Development of Human Toxo IgG ELISA Kit, and False-Positivity of Latex Agglutination Test for the Diagnosis of Toxoplasmosis
Abstract
:1. Introduction
2. Results
2.1. Transformation and Restriction Analysis of pET28a-SAG1
2.2. Induction and Expression of rSAG1
2.3. Performance of LAT (L) and Human Toxo IgG ELISA Kit (K)
2.4. Evaluation of Sera through Toxoplasma gondii IgG ELISA Kit (C)
2.5. Determination of Sensitivity, Specificity, and Cut-Off Value of K
2.6. False-Positivity of L through WB
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Sketch of the Experiments
4.3. Collection of Human Sera
4.4. Screening of Sera throughthe Latex Agglutination Test (LAT)
4.5. Expression and Purification of rSAG1
4.6. Screening of Sera through Human Toxo IgG ELISA Kit (K)
4.7. Screening of Sera through Toxoplasma gondii IgG ELISA Kit (C)
4.8. Screening of Sera through Western Blot (WB) Technique
4.9. Determining the Percentages of Specificity and Sensitivity and Cut-Off Value of K
4.10. Development of Human Toxo IgG ELISA Kit (K)
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dubey, J.P. Toxoplasmosis of Animals and Humans; Taylor & Francis: Oxford, UK, 2010. [Google Scholar]
- Khademvatan, S.; Khajeddin, N.; Saki, J.; Izadi-Mazidi, S. Effect of toxoplasmosis on personality profiles of Iranian men and women. S. Afr. J. Sci. 2013, 109, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Saki, J.; Mohammadpour, N.; Moramezi, F.; Khademvatan, S. Seroprevalence of Toxoplasma gondii in women who have aborted in comparison with the women with normal delivery in Ahvaz, southwest of Iran. Sci. World J. 2015, 1, 2746–2751. [Google Scholar]
- Tenter, A.M.; Heckeroth, A.R.; Weiss, L.M. Toxoplasma gondii: From animals to humans. Int. J. Parasitol. 2000, 30, 1217–1258. [Google Scholar] [CrossRef] [Green Version]
- Torgerson, P.R.; Mastroiacovo, P. The global burden of congenital toxoplasmosis: A systematic review. Bull. World Health Organ. 2013, 91, 501–508. [Google Scholar] [CrossRef]
- Mead, P.S.; Slutsker, L.; Dietz, V.; McCaig, L.F.; Bresee, J.S.; Shapiro, C.; Griffin, P.M.; Tauxe, R.V. Food-related illness and death in the United States. Emerg. Infect. Dis. 1999, 5, 607–625. [Google Scholar] [CrossRef]
- Buzby, J.C.; Roberts, T. ERS updates US foodborne disease costs for seven pathogens. Food Rev. 1996, 19, 20–25. [Google Scholar]
- Latif, A.A.; Mushtaq, S.; Fazal, S.; Mansha, M.; Yaqub, A. Seroprevalence of Toxoplasma gondii among pregnant women in Lahore, Pakistan. Biologia 2017, 63, 141–146. [Google Scholar]
- Nazir, M.M.; Akhtar, M.; Maqbool, A.; Waheed, A.; Sajid, M.A.; Ali, M.; Oneeb, M.; Alam, M.A.; Ahmad, A.N.; Nazir, N.; et al. Antibody prevalence and risk factors for Toxoplasma gondii infection in women from Multan, Pakistan. Zoonoses Public Health 2017, 64, 537–542. [Google Scholar] [CrossRef]
- Majid, A.; Khan, S.; Jan, A.H.; Taib, M.; Adnan, M.; Ali, I.; Khan, S.N. Chronic toxoplasmosis and possible risk factors associated with pregnant women in Khyber Pakhtunkhwa. Biotechnol. Biotechnol. Equip. 2016, 30, 733–736. [Google Scholar] [CrossRef] [Green Version]
- Nabi, H.; Islam, S.; Bajwa, A.A.; Rashid, I.; Akbar, H.; Shehzad, W.; Ashraf, K.; Ahmad, N.; Durrani, A. Sequence analysis of SAG2 of feline Toxoplasma gondii oocysts in Pakistan. Pak. J. Zool. 2017, 49, 2067–2077. [Google Scholar] [CrossRef]
- Galal, L.; Hamidović, A.; Dardé, M.; Mercier, M. Diversity of Toxoplasma gondii strains at the global level and its determinants. Food Waterborne Parasitol. 2019, 15, e00052. [Google Scholar] [CrossRef] [PubMed]
- Shwab, E.K.; Zhu, X.-Q.; Majumdar, D.; Pena, H.F.J.; Gennari, S.; Dubey, J.P.; Su, C. Geographical patterns of Toxoplasma gondii genetic diversity revealed by multilocus PCR-RFLP genotyping. Parasitology 2013, 141, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Wang, Z.-D.; Huang, S.-Y.; Zhu, X.-Q. Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasites Vectors 2015, 8, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aubert, D.; Maine, G.T.; Villena, I.; Hunt, J.C.; Howard, L.; Sheu, M.; Brojanac, S.; Chovan, L.E.; Nowlan, S.F.; Pinon, J.M. Recombinant antigens to detect Toxoplasma gondii—Specific immunoglobulin G and immunoglobulin M in human sera by enzyme immunoassay. J. Clin. Microbiol. 2000, 38, 1144–1150. [Google Scholar] [CrossRef] [Green Version]
- Beghetto, E.; Spadoni, A.; Bruno, L.; Buffolano, W.; Gargano, N. Chimeric antigens of Toxoplasma gondii: Toward standardization of toxoplasmosis serodiagnosis using recombinant products. J. Clin. Microbiol. 2006, 44, 2133–2140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfrepper, K.-I.; Enders, G.; Gohl, M.; Krczal, D.; Hlobil, H.; Wassenberg, D.; Soutschek, E. Seroreactivity to and avidity for recombinant antigens in toxoplasmosis. Clin. Vaccine Immunol. 2005, 12, 977–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holec-Gąsior, L. Toxoplasma gondii recombinant antigens as tools for serodiagnosis of human toxoplasmosis: Current status of studies. Clin. Vaccine Immunol. 2013, 20, 1343–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.-G.; Gong, Y.; Li, H.; Lun, Z.-R.; Fung, M.-C. High-level expression and purification of immunogenic recombinant SAG1 (P30) of Toxoplasma gondii in Escherichia coli. Protein Expr. Purif. 2001, 23, 33–37. [Google Scholar] [CrossRef]
- Kotresha, D.; Poonam, D.; Hafiznur, Y.M.; Saadatnia, G.; Nurulhasanah, O.; Sabariah, O.; Tan, S.Y.; Zahidah, A.K.I.; Rahmah, N. Recombinant proteins from new constructs of SAG1 and GRA7 sequences and their usefulness to detect acute toxoplasmosis. Trop. Biomed. 2012, 29, 129–137. [Google Scholar]
- Prince, J.B.; Auer, K.L.; Huskinson, J.; Parmley, S.F.; Araujo, F.G.; Remington, J.S. Cloning, expression, and cDNA sequence of surface antigen P22 from Toxoplasma gondii. Mol. Biochem. Parasitol. 1990, 43, 97–106. [Google Scholar] [CrossRef]
- Myjak, P. Efficient production of the Toxoplasma gondii GRA6, p35 and SAG2 recombinant antigens and their applications in the serodiagnosis of toxoplasmosis. Acta Parasitol. 2005, 50, 249–254. [Google Scholar]
- Khanaliha, K.; Motazedian, M.; Sarkari, B.S.; Bandehpour, M.; Sharifnia, Z.; Kazemi, B. Expression and purification of P43 Toxoplasma gondii surface antigen. Iran. J. Parasitol. 2012, 7, 48–53. [Google Scholar] [PubMed]
- Ferra, B.; Holec-Gąsior, L.; Kur, J. A new Toxoplasma gondii chimeric antigen containing fragments of SAG2, GRA1, and ROP1 proteins—impact of immunodominant sequences size on its diagnostic usefulness. Parasitol. Res. 2015, 114, 3291–3299. [Google Scholar] [CrossRef] [Green Version]
- Hiszczyńska-Sawicka, E.; Brillowska-Dąbrowska, A.; Dąbrowski, S.; Pietkiewicz, H.; Myjak, P.; Kur, J. High yield expression and single-step purification of Toxoplasma gondii SAG1, GRA1, and GRA7 antigens in Escherichia coli. Protein Expr. Purif. 2003, 27, 150–157. [Google Scholar] [CrossRef]
- Holec-Gąsior, L.; Kur, J.; Hiszczyńska-Sawicka, E. GRA2 and ROP1 recombinant antigens as potential markers for detection of Toxoplasma gondii-specific immunoglobulin G in humans with acute toxoplasmosis. Clin. Vaccine Immunol. 2009, 16, 510–514. [Google Scholar] [CrossRef] [Green Version]
- Ching, X.T.; Lau, Y.L.; Fong, M.Y.; Nissapatorn, V. Evaluation of Toxoplasma gondii-recombinant dense granular protein (GRA2) for serodiagnosis by western blot. Parasitol. Res. 2012, 112, 1229–1236. [Google Scholar] [CrossRef]
- Mevelec, M.-N.; Chardès, T.; Mercereau-Puijalon, O.; Bourguin, I.; Achbarou, A.; Dubremetz, J.-F.; Bout, D. Molecular cloning of GRA4, a Toxoplasma gondii dense granule protein, recognized by mucosal IgA antibodies. Mol. Biochem. Parasitol. 1992, 56, 227–238. [Google Scholar] [CrossRef]
- Holec-Gąsior, L.; Kur, J. Toxoplasma gondii: Recombinant GRA5 antigen for detection of immunoglobulin G antibodies using enzyme-linked immunosorbent assay. Exp. Parasitol. 2010, 124, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Lecordier, L.; Moleon-Borodowsky, I.; Dubremetz, J.-F.; Tourvieille, B.; Mercier, C.; Deslée, D.; Capron, A.; Cesbron-Delauw, M.-F. Characterization of a dense granule antigen of Toxoplasma gondii (GRA6) associated to the network of the parasitophorous vacuole. Mol. Biochem. Parasitol. 1995, 70, 85–94. [Google Scholar] [CrossRef]
- Holec, L.; Gąsior, A.; Brillowska-Dąbrowska, A.; Kur, J. Toxoplasma gondii: Enzyme-linked immunosorbent assay using different fragments of recombinant microneme protein 1 (MIC1) for detection of immunoglobulin G antibodies. Exp. Parasitol. 2008, 119, 1–6. [Google Scholar] [CrossRef]
- Kotresha, D.; Noordin, R. Recombinant proteins in the diagnosis of toxoplasmosis. APMIS 2010, 118, 529–542. [Google Scholar] [CrossRef]
- Holec, L.; Hiszczyńska-Sawicka, E.; Gąsior, A.; Brillowska-Dąbrowska, A.; Kur, J. Use of MAG1 recombinant antigen for diagnosis of Toxoplasma gondii infection in humans. Clin. Vaccine Immunol. 2007, 14, 220–225. [Google Scholar] [CrossRef] [Green Version]
- Van Gelder, P.; Bosman, F.; De Meuter, F.; Van Heuverswyn, H.; Hérion, P. Serodiagnosis of toxoplasmosis by using a recombinant form of the 54-kilodalton rhoptry antigen expressed in Escherichia coli. J. Clin. Microbiol. 1993, 31, 9–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, V.; Arcavi, M.; Santillan, G.; Amendoeira, M.R.R.; Neves, E.D.S.; Griemberg, G.; Guarnera, E.; Garberi, J.C.; Angel, S.O. Detection of human toxoplasma-specific immunoglobulins A, M, and G with a recombinant Toxoplasma gondii Rop2 protein. Clin. Diagn. Lab. Immunol. 1998, 5, 627–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naeem, H.; Sana, M.; Islam, S.; Khan, M.; Riaz, F.; Zafar, Z.; Akbar, H.; Shehzad, W.; Rashid, I. Induction of Th1 type-oriented humoral response through intranasal immunization of mice with SAG1-Toxoplasma gondii polymeric nanospheres. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1025–1034. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Chen, X.-G.; Li, H.; Yan, H.; Yang, P.-L.; Lun, Z.-R.; Zhu, X.-Q. Diagnosis of human toxoplasmosis by using the recombinant truncated surface antigen 1 of Toxoplasma gondii. Diagn. Microbiol. Infect. Dis. 2009, 64, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Burg, J.L.; Perelman, D.; Kasper, L.H.; Ware, P.L.; Boothroyd, J.C. Molecular analysis of the gene encoding the major surface antigen of Toxoplasma gondii. J. Immunol. 1988, 141, 3584. [Google Scholar]
- Bülow, R.; Boothroyd, J.C. Protection of mice from fatal Toxoplasma gondii infection by immunization with p30 antigen in liposomes. J. Immunol. 1991, 147, 3496–3500. [Google Scholar]
- Hartati, S.; Kusumawati, A.; Wuryastuti, H.; Widada, J.S. Primary structure of mature SAG1 gene of an Indonesian Toxoplasma gondii and comparison with other strains. J. Vet. Sci. 2006, 7, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Sibley, L.D.; Boothroyd, J.C. Virulent strains of Toxoplasma gondii comprise a single clonal lineage. Nature 1992, 359, 82–85. [Google Scholar] [CrossRef]
- Pietkiewicz, H.; Hiszczyńska-Sawicka, E.; Kur, J.; Petersen, E.; Nielsen, H.V.; Stankiewicz, M.; Andrzejewska, I.; Myjak, P. Usefulness of Toxoplasma gondii—Specific recombinant antigens in sero diagnosis of human toxoplasmosis. J. Clin. Microbiol. 2004, 42, 1779–1781. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Cui, L.; Zhang, L. Comparison of a commercial ELISA with the modified agglutination test for detection of Toxoplasma gondii antibodies in sera of naturally infected dogs and cats. Iran. J. Parasitol. 2012, 7, 89–95. [Google Scholar]
- Bel-Ochi, N.C.; Bouratbine, A.; Mousli, M. Enzyme-linked immunosorbent assay using recombinant SAG1 antigen to detect Toxoplasma gondii-specific immunoglobulin G antibodies in human sera and saliva. Clin. Vaccine Immunol. 2013, 20, 468–473. [Google Scholar] [CrossRef] [Green Version]
- Polo, T.C.F.; Miot, H.A. Use of ROC curves in clinical and experimental studies. J. Vasc. Bras. 2020, 19, e20200186. [Google Scholar] [CrossRef] [PubMed]
- Lilie, H.; Schwarz, E.; Rudolph, R. Advances in refolding of proteins produced in E. coli. Curr. Opin. Biotechnol. 1998, 9, 497–501. [Google Scholar] [CrossRef]
- Cesbron-Delauw, M.; Tomavo, S.; Beauchamps, P.; Fourmaux, M.; Camus, D.; Capron, A.; Dubremetz, J. Similarities between the primary structures of two distinct major surface proteins of Toxoplasma gondii. J. Biol. Chem. 1994, 269, 16217–16222. [Google Scholar] [CrossRef]
- Liu, M.; Wang, T.; Li, H.; Li, J.-Y.; Zhong, H.; Tan, C.-Z.; Huang, D.-C.; Zhao, L.; Chen, X.-G.; Lun, Z.-R. Analysis of the antibodies anti-Toxoplasma gondii by ELISA based on two diagnostic antigens: rSAG1 and rBAG1. Acta Parasitol. 2011, 56, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Selseleh, M.; Keshavarz, H.; Mohebali, M.; Shojaee, S.; Modarressi, M.H. Production and evaluation of Toxoplasma gondii recombinant surface antigen 1 (SAG1) for serodiagnosis of acute and chronic toxoplasma infection in human sera. Iran. J. Parasitol. 2012, 7, 1–9. [Google Scholar] [PubMed]
- Kimbita, E.N.; Xuan, X.; Huang, X.; Miyazawa, T.; Fukumoto, S.; Mishima, M.; Suzuki, H.; Sugimoto, C.; Nagasawa, H.; Fujisaki, K.; et al. Serodiagnosis of Toxoplasma gondii infection in cats by enzyme-linked immunosorbent assay using recombinant SAG1. Vet. Parasitol. 2001, 102, 35–44. [Google Scholar] [CrossRef]
- Bachan, M.; Deb, A.R.; Maharana, B.R.; Sudhakar, N.; Sudan, V.; Saravanan, B.; Tewari, A.K. High seroprevalence of Toxoplasma gondii in goats in Jharkhand state of India. Vet. Parasitol. Reg. Stud. Rep. 2018, 12, 61–68. [Google Scholar] [CrossRef]
- Si, J.; Tang, J.; Xu, M. Detection of IgG antibody to Toxoplasma gondii with rSAG1 for immunodiagnosis of toxoplasmosis. Chin. J. Microbiol. Immunol. 2004, 24, 245–248. [Google Scholar]
- Lin, T.M.; Halbert, S.P.; O’Connor, G.R. Standardized quantitative enzyme-linked immunoassay for antibodies to Toxoplasma gondii. J. Clin. Microbiol. 1980, 11, 675–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangili, P.; Vesco, G.; Feliziani, F.; Paoloni, A.; Menichelli, M.; Cagiola, M.; Marini, C.; Pourquier, P.; Papa, P. Development and evaluation of the performance of an in-house ELISA to be used for the indirect diagnosis of Toxoplasmosis in sheep. In Proceedings of the XI Congresso Nazionale SIDi.LV, Parma, Italy, 30 September–2 October 2009. [Google Scholar]
- Glor, S.B.; Edelhofer, R.; Grimm, F.; Deplazes, P.; Basso, W. Evaluation of a commercial ELISA kit for detection of antibodies against Toxoplasma gondii in serum, plasma and meat juice from experimentally and naturally infected sheep. Parasites Vectors 2013, 6, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balfour, A.H.; Fleck, D.G.; Hughes, H.P.; Sharp, D. Comparative study of three tests (dye test, indirect haemagglutination test, latex agglutination test) for the detection of antibodies to Toxoplasma gondii in human sera. J. Clin. Pathol. 1982, 35, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Jalallou, N.; Bandepour, M.; Khazan, H.; Haghighi, A.; Abdollahi, S.; Kazemi, B. Recombinant SAG1 antigen to detect Toxoplasma gondii specific immunoglobulin G in human sera by ELISA test. Iran. J. Parasitol. 2010, 5, 1–9. [Google Scholar]
- Franck, J.; Garin, Y.J.-F.; Dumon, H. LDBio-Toxo II Immunoglobulin G western blot confirmatory test for anti-toxoplasma antibody detection. J. Clin. Microbiol. 2008, 46, 2334–2338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oshima, T.; Ando, K.; Suzuki, H. False positive reactions due to non-specific IgM in the toxoplasma indirect latex agglutination test. Igaku No Ayumi 1982, 121, 485–487. [Google Scholar]
- Wreghitt, T.G.; Gray, J.J.; Balfour, A.H. Problems with serological diagnosis of Toxoplasma gondii infections in heart transplant recipients. J. Clin. Pathol. 1986, 39, 1135–1139. [Google Scholar] [CrossRef] [Green Version]
- Mazumder, P.; Chuang, H.Y.; Wentz, M.W.; Wiedbrauk, D.L. Latex agglutination test for detection of antibodies to Toxoplasma gondii. J. Clin. Microbiol. 1988, 26, 2444–2446. [Google Scholar] [CrossRef] [Green Version]
- Nabi, H.; Rashid, M.I.; Islam, S.; Bajwa, A.A.; Gul, R.; Shehzad, W.; Akbar, H.; Ahmad, N.; Durrani, A.Z.; Waqas, M.; et al. Prevalence of Toxoplasma gondii oocysts through Copro-PCR in cats at pet center (UVAS), Lahore, Pakistan. J. Pak. Med. Assoc. 2018, 68, 115–118. [Google Scholar]
- Chang, A.Y.; Chau, V.; Landas, J.A.; Pang, Y. Preparation of calcium competent Escherichia coli and heat-shock transformation. JEMI Methods 2017, 1, 22–25. [Google Scholar]
- Teimouri, A.; Modarressi, M.H.; Shojaee, S.; Mohebali, M.; Rezaian, M.; Keshavarz, H. Development, optimization, and validation of an in-house Dot-ELISA rapid test based on SAG1 and GRA7 proteins for serological detection of Toxoplasma gondii infections. Infect. Drug Resist. 2019, 12, 2657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shehadul Islam, M.; Aryasomayajula, A.; Selvaganapathy, P.R. A review on macroscale and microscale cell lysis methods. Micromachines 2017, 8, 83. [Google Scholar] [CrossRef]
Results | L | K | Description | ||
---|---|---|---|---|---|
Positive | 122 (30.50%) | 89 (22.25%) | K+L+ (33 sera) (8.25%) (a) | K−L+ (91 sera) (22.75%) (b) | 124 (a + b) |
Negative | 278 (69.50%) | 311 (77.75%) | K−L− (220 sera) (55%) (c) | K+L− (56 sera) (14%) (d) | 276 (c + d) |
Total | 400 | 400 | a + b + c + d |
Results | rSAG1 (%) |
---|---|
Sensitivity | 72.95 |
Specificity | 89.71 |
PPV | 72.95 |
NPV | 89.71 |
validity | 81.33 |
Kappa (95% CI) | 0.789 (0.64–0.83) |
Standard error | 0.034 |
χ2 = 27.15 | |
p < 0.05 |
Results | Selected Sera | Screening Through K | Screening Through C |
---|---|---|---|
K+L+ | 29 | 29 | 29 |
K+L− | 26 | 26 | 26 |
K−L− | 25 | 25 | 25 |
Total | 80 | 80 | 80 |
Results | rSAG1 (%) |
---|---|
Sensitivity | 98.5 |
Specificity | 100 |
PPV | 98.21 |
NPV | 100 |
validity | 98.075 |
Relative agreement | 81.45 |
Kappa (95% CI) | 0.971 (0.64–0.83) |
Standard error | 0.028 |
AUC | 1.000 |
Accuracy | 98.77 |
χ2 = 8.02 | |
p < 0.05 |
Results | Selection Through C |
---|---|
K+L+ | 29 |
K+L− | 26 |
K−L− | 25 |
Total | 80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarfraz-ur-Rahman; Akbar, H.; Shabbir, M.Z.; Ullah, U.; Rashid, M.I. Development of Human Toxo IgG ELISA Kit, and False-Positivity of Latex Agglutination Test for the Diagnosis of Toxoplasmosis. Pathogens 2021, 10, 1111. https://doi.org/10.3390/pathogens10091111
Sarfraz-ur-Rahman, Akbar H, Shabbir MZ, Ullah U, Rashid MI. Development of Human Toxo IgG ELISA Kit, and False-Positivity of Latex Agglutination Test for the Diagnosis of Toxoplasmosis. Pathogens. 2021; 10(9):1111. https://doi.org/10.3390/pathogens10091111
Chicago/Turabian StyleSarfraz-ur-Rahman, Haroon Akbar, Muhammad Zubair Shabbir, Ubaid Ullah, and Muhammad Imran Rashid. 2021. "Development of Human Toxo IgG ELISA Kit, and False-Positivity of Latex Agglutination Test for the Diagnosis of Toxoplasmosis" Pathogens 10, no. 9: 1111. https://doi.org/10.3390/pathogens10091111
APA StyleSarfraz-ur-Rahman, Akbar, H., Shabbir, M. Z., Ullah, U., & Rashid, M. I. (2021). Development of Human Toxo IgG ELISA Kit, and False-Positivity of Latex Agglutination Test for the Diagnosis of Toxoplasmosis. Pathogens, 10(9), 1111. https://doi.org/10.3390/pathogens10091111