harvell, C.D.; Holt, R.D.; Hudson, P.; Jolles, A.; Jones, K.E.; Mitchell, C.E.; et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 2010, 468, 647–652. [Google Scholar] [CrossRef]
- Chowdhary, A.; Hiremath, S.S.; Sun, S.; Kowshik, T.; Randhawa, H.S.; Xu, J. Genetic differentiation, recombination and clonal expansion in environmental populations of Cryptococcus gattii in India. Environ. Microbiol. 2011, 13, 1875. [Google Scholar] [CrossRef] [PubMed]
- Sanchini, A.; Smith, I.M.; Sedlacek, L.; Schwarz, R.; Tintelnot, K.; Rickerts, V. Molecular typing of clinical Cryptococcus neoformans isolates collected in Germany from 2004 to 2010. Med. Microbiol. Immunol. 2014, 203, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Averette, A.F.; Desnos-Ollivier, M.; Ni, M.; Dromer, F.; Heitman, J. Genetic diversity and genomic plasticity of Cryptococcus neoformans AD hybrid strains. G3: Genes|Genomes|Genet. 2012, 2, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Meyer, W.; Castañeda, A.; Jackson, S.; Huynh, M.; Castañeda, E.; IberoAmerican Cryptococcal Study Group. Molecular typing of IberoAmerican Cryptococcus neoformans isolates. Emerg. Infect. Dis. 2003, 9, 189. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST) Definitive Document E.DEF 7.3.1. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_7_3_1_Yeast_testing__definitive.pdf (accessed on 4 November 2021).
- Espinel-Ingroff, A.; Aller, A.I.; Canton, E.; Castanon-Olivares, L.R.; Chowdhary, A.; Cordoba, S.; Cuenca-Estrella, M.; Fothergill, A.; Fuller, J.; Govender, N.; et al. Cryptococcus neoformans-Cryptococcus gattii species complex: An international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for fluconazole, itraconazole, posaconazole, and voriconazole. Antimicrob. Agents Chemother. 2012, 56, 5898–5906. [Google Scholar] [CrossRef] [PubMed]
- Espinel-Ingroff, A.; Chowdhary, A.; Gonzalez, G.M.; Guinea, J.; Hagen, F.; Meis, J.F.; Thompson, G.R.; Turnidge, J. Multicenter Study of Isavuconazole MIC Distributions and Epidemiological Cutoff Values for the Cryptococcus neoformans-Cryptococcus gattii Species Complex Using the CLSI M27-A3 Broth Microdilution Method. Antimicrob. Agents Chemother. 2014, 59, 666–668. [Google Scholar] [CrossRef] [PubMed]
Source of the Sample | No. of Trees | No. of Positive Trees | Isolation Percentage (%) | No. of Isolates | Strains |
---|---|---|---|---|---|
Oak (Quercus L.) | 309 | 9 | 2.91 | 14 | 1o*, 4’, 9a, D4, D2a^, D2b^, K1a^, K1b^, Fw1, Fw4*, Fw5, Fw6, Fw7*, Fw8* |
Black locust (Robinia pseudoacacia L.) | 23 | 0 | 0 | 0 | - |
Lime tree (Tilia L.) | 11 | 0 | 0 | 0 | - |
Plane tree (Platanus L.) | 36 | 0 | 0 | 0 | - |
Horse-chestnut (Aesculus hippocastanum L.) | 12 | 0 | 0 | 0 | - |
Hornbeam (Carpinus L.) | 10 | 0 | 0 | 0 | - |
Birch (Betula L.) | 10 | 1 | 10 | 1 | Fw3 |
Pine (Pinus L.) | 13 | 1 | 7.69 | 2 | Fw2*, Fw9* |
Fir (Abies Mill.) | 6 | 0 | 0 | 0 | - |
Willow (Salix L.) | 4 | 0 | 0 | 0 | - |
European beech (Fagus sylvatica L.) | 5 | 0 | 0 | 0 | - |
Common yew (Taxus baccata L.) | 2 | 0 | 0 | 0 | - |
Maple (Acer L.) | 30 | 0 | 0 | 0 | - |
Swedish whitebeam (Sorbus intermedia L.) | 2 | 0 | 0 | 0 | - |
Sycamore maple (Acer pseudoplatanus L.) | 2 | 0 | 0 | 0 | - |
Sea buckthorn (Hippophaë rhamnoides L.) | 1 | 0 | 0 | 0 | - |
Thuja (Thuja L.) | 10 | 0 | 0 | 0 | - |
Cottonwood (Populus L.) | 10 | 0 | 0 | 0 | - |
Larch (Larix Mill.) | 4 | 0 | 0 | 0 | - |
Spruce (Picea A. Dietr.) | 8 | 0 | 0 | 0 | - |
Alder (Alnus Mill.) | 9 | 0 | 0 | 0 | - |
Ash tree (Fraxinus L.) | 9 | 0 | 0 | 0 | - |
Douglas fir (Pseudotsuga menziesii) | 66 | 1 | 1.51 | 1 | 9x |
Trees in total: | 592 | 12 | 2.20 | 18 | |
Soil: | 10 | 1 | 10 | 1 | Fw10 |
In total: | 602 | 13 | 2.16 | 19 | - |
The Strain Name | PCM Number | Sero- and Mating Type | MMT According to URA5-RFLP | MALDI-TOF MS Original Base | MALDI-TOF MS Extended Base | ||
---|---|---|---|---|---|---|---|
Score | MMT Identification | Score | MMT Identification | ||||
1o | 3145 | Dα | VNIV | 1.865 | VNIV | 2.553 | VNIV |
9a | 3146 | Dα | VNIV | 1.968 | VNIV | 2.080 | VNIV |
9x | 3147 | Dα | VNIV | 1.881 | VNIV | 1.953 | VNIV |
4’ | 3150 | Dα | VNIV | 1.946 | VNIV | 1.946 | VNIV |
D2a | 3148 | Aα | VNI | 2.234 | VNI | 2.260 | VNI |
D2b | 3149 | Aα | VNI | 2.221 | VNI | 2.221 | VNI |
D4 | 3151 | Aα | VNI | 2.090 | VNI | 2.090 | VNI |
FW1 | 3153 | Aα | VNI | 2.112 | VNI | 2.112 | VNI |
FW2 | 3155 | Aα | VNI | 2.252 | VNI | 2.252 | VNI |
FW3 | 3158 | Dα | VNIV | 2.212 | VNIV | 2.212 | VNIV |
FW4 | 3160 | Dα | VNIV | 1.762 | VNIV | 1.762 | VNIV |
FW5 | 3161 | Aα | VNI | 2.045 | VNI | 2.045 | VNI |
FW6 | 3162 | Dα | VNIV | 1.963 | VNIV | 2.032 | VNIV |
FW7 | 3152 | Dα | VNIV | 2.108 | VNIV | 2.127 | VNIII |
FW8 | 3157 | Dα | VNIV | 2.002 | VNIV | 2.041 | VNIII |
FW9 | 3159 | Aα | VNI | 1.853 | VNI | 1.853 | VNI |
FW10 | 3154 | Aα | VNI | 2.426 | VNI | 2.426 | VNI |
K1a | 3156 | Dα | VNIV | 1.965 | VNIV | 1.965 | VNIV |
K1b | 3000 | Dα | VNIV* | 2.070 | VNIV | 2.070 | VNIV |
The Strain Name | MIC (mg/L) | ||||||
---|---|---|---|---|---|---|---|
AMB | 5-FC | FLU | VOR | ISV | ITR | POS | |
Major Molecular Type VNI | |||||||
D2a | 1 | 16 | 0.5 | 0.06 | 0.03 | 0.03 | 0.06 |
D2b | 1 | 16 | 1 | 0.03 | 0.06 | 0.03 | 0.125 |
D4 | 1 | 16 | 1 | 0.03 | 0.06 | 0.03 | 0.125 |
FW1 | 0.5 | 32 | 32 | 0.25 | 0.125 | 0.25 | 0.25 |
FW 10 | 1 | 32 | 32 | 0.25 | 0.125 | 0.25 | 0.5 |
FW2 | 1 | 8 | 16 | 0.25 | 0.25 | 0.5 | 0.25 |
Fw9 | 1 | 32 | 32 | 0.125 | 0.015 | 0. 25 | 0.015 |
FW5 | 0.5 | 16 | 16 | 0.125 | 0.125 | 0.25 | 0.25 |
Median (range) of VNI | 1 (0.5–1) | 16 (8–32) | 16 (0.5–32) | 0.125 (0.03–0.25) | 0.0925 (0.015–0.25) | 0.25 (0.03–0.5) | 0.187 (0.015–0.5) |
Major Molecular Type VNIV | |||||||
1o | 1 | 16 | 0.5 | 0.125 | 0.125 | 0.03 | 0.06 |
9a | 0.5 | 16 | 0.5 | 0.06 | 0.06 | 0.03 | 0.06 |
9x | 1 | 32 | 0.5 | 0.06 | 0.06 | 0.03 | 0.06 |
4 | 1 | 16 | 0.5 | 0.03 | 0.06 | 0.03 | 0.25 |
Fw7 | 0.5 | 16 | 16 | 0.25 | 0.125 | 0.25 | 0.125 |
K1a | 1 | 8 | 8 | 0.125 | 0.015 | 0.125 | 0.015 |
Fw8 | 1 | 16 | 4 | 0.125 | 0.015 | 0.03 | 0.015 |
FW3 | 0.5 | 8 | 4 | 0.06 | 0.015 | 0.03 | 0.015 |
FW4 | 1 | 8 | 8 | 0.06 | 0.015 | 0.125 | 0.015 |
FW6 | 0.125 | 1 | 4 | 0.06 | 0.06 | 0.5 | 0.25 |
K1b | 1 | 64 | 1 | 0.03 | 0.03 | 0.125 | 0.125 |
Median (range) of VNIV | 1 (0.125–1) | 16 (1–64) | 4 (0.5–16) | 0.06 (0.03–0.25) | 0.06 (0.015–0.125) | 0.03 (0.03–0.5) | 0.06 (0.015–0.25) |
Median (range) of VNI and VNIV | 1 (0.125–1) | 16 (1–64) | 4 (0.5–32) | 0.06 (0.03–0.25) | 0.06 (0.015–0.25) | 0.0775 (0.03–0.5) | 0.0925 (0.015–0.5) |
MIC50 (VNI and VNIV) | 1 | 16 | 4 | 0.06 | 0.06 | 0.125 | 0.125 |
MIC90 (VNI and VNIV) | 1 | 32 | 32 | 0.25 | 0.125 | 0.25 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florek, M.; Korzeniowska-Kowal, A.; Wzorek, A.; Włodarczyk, K.; Marynowska, M.; Pogorzelska, A.; Brodala, M.; Ploch, S.; Buczek, D.; Balon, K.; et al. Prevalence, Genetic Structure, and Antifungal Susceptibility of the Cryptococcus neoformans/C. gattii Species Complex Strains Collected from the Arboreal Niche in Poland. Pathogens 2022, 11, 8. https://doi.org/10.3390/pathogens11010008
Florek M, Korzeniowska-Kowal A, Wzorek A, Włodarczyk K, Marynowska M, Pogorzelska A, Brodala M, Ploch S, Buczek D, Balon K, et al. Prevalence, Genetic Structure, and Antifungal Susceptibility of the Cryptococcus neoformans/C. gattii Species Complex Strains Collected from the Arboreal Niche in Poland. Pathogens. 2022; 11(1):8. https://doi.org/10.3390/pathogens11010008
Chicago/Turabian StyleFlorek, Magdalena, Agnieszka Korzeniowska-Kowal, Anna Wzorek, Katarzyna Włodarczyk, Maja Marynowska, Aleksandra Pogorzelska, Maria Brodala, Sebastian Ploch, Daniel Buczek, Katarzyna Balon, and et al. 2022. "Prevalence, Genetic Structure, and Antifungal Susceptibility of the Cryptococcus neoformans/C. gattii Species Complex Strains Collected from the Arboreal Niche in Poland" Pathogens 11, no. 1: 8. https://doi.org/10.3390/pathogens11010008
APA StyleFlorek, M., Korzeniowska-Kowal, A., Wzorek, A., Włodarczyk, K., Marynowska, M., Pogorzelska, A., Brodala, M., Ploch, S., Buczek, D., Balon, K., & Nawrot, U. (2022). Prevalence, Genetic Structure, and Antifungal Susceptibility of the Cryptococcus neoformans/C. gattii Species Complex Strains Collected from the Arboreal Niche in Poland. Pathogens, 11(1), 8. https://doi.org/10.3390/pathogens11010008