Child Contact Case Management—A Major Policy-Practice Gap in High-Burden Countries
Abstract
:1. Introduction
2. National Policies and the Policy-Practice Gap
3. Key Considerations for Roll-Out of CCM
3.1. Target Populations and Screening Approaches
3.2. TPT Regimens and Availability of Child Friendly Formulations
3.3. Models of Care for CCM
3.4. Patient-Centered CCM Approaches
3.5. Going beyond Household CCM
3.6. Reporting
3.7. Key Knowledge Gaps and Future Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report; World Health Organization: Geneva, Switzerland, 2021.
- Martinez, L.; Cords, O.; Horsburgh, C.R.; Andrews, J.R.; Acuna-Villaorduna, C.; Ahuja, S.D.; Altet, N.; Augusto, O.; Baliashvili, D.; Basu, S.; et al. The risk of tuberculosis in children after close exposure: A systematic review and individual-participant meta-analysis. Lancet 2020, 395, 973–984. [Google Scholar] [CrossRef] [Green Version]
- WHO. Consolidated Guidelines on Tuberculosis: Tuberculosis Preventive Treatment: Module 1: Prevention; World Health Organization: Geneva, Switzerland, 2020.
- Elizabeth Glaser Pediatric AIDS Foundation. Defeat Childhood TB: A Multicountry Assessment of National Policies and Preparedness for Childhood TB Programming Report; EGPAF: Washington DC, USA, 2021; Available online: https://www.pedaids.org/resource/defeat-childhood-tb/ (accessed on 18 November 2021).
- Velen, K.; Shingde, R.V.; Ho, J.; Fox, G.J. The effectiveness of contact investigation among contacts of tuberculosis patients: A systematic review and meta-analysis. Eur. Respir. J. 2021, 2100266. [Google Scholar] [CrossRef] [PubMed]
- Morrison, J.; Pai, M.; Hopewell, P.C. Tuberculosis and latent tuberculosis infection in close contacts of people with pulmonary tuberculosis in low-income and middle-income countries: A systematic review and meta-analysis. Lancet Infect. Dis. 2008, 8, 359–368. [Google Scholar] [CrossRef]
- Fox, G.J.; Barry, S.E.; Britton, W.J.; Marks, G. Contact investigation for tuberculosis: A systematic review and meta-analysis. Eur. Respir. J. 2012, 41, 140–156. [Google Scholar] [CrossRef] [PubMed]
- Blok, L.; Sahu, S.; Creswell, J.; Alba, S.; Stevens, R.; Bakker, M.I. Comparative Meta-Analysis of Tuberculosis Contact Investigation Interventions in Eleven High Burden Countries. PLoS ONE 2015, 10, e0119822. [Google Scholar] [CrossRef] [PubMed]
- Velleca, M.; Malekinejad, M.; Miller, C.; Miguel, L.A.; Reeves, H.; Hopewell, P.; Fair, E. The yield of tuberculosis contact investigation in low- and middle-income settings: A systematic review and meta-analysis. BMC Infect. Dis. 2021, 21, 1–12. [Google Scholar] [CrossRef]
- Alsdurf, H.; Hill, P.C.; Matteelli, A.; Getahun, H.; Menzies, D. The cascade of care in diagnosis and treatment of latent tuberculosis infection: A systematic review and meta-analysis. Lancet Infect. Dis. 2016, 16, 1269–1278. [Google Scholar] [CrossRef]
- Szkwarko, D.; Hirsch-Moverman, Y.; Du Plessis, L.; Du Preez, K.; Carr, C.; Mandalakas, A.M. Child contact management in high tuberculosis burden countries: A mixed-methods systematic review. PLoS ONE 2017, 12, e0182185. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.I.; Sandora, T.J.; Haberer, J.E. A scoping review of paediatric latent tuberculosis infection care cascades: Initial steps are lacking. BMJ Glob. Health 2021, 6, e004836. [Google Scholar] [CrossRef] [PubMed]
- Barss, L.; Moayedi-Nia, S.; Campbell, J.R.; Oxlade, O.; Menzies, D. Interventions to reduce losses in the cascade of care for latent tuberculosis: A systematic review and meta-analysis. Int. J. Tuberc. Lung Dis. 2020, 24, 100–109. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Recommendations for Investigating Contacts of Persons with Infectious Tuberculosis in Low- and Middle-Income Countries; World Health Organization: Geneva, Switzerland, 2012.
- World Health Organization. WHO Operational Handbook on Tuberculosis. Module 1: Prevention-Tuberculosis Preventive Treatment; World Health Organization: Geneva, Switzerland, 2020.
- Vasiliu, A.; Abelman, R.A.; Casenghi, M.; Cohn, J.; Bonnet, M. Symptom-based Screening Versus Chest Radiography for TB Child Contacts: A Systematic Review and Meta-analysis. Pediatr. Infect. Dis. J. 2021, 40, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Austin, N.; Cohn, S.; Barnes, G.L.; Tladi, M.; Motlhaoleng, K.; Swanepoel, C.; Motala, Z.; Variava, E.; Martinson, N.; Chaisson, R.E. Improving Tuberculosis Preventive Therapy Uptake: A Cluster-randomized Trial of Symptom-based Versus Tuberculin Skin Test–based Screening of Household Tuberculosis Contacts Less Than 5 Years of Age. Clin. Infect. Dis. 2019, 70, 1725–1732. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Consolidated Guidelines on Tuberculosis. Module 2: Screening–Systematic Screening for Tuberculosis Disease; World Health Organization: Geneva, Switzerland, 2021.
- Gong, W.; Wu, X. Differential Diagnosis of Latent Tuberculosis Infection and Active Tuberculosis: A Key to a Successful Tuberculosis Control Strategy. Front. Microbiol. 2021, 12, 3126. [Google Scholar] [CrossRef]
- Marais, B.J.; Verkuijl, S.; Casenghi, M.; Triasih, R.; Hesseling, A.C.; Mandalakas, A.M.; Marcy, O.; Seddon, J.A.; Graham, S.M.; Amanullah, F. Paediatric tuberculosis—New advances to close persistent gaps. Int. J. Infect. Dis. 2021, 113 (Suppl. S1), S63–S67. [Google Scholar] [CrossRef] [PubMed]
- Tavaziva, G.; Harris, M.; Abidi, S.K.; Geric, C.; Breuninger, M.; Dheda, K.; Esmail, A.; Muyoyeta, M.; Reither, K.; Majidulla, A.; et al. Chest X-ray Analysis With Deep Learning-Based Software as a Triage Test for Pulmonary Tuberculosis: An Individual Patient Data Meta-Analysis of Diagnostic Accuracy. Clin. Infect. Dis. 2021. [Google Scholar] [CrossRef]
- Harris, M.; Qi, A.; JeaGal, L.; Torabi, N.; Menzies, D.; Korobitsyn, A.; Pai, M.; Nathavitharana, R.R.; Khan, F.A. A systematic review of the diagnostic accuracy of artificial intelligence-based computer programs to analyze chest x-rays for pulmonary tuberculosis. PLoS ONE 2019, 14, e0221339. [Google Scholar] [CrossRef]
- Muyoyeta, M.; Kasese, N.C.; Milimo, D.; Mushanga, I.; Ndhlovu, M.; Kapata, N.; Moyo-Chilufya, M.; Ayles, H. Digital CXR with computer aided diagnosis versus symptom screen to define presumptive tuberculosis among household contacts and impact on tuberculosis diagnosis. BMC Infect. Dis. 2017, 17, 301. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.Z.; Naheyan, T.; Ruhwald, M.; Denkinger, C.M.; Gelaw, S.; Nash, M.; Creswell, J.; Kik, S.V. A new resource on artificial intelligence powered computer automated detection software products for tuberculosis programmes and implementers. Tuberculosis 2021, 127, 102049. [Google Scholar] [CrossRef]
- FIND. Digital chest radiography and computer-aided detection solutions for tuberculosis diagnosis. FIND, Netherlands 2021. Available online: https://www.finddx.org/at-risk-populations/cad/ (accessed on 9 December 2021).
- World Health Organization. Framework for the Evaluation of New Tests for Tuberculosis Infection; World Health Organization: Geneva, Switzerland, 2020.
- Sterling, T.R.; Njie, G.; Zenner, D.; Cohn, D.L.; Reves, R.; Ahmed, A.; Menzies, D.; Horsburgh, C.R.; Crane, C.M.; Burgos, M.; et al. Guidelines for the Treatment of Latent Tuberculosis Infection: Recommendations from the National Tuberculosis Controllers Association and CDC, 2020. MMWR. Recomm. Rep. 2020, 69, 1–11. [Google Scholar] [CrossRef]
- Spyridis, N.P.; Spyridis, P.G.; Gelesme, A.; Sypsa, V.; Valianatou, M.; Metsou, F.; Gourgiotis, D.; Tsolia, M.N. The Effectiveness of a 9-Month Regimen of Isoniazid Alone versus 3- and 4-Month Regimens of Isoniazid plus Rifampin for Treatment of Latent Tuberculosis Infection in Children: Results of an 11-Year Randomized Study. Clin. Infect. Dis. 2007, 45, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Villarino, M.E.; Scott, N.A.; Weis, S.E.; Weiner, M.; Conde, M.B.; Jones, B.; Nachman, S.; Oliveira, R.; Moro, R.N.; Shang, N.; et al. Treatment for Preventing Tuberculosis in Children and Adolescents: A Randomized Clinical Trial of a 3-Month, 12-Dose Regimen of a Combination of Rifapentine and Isoniazid. JAMA Pediatr. 2015, 169, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Swindells, S.; Ramchandani, R.; Gupta, A.; Benson, C.A.; Leon-Cruz, J.; Mwelase, N.; Juste, M.A.J.; Lama, J.R.; Valencia, J.; Omoz-Oarhe, A.; et al. One Month of Rifapentine plus Isoniazid to Prevent HIV-Related Tuberculosis. N. Engl. J. Med. 2019, 380, 1001–1011. [Google Scholar] [CrossRef]
- Malik, A.; Amanullah, F.; Codlin, A.J.; Siddiqui, S.; Jaswal, M.; Ahmed, J.F.; Saleem, S.; Khurshid, A.; Hussain, H. Improving childhood tuberculosis detection and treatment through facility-based screening in rural Pakistan. Int. J. Tuberc. Lung Dis. 2018, 22, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Diallo, T.; Adjobimey, M.; Ruslami, R.; Trajman, A.; Sow, O.; Baah, J.O.; Marks, G.; Long, R.; Elwood, K.; Zielinski, D.; et al. Safety and Side Effects of Rifampin versus Isoniazid in Children. N. Engl. J. Med. 2018, 379, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Menzies, D.; Adjobimey, M.; Ruslami, R.; Trajman, A.; Sow, O.; Kim, H.; Baah, J.O.; Marks, G.; Long, R.; Hoeppner, V.; et al. Four Months of Rifampin or Nine Months of Isoniazid for Latent Tuberculosis in Adults. N. Engl. J. Med. 2018, 379, 440–453. [Google Scholar] [CrossRef]
- Ena, J.; Valls, V. Short-Course Therapy with Rifampin plus Isoniazid, Compared with Standard Therapy with Isoniazid, for Latent Tuberculosis Infection: A Meta-analysis. Clin. Infect. Dis. 2005, 40, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Cruz, A.T.; Starke, J.R. Completion Rate and Safety of Tuberculosis Infection Treatment with Shorter Regimens. Pediatrics 2018, 141, e20172838. [Google Scholar] [CrossRef] [Green Version]
- Chaisson, R.E.; Golub, J.E. Preventing tuberculosis in people with HIV—no more excuses. Lancet Glob. Health 2017, 5, e1048–e1049. [Google Scholar] [CrossRef] [Green Version]
- Hirsch-Moverman, Y.; Mantell, J.E.; Lebelo, L.; Wynn, C.; Hesseling, A.C.; Howard, A.A.; Nachman, S.; Frederix, K.; Maama, L.B.; El-Sadr, W.M. Tuberculosis preventive treatment preferences among care givers of children in Lesotho: A pilot study. Int. J. Tuberc. Lung Dis. 2018, 22, 858–862. [Google Scholar] [CrossRef]
- Wademan, D.T.; Busakwe, L.; Nicholson, T.J.; van der Zalm, M.; Palmer, M.; Workman, J.; Turkova, A.; Crook, A.M.; Thomason, M.J.; Gibb, D.M.; et al. Acceptability of a first-line anti-tuberculosis formulation for children: Qualitative data from the SHINE trial. Int. J. Tuberc. Lung Dis. 2019, 23, 1263–1268. [Google Scholar] [CrossRef]
- Mitiku, P. Implementation of 3HP and the TPT uptake among child contacts in 73 health facilities in Ethiopia. Oral presentation at the 52nd World Conference on Lung Health of the International Union Against Tuberculosis and Lung Disease (The Union), Virtuai, 19–21 October 2021; Available online: https://theunion.org/sites/default/files/2021-10/UNION2021_Abstracts_High.pdf (accessed on 8 November 2021).
- World Health Organization. Report of the Meeting to Review the Paediatric Antituberculosis Drug Optimization Priority List; World Health Organization: Geneva, Swizerland, 2021.
- Uplekar, M.; Weil, D.; Lonnroth, K.; Jaramillo, E.; Lienhardt, C.; Dias, H.M.; Falzon, D.; Floyd, K.; Gargioni, G.; Getahun, H.; et al. WHO’s new End TB Strategy. Lancet 2015, 385, 1799–1801. [Google Scholar] [CrossRef]
- Lönnroth, K.; Raviglione, M. The WHO’s new End TB Strategy in the post-2015 era of the Sustainable Development Goals. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 148–150. [Google Scholar] [CrossRef] [PubMed]
- Biermann, O.; Lönnroth, K.; Caws, M.; Viney, K. Factors influencing active tuberculosis case-finding policy development and implementation: A scoping review. BMJ Open 2019, 9, e031284. [Google Scholar] [CrossRef]
- Ayakaka, I.; Ackerman, S.; Ggita, J.M.; Kajubi, P.; Dowdy, D.; Haberer, J.E.; Fair, E.; Hopewell, P.; Handley, M.A.; Cattamanchi, A.; et al. Identifying barriers to and facilitators of tuberculosis contact investigation in Kampala, Uganda: A behavioral approach. Implement. Sci. 2017, 12, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, S.S.; Roche, S.; Contreras, C.; Del Castillo, H.; Canales, P.; Jimenez, J.; Tintaya, K.; Becerra, M.C.; Lecca, L.; Chiang, T.-M.; et al. Barriers to the treatment of childhood tuberculous infection and tuberculosis disease: A qualitative study. Int. J. Tuberc. Lung Dis. 2017, 21, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Cattamanchi, A.; Miller, C.R.; Tapley, A.; Haguma, P.; Ochom, E.; Ackerman, S.; Davis, J.L.; Katamba, A.; Handley, M.A. Health worker perspectives on barriers to delivery of routine tuberculosis diagnostic evaluation services in Uganda: A qualitative study to guide clinic-based interventions. BMC Health Serv. Res. 2015, 15, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Wyk, S.S.; Reid, A.J.; Mandalakas, A.M.; Enarson, D.A.; Beyers, N.; Morrison, J.; Hesseling, A.C. Operational challenges in managing Isoniazid Preventive Therapy in child contacts: A high-burden setting perspective. BMC Public Health 2011, 11, 544–546. [Google Scholar] [CrossRef]
- McQuaid, C.F.; Vassall, A.; Cohen, T.; Fiekert, K.; COVID/TB Modelling Working Group; White, R.G. The impact of COVID-19 on TB: A review of the data. Int. J. Tuberc. Lung Dis. 2021, 25, 436–446. [Google Scholar] [CrossRef]
- Chan, G.; Triasih, R.; Nababan, B.; du Cros, P.; Wilks, N.; Main, S.; Huang, G.K.L.; Lin, D.; Graham, S.M.; Majumdar, S.S.; et al. Adapting active case-finding for TB during the COVID-19 pandemic in Yogyakarta, Indonesia. Public Health Action 2021, 11, 41–49. [Google Scholar] [CrossRef]
- World Health Organization. Community Involvement in Tuberculosis Care and Prevention: Towards Partnerships for Health; World Health Organization: Geneva, Switzerland, 2008.
- Kok, M.C.; Dieleman, M.; Taegtmeyer, M.; Broerse, J.E.W.; Kane, S.; Ormel, H.; Tijm, M.M.; Koning, K.A.M.D. Which intervention design factors influence performance of community health workers in low- and middle-income countries? A systematic review. Health Policy Plan. 2015, 30, 1207–1227. [Google Scholar] [CrossRef]
- Hirsch-Moverman, Y.; Howard, A.A.; Mantell, J.E.; Lebelo, L.; Frederix, K.; Wills, A.; Hesseling, A.C.; Nachman, S.; Maama, L.B.; El-Sadr, W.M. Improving child tuberculosis contact identification and screening in Lesotho: Results from a mixed-methods cluster-randomized implementation science study. PLoS ONE 2021, 16, e0248516. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, L.; Lemu, Y.K.; Tareke, K.G.; Chaka, M.; Feyissa, G. Exploration of barriers and facilitators to household contact tracing of index tuberculosis cases in Anlemo district, Hadiya zone, Southern Ethiopia: Qualitative study. PLoS ONE 2020, 15, e0233358. [Google Scholar] [CrossRef] [PubMed]
- Sekandi, J.; Dobbin, K.; Oloya, J.; Okwera, A.; Whalen, C.C.; Corso, P.S. Cost-Effectiveness Analysis of Community Active Case Finding and Household Contact Investigation for Tuberculosis Case Detection in Urban Africa. PLoS ONE 2015, 10, e0117009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, H.; Malik, A.; Ahmed, J.F.; Siddiqui, S.; Amanullah, F.; Creswell, J.; Tylleskär, T.; Robberstad, B. Cost-effectiveness of household contact investigation for detection of tuberculosis in Pakistan. BMJ Open 2021, 11, e049658. [Google Scholar] [CrossRef] [PubMed]
- Shah, L.; Peña, M.R.; Mori, O.; Zamudio, C.; Kaufman, J.S.; Otero, L.; Gotuzzo, E.; Seas, C.; Brewer, T.F. A pragmatic stepped-wedge cluster randomized trial to evaluate the effectiveness and cost-effectiveness of active case finding for household contacts within a routine tuberculosis program, San Juan de Lurigancho, Lima, Peru. Int. J. Infect. Dis. 2020, 100, 95–103. [Google Scholar] [CrossRef]
- Egere, U.; Sillah, A.; Togun, T.; Kandeh, S.; Cole, F.; Jallow, A.; Able-Thomas, A.; Hoelscher, M.; Heinrich, N.; Hill, P.C.; et al. Isoniazid preventive treatment among child contacts of adults with smear-positive tuberculosis in The Gambia. Public Health Action 2016, 6, 226–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kay, A.W.; Sandoval, M.; Mtetwa, G.; Mkhabela, M.; Ndlovu, B.; Devezin, T.; Sikhondze, W.; Vambe, D.; Sibanda, J.; Dube, G.S.; et al. Vikela Ekhaya: A Novel, Community-based, Tuberculosis Contact Management Program in a High Burden Setting. Clin. Infect. Dis. 2021, ciab652. [Google Scholar] [CrossRef]
- Wingfield, T.; Tovar, M.; Huff, D.; Boccia, D.; Montoya, R.; Ramos, E.; Datta, S.; Saunders, M.; Lewis, J.; Gilman, R.H.; et al. A randomized controlled study of socioeconomic support to enhance tuberculosis prevention and treatment, Peru. Bull. World Health Organ. 2017, 95, 270–280. [Google Scholar] [CrossRef]
- Vasiliu, A.; Eymard-Duvernay, S.; Tchounga, B.; Atwine, D.; de Carvalho, E.; Ouedraogo, S.; Kakinda, M.; Tchendjou, P.; Turyahabwe, S.; Kuate, A.K.; et al. Community intervention for child tuberculosis active contact investigation and management: Study protocol for a parallel cluster randomized controlled trial. Trials 2021, 22, 180. [Google Scholar] [CrossRef]
- Johns Hopkins University. Community Initiated Preventive Therapy for TB (CHIP-TB Trial). 2021. Available online: Clinicaltrials.gov (accessed on 11 November 2021).
- Eklund, J.H.; Holmström, I.K.; Kumlin, T.; Kaminsky, E.; Skoglund, K.; Höglander, J.; Sundler, A.J.; Condén, E.; Meranius, M.S. “Same same or different?” A review of reviews of person-centered and patient-centered care. Patient Educ. Couns. 2019, 102, 3–11. [Google Scholar] [CrossRef]
- Szkwarko, D.; Hirsch-Moverman, Y. One size does not fit all: Preventing tuberculosis among child contacts. BMJ Glob. Health 2019, 4, e001950. [Google Scholar] [CrossRef] [Green Version]
- Diaz, G.; Victoria, A.M.; Meyer, A.J.; Niño, Y.; Luna, L.; Ferro, B.E.; Davis, J.L. Evaluating the Quality of Tuberculosis Contact Investigation in Cali, Colombia: A Retrospective Cohort Study. Am. J. Trop. Med. Hyg. 2021, 104, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Goroh, M.M.D.; Boogaard, C.H.V.D.; Ibrahim, M.Y.; Tha, N.O.; Robinson, F.; Lukman, K.A.; Jeffree, M.S.; William, T.; Ralph, A.P. Factors Affecting Continued Participation in Tuberculosis Contact Investigation in a Low-Income, High-Burden Setting. Trop. Med. Infect. Dis. 2020, 5, 124. [Google Scholar] [CrossRef] [PubMed]
- Putra, I.W.G.A.E.; Dewi, N.P.E.P.; Probandari, A.N.; Notobroto, H.B.; Wahyuni, C. The Implementation of Comprehensive Health Education to Improve Household Contacts’ Participation in Early Detection of Tuberculosis. Health Educ. Behav. April 2021, 10901981211001828. [Google Scholar] [CrossRef]
- Roy, M.; Moore, C.B.; Sikazwe, I.; Holmes, C.B. A Review of Differentiated Service Delivery for HIV Treatment: Effectiveness, Mechanisms, Targeting, and Scale. Curr. HIV/AIDS Rep. 2019, 16, 324–334. [Google Scholar] [CrossRef]
- Martinez, L.; Lo, N.C.; Cords, O.; Hill, P.C.; Khan, P.; Hatherill, M.; Mandalakas, A.; Kay, A.; Croda, J.; Horsburgh, C.R.; et al. Paediatric tuberculosis transmission outside the household: Challenging historical paradigms to inform future public health strategies. Lancet Respir. Med. 2019, 7, 544–552. [Google Scholar] [CrossRef]
- Cardona, M.; Bek, M.D.; Mills, K.; Isaacs, D.; Alperstein, G. Transmission of tuberculosis from a seven-year-old child in a Sydney school. J. Paediatr. Child Health 1999, 35, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Ustero, P.A.; Kay, A.W.; Ngo, K.; Golin, R.; Tsabedze, B.; Mzileni, B.; Glickman, J.; Xaba, M.W.; Mavimbela, G.; Mandalakas, A.M. School and household tuberculosis contact investigations in Swaziland: Active TB case finding in a high HIV/TB burden setting. PLoS ONE 2017, 12, e0178873. [Google Scholar] [CrossRef] [Green Version]
- JF, N.G.; Abad, G.; JL, Q.D.; JA, C.T.; Navas, P. Tuberculosis outbreak at a public school. Rev. Clin. Esp. 1997, 197, 152–157. [Google Scholar]
- World Health Organization. Call to Action Factsheet; World Health Organization: Geneva, Switzerland, 2021.
Author | Type of Review | Population | Main Findings (Low- and Middle-income Countries) | |||||
---|---|---|---|---|---|---|---|---|
% of TB Disease among All Age Contacts | % of TB Disease among Children < 5 Years | % of TB Disease among Children 5–14 Years | % of TB Infection among All Ages Contacts | % of TB Infection among Children < 5 Years | % of TB Infection among Children 5–14 Years | |||
Morrison et. al. 2008 [6] | Systematic review and meta-analysis | Household contacts of people with active pulmonary TB | 4.5% (95% CI: 4.3–4.8, I² = 95.5%) | 8.5% (95% CI: 7.4–9.7%, I² = 88.8%) | 6.0% (95% CI: 4.7–7.5%, I² = 43.5%) | 51.4% (95% CI: 50.6–52.2, I² = 99.4%) | 30.4% (95% CI: 28.6–32.3%, I² = 94.4%) | 47.9% (95% CI: 45.5–50.4%, I² = 96.0%) |
Fox et al. 2013 [7] | Systematic review and meta-analysis | Contacts of patients with new or recurrent TB | 3.1% (95% CI: 2.2–4.4; I2 = 99.4%) | 10% (95% CI: 5.0–18.9; I2 = 97.8%) | 8.4% (95% CI: 2.8–22.6; I2= 92.5%) | 51.5% (95% CI: 47.1–55.8; I2 = 98.9%) | 35.5% (95% CI: 30.3–41.1; I2 = 96.6%) | 53.1% (95% CI: 42.0–63.9; I2 = 98.6%) |
Blok et al 2015 [8] | Comparative meta-analysis | Contacts of patients with smear positive or smear negative TB and EPTB | 1.8% (95% CI: 1.2–2.7; I2 = 97.8%) | Not available | Not available | Not available | Not available | Not available |
Velleca et al 2021 [9] | Systematic review and meta-analysis | Close contacts of patients diagnosed with pulmonary TB and EPTB | 2.87% (95% CI: 2.61–3.14, I2 = 97.79%) | 6.84% (95% CI: 5.56–8.11, I2 = 95.95%) | 3.13% (95% CI: 2.11–4.16; I2 = 85.81%) | 43.83% (95% CI: 38.11–49.55, I2 = 99.36%) | Not available | Not available |
Velen et al 2021 [5] | Systematic review and meta-analysis | Contacts of patients with new or recurrent TB | 3.6% (95% CI: 3.3–4.0%; I2 = 98.9%) | 3.9% (95% CI: 2.5–5.4%, I2 = 97.0%) | 2.4% (95% CI: 1.6–3.4%, I2 = 84.5%) | 42.4% (95% CI: 38.5–46.4%; I2=99.8%) | 37.1% (95% CI: 25.9–48.9%, I2 = 97.7%) | 50.2% (95% CI: 42.6–57.8%, I2 = 95.5%) |
TPT Regimen | Target Population (Children and Adolescents) | Advantages | Disadvantages |
---|---|---|---|
1HP | Children 13 years and above |
|
|
3RH | Children with and without HIV from birth to 18 years |
|
|
3HP | Children 2 to 18 years with and without HIV |
|
|
4R | Children with and without HIV from birth to 18 years |
|
|
6H | Children with and without HIV from birth to 18 years |
|
|
Steps | Implementation Gaps | Proposed Solutions | Research Needs |
---|---|---|---|
Contact identification and screening | Index cases not coming back to the health facility with household members |
|
|
Missed contacts |
|
| |
Healthcare workers’ sensitization and empowerment |
|
| |
Improve quality and fidelity of TB screening for identification of presumptive TB and exclusion of active TB disease |
|
| |
TB investigations for symptomatic contacts | Limited capacity and confidence by frontline HCWs to clinically diagnose pediatric TB |
|
|
Diagnosis of TB infection in child contacts above 5 years | Availability of better tools for TB infection investigation (more suitable for implementation at decentralized level and not requiring multiple visits) |
|
|
TPT initiation | Families not bringing children to the health facility for initiation |
|
|
TPT for MDR-TB contacts |
|
| |
TPT follow-up and completion | Lack of adherence Assessing and reporting TPT side effects |
|
|
Contact not returning for follow-up visits |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasiliu, A.; Salazar-Austin, N.; Trajman, A.; Lestari, T.; Mtetwa, G.; Bonnet, M.; Casenghi, M. Child Contact Case Management—A Major Policy-Practice Gap in High-Burden Countries. Pathogens 2022, 11, 1. https://doi.org/10.3390/pathogens11010001
Vasiliu A, Salazar-Austin N, Trajman A, Lestari T, Mtetwa G, Bonnet M, Casenghi M. Child Contact Case Management—A Major Policy-Practice Gap in High-Burden Countries. Pathogens. 2022; 11(1):1. https://doi.org/10.3390/pathogens11010001
Chicago/Turabian StyleVasiliu, Anca, Nicole Salazar-Austin, Anete Trajman, Trisasi Lestari, Godwin Mtetwa, Maryline Bonnet, and Martina Casenghi. 2022. "Child Contact Case Management—A Major Policy-Practice Gap in High-Burden Countries" Pathogens 11, no. 1: 1. https://doi.org/10.3390/pathogens11010001
APA StyleVasiliu, A., Salazar-Austin, N., Trajman, A., Lestari, T., Mtetwa, G., Bonnet, M., & Casenghi, M. (2022). Child Contact Case Management—A Major Policy-Practice Gap in High-Burden Countries. Pathogens, 11(1), 1. https://doi.org/10.3390/pathogens11010001