Prevalence of Antibodies to Toxoplasma gondii in Different Wild Bird Species Admitted to Rehabilitation Centres in Portugal
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aguirre, A.A.; Longcore, T.; Barbieri, M.; Dabritz, H.; Hill, D.; Klein, P.N.; Lepczyk, C.; Lilly, E.L.; McLeod, R.; Milcarsky, J.; et al. The One Health approach to toxoplasmosis: Epidemiology, control, and prevention strategies. EcoHealth 2019, 16, 378–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubey, J.P. Toxoplasmosis of Animals and Humans, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Rosenberg, K.V.; Dokter, A.M.; Blancher, P.J.; Sauer, J.R.; Smith, A.C.; Smith, P.A.; Stanton, J.C.; Panjabi, A.; Helft, L.; Parr, M.; et al. Decline of the North American avifauna. Science 2019, 366, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Rêgo, W.M.F.; Costa, J.G.L.; Baraviera, R.C.A.; Pinto, L.V.; Bessa, G.L.; Lopes, R.E.N.; Silveira, J.A.G.; Vitor, R.W.A. Genetic diversity of Toxoplasma gondii isolates obtained from free-living wild birds rescued in Southeastern Brazil. Int. J. Parasitol. Parasites Wildl. 2018, 7, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Shwab, E.K.; Saraf, P.; Zhu, X.-Q.; Zhou, D.-H.; McFerrin, B.M.; Ajzenberg, D.; Schares, G.; Hammond-Aryee, K.; van Helden, P.; Higgins, S.A.; et al. Human impact on the diversity and virulence of the ubiquitous zoonotic parasite Toxoplasma gondii. Proc. Natl. Acad. Sci. USA 2018, 115, E6956–E6963. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.G.; Lapen, D.R.; Mitchell, G.W.; Provencher, J.F.; Wilson, S. Interaction of diet and habitat predicts Toxoplasma gondii infection rates in wild birds at a global scale. Glob. Ecol. Biogeogr. 2020, 29, 1189–1198. [Google Scholar] [CrossRef] [Green Version]
- Work, T.M.; Massey, J.G.; Rideout, B.A.; Gardiner, C.H.; Ledig, D.B.; Kwok, O.C.H.; Dubey, J.P. Fatal toxoplasmosis in free-ranging endangered ‘alala from Hawaii. J. Wildl. Dis. 2000, 36, 205–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandström, C.A.M.; Buma, A.G.J.; Hoye, B.J.; Prop, J.; Jeugd, H.; van der Voslamber, B.; Madsen, J.; Loonen, M.J.J.E. Latitudinal variability in the seroprevalence of antibodies against Toxoplasma gondii in non-migrant and Arctic migratory geese. Vet. Parasitol. 2013, 194, 9–15. [Google Scholar] [CrossRef]
- Dubey, J.P.; Pena, H.F.J.; Cerqueira-Cézar, C.K.; Murata, F.H.A.; Kwok, O.C.H.; Yang, Y.R.; Gennari, S.M.; Su, C. Epidemiologic significance of Toxoplasma gondii infections in chickens (Gallus domesticus): The past decade. Parasitology 2020, 147, 1263–1289. [Google Scholar] [CrossRef]
- Iemmi, T.; Vismarra, A.; Mangia, C.; Zanin, R.; Genchi, M.; Lanfranchi, P.; Kramer, L.H.; Formenti, N.; Ferrari, N. Toxoplasma gondii in the Eurasian kestrel (Falco tinnunculus) in northern Italy. Parasit. Vectors 2020, 13, 262. [Google Scholar] [CrossRef]
- Dubey, J.P.; Murata, F.H.A.; Cerqueira-Cézar, C.K.; Kwok, O.C.H.; Su, C. Epidemiologic significance of Toxoplasma gondii infections in turkeys, ducks, ratites and other wild birds: 2009–2020. Parasitology 2020, 148, 1–30. [Google Scholar] [CrossRef]
- Dubey, J.P. Toxoplasma. In Parasitic Diseases of Wild Birds; Atkinson, C.T., Thomas, N.J., Hunter, D.B., Eds.; Wiley-Blackwell: Ames, IA, USA, 2008; pp. 204–222. [Google Scholar]
- Cabezón, O.; Cerdà-Cuéllar, M.; Morera, V.; García-Bocanegra, I.; González-Solís, J.; Napp, S.; Ribas, M.P.; Blanch-Lázaro, B.; Fernández-Aguilar, X.; Antilles, N.; et al. Toxoplasma gondii infection in seagull chicks is related to the consumption of freshwater food resources. PLoS ONE 2016, 11, e0150249. [Google Scholar] [CrossRef] [Green Version]
- Skorpikova, L.; Reslova, N.; Lorencova, A.; Plhal, R.; Drimaj, J.; Kamler, J.; Slany, M. Molecular detection of Toxoplasma gondii in feathered game intended for human consumption in the Czech Republic. Int. J. Food Microbiol. 2018, 286, 75–79. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Qin, S.-Y.; Li, X.; Ren, W.-X.; Hou, G.; Zhao, Q.; Ni, H.-B. Seroprevalence and related factors of Toxoplasma gondii in pigeons intended for human consumption in northern China. Vector Borne Zoonotic Dis. 2019, 19, 302–305. [Google Scholar] [CrossRef]
- Lopes, A.P.; Sargo, R.; Rodrigues, M.; Cardoso, L. High seroprevalence of antibodies to Toxoplasma gondii in wild animals from Portugal. Parasitol. Res. 2011, 108, 1163–1169. [Google Scholar] [CrossRef]
- Cabezón, O.; García-Bocanegra, I.; Molina-López, R.; Marco, I.; Blanco, J.M.; Höfle, U.; Margalida, A.; Bach-Raich, E.; Darwich, L.; Echeverría, I.; et al. Seropositivity and risk factors associated with Toxoplasma gondii infection in wild birds from Spain. PLoS ONE 2011, 6, e29549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, K.; Bahia-Oliveira, L.; Dixon, B.; Dumètre, A.; de Wit, L.A.; VanWormer, E.; Villena, I. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food Waterborne Parasitol. 2019, 15, e00049. [Google Scholar] [CrossRef]
- Al-Malki, E.S. Toxoplasmosis: Stages of the protozoan life cycle and risk assessment in humans and animals for an enhanced awareness and an improved socio-economic status. Saudi J. Biol. Sci. 2021, 28, 962–969. [Google Scholar] [CrossRef]
- BirdLife International IUCN Red List for Birds. Available online: http://www.birdlife.org (accessed on 22 July 2021).
- Hedenström, A.; Norevik, G.; Boano, G.; Andersson, A.; Bäckman, J.; Åkesson, S. Flight activity in pallid swifts Apus pallidus during the non-breeding period. J. Avian Biol. 2019, 50, e01972. [Google Scholar] [CrossRef]
- Cucco, M.; Bryant, D.M.; Malacarne, G. Differences in diet of common (Apus apus) and pallid (A. pallidus) swifts. Avocetta 1993, 17, 1331–1338. [Google Scholar]
- Saitoh, Y.; Itagaki, H. Dung beetles, Onthophagus spp., as potential transport hosts of feline coccidia. Nihon Juigaku Zasshi 1990, 52, 293–297. [Google Scholar] [CrossRef] [Green Version]
- Wallace, G.D. Experimental transmission of Toxoplasma gondii by cockroaches. J. Infect. Dis. 1972, 126, 545–547. [Google Scholar] [CrossRef] [PubMed]
- Aubert, D.; Terrier, M.-E.; Dumètre, A.; Barrat, J.; Villena, I. Prevalence of Toxoplasma gondii in raptors from France. J. Wildl. Dis. 2008, 44, 172–173. [Google Scholar] [CrossRef] [Green Version]
- Gazzonis, A.L.; Zanzani, S.A.; Santoro, A.; Veronesi, F.; Olivieri, E.; Villa, L.; Lubian, E.; Lovati, S.; Bottura, F.; Epis, S.; et al. Toxoplasma gondii infection in raptors from Italy: Seroepidemiology and risk factors analysis. Comp. Immunol. Microbiol. Infect. Dis. 2018, 60, 42–45. [Google Scholar] [CrossRef]
- Dubey, J.P. A review of toxoplasmosis in wild birds. Vet. Parasitol. 2002, 106, 121–153. [Google Scholar] [CrossRef]
- Williams, D.L.; Gonzalez Villavincencio, C.M.; Wilson, S. Chronic ocular lesions in tawny owls (Strix aluco) injured by road traffic. Vet. Rec. 2006, 159, 148–153. [Google Scholar] [CrossRef]
- Chen, J.-C.; Tsai, Y.-J.; Wu, Y.-L. Seroprevalence of Toxoplasma gondii antibodies in wild birds in Taiwan. Res. Vet. Sci. 2015, 102, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Naveed, A.; Ali, S.; Ahmed, H.; Simsek, S.; Rizwan, M.; Kaleem, I.; Gondal, M.A.; Shabbir, A.; Pervaiz, F.; Khan, M.A.; et al. Seroprevalence and risk factors of Toxoplasma gondii in wild birds of Punjab Province, Pakistan. J. Wildl. Dis. 2019, 55, 129–135. [Google Scholar] [CrossRef]
- Waap, H.; Cardoso, R.; Leitão, A.; Nunes, T.; Vilares, A.; Gargaté, M.J.; Meireles, J.; Cortes, H.; Ângelo, H. In vitro isolation and seroprevalence of Toxoplasma gondii in stray cats and pigeons in Lisbon, Portugal. Vet. Parasitol. 2012, 187, 542–547. [Google Scholar] [CrossRef]
- Lopes, A.P.; Cardoso, L.; Rodrigues, M. Serological survey of Toxoplasma gondii infection in domestic cats from northeastern Portugal. Vet. Parasitol. 2008, 155, 184–189. [Google Scholar] [CrossRef]
- Lopes, A.P.; Dubey, J.P.; Dardé, M.-L.; Cardoso, L. Epidemiological review of Toxoplasma gondii infection in humans and animals in Portugal. Parasitology 2014, 141, 1699–1708. [Google Scholar] [CrossRef]
- Gargaté, M.J.; Ferreira, I.; Vilares, A.; Martins, S.; Cardoso, C.; Silva, S.; Nunes, B.; Gomes, J.P. Toxoplasma gondii seroprevalence in the Portuguese population: Comparison of three cross-sectional studies spanning three decades. BMJ Open 2016, 6, e011648. [Google Scholar] [CrossRef] [Green Version]
- Esteves, F.; Aguiar, D.; Rosado, J.; Costa, M.L.; de Sousa, B.; Antunes, F.; Matos, O. Toxoplasma gondii prevalence in cats from Lisbon and in pigs from centre and south of Portugal. Vet. Parasitol. 2014, 200, 8–12. [Google Scholar] [CrossRef]
- Rodrigues, F.T.; Moreira, F.A.; Coutinho, T.; Dubey, J.P.; Cardoso, L.; Lopes, A.P. Antibodies to Toxoplasma gondii in slaughtered free-range and broiler chickens. Vet. Parasitol. 2019, 271, 51–53. [Google Scholar] [CrossRef]
- Tidy, A.; Frangueiro, S.; Dubey, J.P.; Cardoso, L.; Lopes, A.P. Seroepidemiology and risk assessment of Toxoplasma gondii infection in captive wild birds and mammals in two zoos in the North of Portugal. Vet. Parasitol. 2017, 235, 47–52. [Google Scholar] [CrossRef]
- Waap, H.; Nunes, T.; Vaz, Y.; Leitão, A. Serological survey of Toxoplasma gondii and Besnoitia besnoiti in a wildlife conservation area in southern Portugal. Vet. Parasitol. Reg. Stud. Rep. 2016, 3, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Lohr, M.T.; Lohr, C.A.; Burbidge, A.H.; Davis, R.A. Toxoplasma gondii seropositivity across urban and agricultural landscapes in an Australian owl. Emu Austral. Ornithol. 2020, 120, 275–285. [Google Scholar] [CrossRef]
- Soriano-Redondo, A.; Gutiérrez, J.S.; Hodgson, D.; Bearhop, S. Migrant birds and mammals live faster than residents. Nat. Commun. 2020, 11, 5719. [Google Scholar] [CrossRef] [PubMed]
- Bártová, E.; Lukášová, R.; Vodička, R.; Váhala, J.; Pavlačík, L.; Budíková, M.; Sedlák, K. Epizootological study on Toxoplasma gondii in zoo animals in the Czech Republic. Acta Trop. 2018, 187, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Pistorius, P.A. Grey heron (Ardea cinerea) predation on the Aldabra white-throated rail (Dryolimnas cuvieri aldabranus). Wilson J. Ornithol. 2008, 120, 631–632. [Google Scholar] [CrossRef]
- Peris, S.J. Alimentación en basureros: La ingestión de objetos de plástico por la cigüeña blanca (Ciconia ciconia). Ardeola 2003, 50, 81–84. [Google Scholar]
- Hollings, T.; Jones, M.; Mooney, N.; McCallum, H. Wildlife disease ecology in changing landscapes: Mesopredator release and toxoplasmosis. Int. J. Parasitol. Parasites Wildl. 2013, 2, 110–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flegr, J.; Havlícek, J.; Kodym, P.; Malý, M.; Smahel, Z. Increased risk of traffic accidents in subjects with latent toxoplasmosis: A retrospective case-control study. BMC Infect. Dis. 2002, 2, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, K.; Khan, W. Congenital toxoplasmosis: An overview of the neurological and ocular manifestations. Parasitol. Int. 2018, 67, 715–721. [Google Scholar] [CrossRef]
- Amouei, A.; Sharif, M.; Hosseini, S.A.; Sarvi, S.; Mizani, A.; Salehi, S.; Gholami, S.; Jafar-Ramaji, T.; Daryani, A. Prevalence of Toxoplasma gondii infection in domestic and migrating birds from Mazandaran province, Northern Iran. Avian Biol. Res. 2018, 11, 12–15. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.-Y.; Fan, Y.-M.; Chen, K.; Yao, Q.-X.; Yang, B. Seroprevalence and risk assessment of Toxoplasma gondii in Java sparrows (Lonchura oryzivora) in China. BMC Vet. Res. 2019, 15, 129. [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.A.; Zuberogoitia, I.; Alonso, R. Rapaces Nocturnas. Guía para la Determinación de la Edad y el Sexo en las Estrigiformes Ibéricas; Monticola Ed.: Madrid, Spain, 2002. [Google Scholar]
- Svensson, L.; Mullarney, K.; Zetterström, D. Guia de Aves, 3rd ed.; Assírio & Alvim: Lisboa, Portugal, 2017. [Google Scholar]
- Petrie, A.; Watson, P. Statistics for Veterinary and Animal Science, 3rd ed.; Wiley-Blackwell: Chichester, UK, 2013. [Google Scholar]
- Thrusfield, M.; Christley, R. Veterinary Epidemiology, 4th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2018. [Google Scholar]
Order | Common Name (Scientific Name) | Number (%) Tested | Number (%) of MAT-Positive | 95% CI | Antibody Titres (n) | |||
---|---|---|---|---|---|---|---|---|
20 | 400 | 1600 | >6400 | |||||
Accipitriformes | Northern goshawk (Accipiter gentilis) | 7 (2.7) | 3 (42.9) | 9.9–81.6 | 3 | 0 | 0 | 0 |
Eurasian sparrow hawk (Accipiter nisus) | 7 (2.7) | 2 (28.6) | 3.7–71 | 2 | 0 | 0 | 0 | |
Cinereous vulture (Aegypius monachus) | 6 (2.3) | 1 (16.7) | 0.4–64.1 | 1 | 0 | 0 | 0 | |
Booted eagle (Aquila pennata) | 6 (2.3) | 3 (50.0) | 11.8–88.2 | 3 | 0 | 0 | 0 | |
Eurasian buzzard (Buteo buteo) | 23 (8.7) | 11 (47.8) | 26.8–69.4 | 8 | 2 | 1 | 0 | |
Short-toed snake-eagle (Circaetus gallicus) | 5 (1.9) | 2 (40.0) | 5.3–85.3 | 2 | 0 | 0 | 0 | |
Western marsh-harrier (Circus aeruginosus) | 2 (0.8) | 0 (0.0) | 0.0–84.2 | 0 | 0 | 0 | 0 | |
Griffon vulture (Gyps fulvus) | 21 (8.0) | 3 (14.3) | 3.1–36.3 | 3 | 0 | 0 | 0 | |
Black kite (Milvus migrans) | 10 (3.8) | 4 (40.0) | 12.2–73.8 | 3 | 0 | 0 | 1 | |
Red kite (Milvus milvus) | 7 (2.7) | 2 (28.6) | 3.7–71 | 2 | 0 | 0 | 0 | |
Egyptian vulture (Neophron percnopterus) | 1 (0.4) | 1 (100.0) | 2.5–100 | 1 | 0 | 0 | 0 | |
European honey-buzzard (Pernis apivorus) | 3 (1.1) | 0 (0.0) | 0.0–70.8 | 0 | 0 | 0 | 0 | |
Apodiformes | Pallid swift (Apus pallidus) | 6 (2.3) | 2 (33.3) | 4.3–77.7 | 2 | 0 | 0 | 0 |
Bucerotiformes | Common hoopoe (Upupa epops) | 1 (0.4) | 1 (100.0) | 2.5–100 | 1 | 0 | 0 | 0 |
Caprimulgiformes | European nightjar (Caprimulgus europaeus) | 8 (3.0) | 4 (50.0) | 15.7–84.3 | 4 | 0 | 0 | 0 |
Charadriiformes | Lesser black-backed gull (Larus fuscus) | 28 (10.6) | 11 (39.3) | 21.5–59.4 | 5 | 2 | 4 | 0 |
Yellow-legged gull (Larus michahellis) | 23 (8.7) | 10 (43.5) | 23.2–65.5 | 6 | 1 | 2 | 1 | |
Ciconiiformes | White stork (Ciconia ciconia) | 35 (13.3) | 11 (31.4) | 16.9–49.3 | 9 | 1 | 0 | 1 |
Columbiformes | Rock dove (Columba livia) | 1 (0.4) | 0 (0.0) | 0.0–97.5 | 0 | 0 | 0 | 0 |
European turtle-dove (Streptopelia turtur) | 1 (0.4) | 1 (100.0) | 2.5–100 | 1 | 0 | 0 | 0 | |
Coraciiformes | European bee-eater (Merops apiaster) | 2 (0.8) | 1 (50.0) | 1.3–98.7 | 1 | 0 | 0 | 0 |
Falconiformes | Peregrine falcon (Falco peregrinus) | 2 (0.8) | 1 (50.0) | 1.3–98.7 | 0 | 0 | 1 | 0 |
Common kestrel (Falco tinnunculus) | 1 (0.4) | 0 (0.0) | 0.0–97.5 | 0 | 0 | 0 | 0 | |
Passeriformes | Carrion crow (Corvus corone) | 3 (1.1) | 1 (33.3) | 0.8–90.6 | 1 | 0 | 0 | 0 |
Pelecaniformes | Grey heron (Ardea cinerea) | 3 (1.1) | 3 (100.0) | 29.2–100 | 3 | 0 | 0 | 0 |
Strigiformes | Short-eared owl (Asio flammeus) | 2 (0.8) | 1 (50.0) | 1.3–98.7 | 1 | 0 | 0 | 0 |
Northern long-eared owl (Asio otus) | 1 (0.4) | 1 (100.0) | 2.5–100 | 1 | 0 | 0 | 0 | |
Little owl (Athene noctua) | 12 (4.6) | 2 (16.7) | 2.1–100 | 2 | 0 | 0 | 0 | |
Eurasian eagle-owl (Bubo bubo) | 2 (0.8) | 1 (50.0) | 1.3–98.7 | 1 | 0 | 0 | 0 | |
Tawny owl (Strix aluco) | 15 (5.7) | 6 (40.0) | 16.3–67.7 | 6 | 0 | 0 | 0 | |
Common barn-owl (Tyto alba) | 18 (6.8) | 7 (38.9) | 17.3–64.3 | 6 | 1 | 0 | 0 | |
Suliforme | Northern gannet (Morus bassanus) | 1 (0.4) | 0 (0.0) | 0.0–97.5 | 0 | 0 | 0 | 0 |
Total | 263 (100) | 96 (35.6) | 30.7–42.6 | 78 | 7 | 8 | 3 |
Variable | Number (%) Tested | Number (%) of MAT-Positive | 95% CI |
---|---|---|---|
Rehabilitation centre | |||
CRAS-UTAD | 39 (14.8) | 23 (59.0) | 42.1–74.4 |
CERVAS | 85 (32.3) | 28 (32.9) | 23.1–44.0 |
CERAS | 71 (27.0) | 22 (31.0) | 20.5–43.1 |
CRASSA | 18 (6.8) | 3 (16.7) | 3.6–41.4 |
RIAS | 50 (19.0) | 20 (40.0) | 26.4–54.8 |
p = 0.010 | |||
Order | |||
Accipitriformes | 97 (36.9) | 31 (32.0) | 22.9–42.2 |
Charadriiformes | 51 (19.4) | 21 (41.2) | 27.6–55.8 |
Ciconiiformes | 35 (13.3) | 11 (31.4) | 16.9–49.3 |
Strigiformes | 51 (19.4) | 19 (37.3) | 24.1–51.9 |
Other a | 29 (11.0) | 14 (48.3) | 29.5–67.5 |
p = 0.481 | |||
Age | |||
Juvenile | 182 (69.2) | 58 (31.9) | 25.2–39.2 |
Adult | 76 (28.9) | 37 (48.7) | 37.0–60.4 |
Undetermined § | 5 (1.9) | 1 (20.0) | 0.5–71.6 |
p = 0.016 | |||
Geographical region | |||
North | 39 (14.8) | 21 (53.8) | 37.2–69.9 |
Centre | 127 (48.3) | 46 (36.2) | 27.9–45.2 |
Lisbon | 3 (1.1) | 2 (66.7) | 9.4–99.2 |
Alentejo | 48 (18.3) | 8 (16.7) | 7.5–30.2 |
Algarve | 46 (17.5) | 19 (41.3) | 27.0–56.8 |
p = 0.005 | |||
Season | |||
Spring | 6 (2.3) | 3 (50.0) | 11.8–88.2 |
Summer | 111 (42.2) | 33 (29.7) | 21.4–39.2 |
Autumn | 122 (46.4) | 46 (37.7) | 29.1–46.9 |
Winter | 24 (9.1) | 14 (58.3) | 36.6–77.9 |
p = 0.053 | |||
Sex | |||
Female | 26 (9.9) | 7 (26.9) | 11.6–47.8 |
Male | 30 (11.4) | 12 (40.0) | 22.7–59.4 |
Undetermined § | 207 (78.7) | 77 (37.2) | 30.6–44.2 |
p = 0.455 | |||
Migratory behaviour | |||
Resident | 81 (30.8) | 32 (39.5) | 28.8–51.0 |
Migratory | 81 (30.8) | 31 (38.3) | 27.7–49.7 |
Mixed | 101 (38.4) | 33 (32.7) | 23.7–42.7 |
p = 0.588 | |||
Diet | |||
Granivorous | 2 (0.8) | 1 (50.0) | 1.3–98.7 |
Insectivorous | 17 (6.5) | 8 (47.1) | 23.0–72.2 |
Omnivorous | 54 (20.5) | 22 (40.7) | 27.6–55.0 |
Carnivorous | 190 (72.2) | 65 (34.2) | 27.5–41.4 |
p = 0.610 | |||
Cause of entry | |||
Debility | 20 (7.6) | 7 (35.0) | 15.4–59.2 |
Others | 42 (16.0) | 18 (42.9) | 27.7–59.0 |
Intoxication | 46 (17.5) | 19 (41.3) | 27.0–56.8 |
Fall from the nest | 57 (21.7) | 15 (26.3) | 15.5–39.7 |
Trauma | 98 (37.3) | 37 (37.8) | 28.2–48.1 |
p = 0.430 | |||
TOTAL | 263 (100) | 96 (36.5) | 30.7–42.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, C.; Brandão, R.; Lopes, A.F.; Sargo, R.; Casero, M.; Nunes, C.; Silva, F.; Dubey, J.P.; Cardoso, L.; Lopes, A.P. Prevalence of Antibodies to Toxoplasma gondii in Different Wild Bird Species Admitted to Rehabilitation Centres in Portugal. Pathogens 2021, 10, 1144. https://doi.org/10.3390/pathogens10091144
Lopes C, Brandão R, Lopes AF, Sargo R, Casero M, Nunes C, Silva F, Dubey JP, Cardoso L, Lopes AP. Prevalence of Antibodies to Toxoplasma gondii in Different Wild Bird Species Admitted to Rehabilitation Centres in Portugal. Pathogens. 2021; 10(9):1144. https://doi.org/10.3390/pathogens10091144
Chicago/Turabian StyleLopes, Carolina, Ricardo Brandão, Ana Filipa Lopes, Roberto Sargo, María Casero, Carolina Nunes, Filipe Silva, Jitender P. Dubey, Luís Cardoso, and Ana Patrícia Lopes. 2021. "Prevalence of Antibodies to Toxoplasma gondii in Different Wild Bird Species Admitted to Rehabilitation Centres in Portugal" Pathogens 10, no. 9: 1144. https://doi.org/10.3390/pathogens10091144
APA StyleLopes, C., Brandão, R., Lopes, A. F., Sargo, R., Casero, M., Nunes, C., Silva, F., Dubey, J. P., Cardoso, L., & Lopes, A. P. (2021). Prevalence of Antibodies to Toxoplasma gondii in Different Wild Bird Species Admitted to Rehabilitation Centres in Portugal. Pathogens, 10(9), 1144. https://doi.org/10.3390/pathogens10091144