Prevalence of IncFIB Plasmids Found among Salmonella enterica Serovar Schwarzengrund Isolates from Animal Sources in Taiwan Using Whole-Genome Sequencing
Abstract
:1. Introduction
2. Results
2.1. Genome Size and Characteristics
2.2. Phenotypic and Genotypic Antimicrobial Resistance
2.3. Plasmids, Integrons, and Salmonella Pathogenicity Islands Analysis
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates
4.2. Phenotypic Antimicrobial Susceptibility Testing
4.3. Genome Library Preparation and Sequence Assembly
4.4. Genome Annotation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Furuse, Y. Analysis of research intensity on infectious disease by disease burden reveals which infectious diseases are neglected by researchers. Proc. Natl. Acad. Sci. USA 2019, 116, 478–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hay, S.I.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulkader, R.S.; Abdulle, A.M.; Abebo, T.A.; Abera, S.F.; et al. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1260–1344. [Google Scholar] [CrossRef] [Green Version]
- Maslanka, S.E.; Kerr, J.G.; Williams, G.; Barbaree, J.M.; Carson, L.A.; Miller, J.M.; Swaminathan, B. Molecular subtyping of Clostridium perfringens by pulsed-field gel electrophoresis to facilitate food-borne-disease outbreak investigations. J. Clin. Microbiol. 1999, 37, 2209–2214. [Google Scholar] [CrossRef] [Green Version]
- Cartwright, E.J.; Jackson, K.A.; Johnson, S.D.; Graves, L.M.; Silk, B.J.; Mahon, B.E. Listeriosis outbreaks and associated food vehicles, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 1–9. [Google Scholar] [CrossRef]
- Crowe, S.J.; Green, A.; Hernandez, K.; Peralta, V.; Bottichio, L.; Defibaugh-Chavez, S.; Douris, A.; Gieraltowski, L.; Hise, K.; La-Pham, K.; et al. Utility of Combining Whole Genome Sequencing with Traditional Investigational Methods To Solve Foodborne Outbreaks of Salmonella Infections Associated with Chicken: A New Tool for Tackling This Challenging Food Vehicle. J. Food Prot. 2017, 80, 654–660. [Google Scholar] [CrossRef] [Green Version]
- Chattaway, M.A.; Dallman, T.J.; Gentle, A.; Wright, M.J.; Long, S.E.; Ashton, P.M.; Perry, N.T.; Jenkins, C. Whole Genome Sequencing for Public Health Surveillance of Shiga Toxin-Producing Escherichia coli Other than Serogroup O157. Front. Microbiol. 2016, 7, 258. [Google Scholar] [CrossRef]
- Didelot, X.; Bowden, R.; Wilson, D.J.; Peto, T.E.A.; Crook, D.W. Transforming clinical microbiology with bacterial genome sequencing. Nat. Rev. Genet. 2012, 13, 601–612. [Google Scholar] [CrossRef] [Green Version]
- Nsofor, C.A. Pulsed-Field Gel Electrophoresis (PFGE): Principles and Applications in Molecular Epidemiology: A Review. Int. J. Curr. Res. 2016, 2, 38–51. [Google Scholar]
- Jackson, B.R.; Tarr, C.; Strain, E.; Jackson, K.A.; Conrad, A.; Carleton, H.; Katz, L.S.; Stroika, S.; Gould, L.H.; Mody, R.K.; et al. Implementation of Nationwide Real-time Whole-genome Sequencing to Enhance Listeriosis Outbreak Detection and Investigation. Clin. Infect. Dis. 2016, 63, 380–386. [Google Scholar] [CrossRef] [Green Version]
- Weimer, B.C. 100K Pathogen Genome Project. Genome Announc. 2017, 5, e00594-00517. [Google Scholar] [CrossRef] [Green Version]
- Gwinn, M.; MacCannell, D.; Armstrong, G.L. Next-Generation Sequencing of Infectious Pathogens. JAMA 2019, 321, 893–894. [Google Scholar] [CrossRef] [Green Version]
- Leinonen, R.; Sugawara, H.; Shumway, M.; International Nucleotide Sequence Database, C. The sequence read archive. Nucleic Acids Res. 2011, 39, D19–D21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vugia, D.J.; Samuel, M.; Farley, M.M.; Marcus, R.; Shiferaw, B.; Shallow, S.; Smith, K.; Angulo, F.J.; for the Emerging Infections Program FoodNet Working Group. Invasive Salmonella infections in the United States, FoodNet, 1996–1999: Incidence, serotype distribution, and outcome. Clin. Infect. Dis. 2004, 38, S149–S156. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.H.; Wang, S.W.; Hwang, W.Z.; Tsai, S.J.; Hsih, Y.C.; Chiou, C.S.; Tsen, H.Y. Contamination of Salmonella Schwarzengrund cells in chicken meat from traditional marketplaces in Taiwan and comparison of their antibiograms with those of the human isolates. Poult. Sci. 2010, 89, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Duc, V.M.; Shin, J.; Nagamatsu, Y.; Fuhiwara, A.; Toyofuku, H.; Obi, T.; Chuma, T. Increased Salmonella Schwarzengrund prevalence and antimicrobial susceptibility of Salmonella enterica isolated from broiler chickens in Kagoshima Prefecture in Japan between 2013 and 2016. J. Vet. Med. Sci. 2020, 82, 585–589. [Google Scholar] [CrossRef] [Green Version]
- Aarestrup, F.M.; Hendriksen, R.S.; Lockett, J.; Gay, K.; Teates, K.; McDermott, P.F.; White, D.G.; Hasman, H.; Sørensen, G.; Bangtrakulnonth, A.; et al. International spread of multidrug-resistant Salmonella Schwarzengrund in food products. Emerg. Infect. Dis. 2007, 13, 726–731. [Google Scholar] [CrossRef]
- Emond-Rheault, J.-G.; Hamel, J.; Jeukens, J.; Freschi, L.; Kukavica-Ibrulj, I.; Boyle, B.; Tamber, S.; Malo, D.; Franz, E.; Burnett, E.; et al. The Salmonella enterica Plasmidome as a Reservoir of Antibiotic Resistance. Microorganisms 2020, 8, 1016. [Google Scholar] [CrossRef]
- Hendriksen, R.S.; Bortolaia, V.; Tate, H.; Tyson, G.H.; Aarestrup, F.M.; McDermott, P.F. Using Genomics to Track Global Antimicrobial Resistance. Front. Public Health 2019, 7, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khajanchi, B.K.; Yoskowitz, N.C.; Han, J.; Wang, X.; Foley, S.L.; Dennehy, J.J. Draft Genome Sequences of 27 Salmonella enterica Serovar Schwarzengrund Isolates from Clinical Sources. Microbiol. Resour. Announc. 2019, 8, e01687-18. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Zhang, W.; Zheng, H.; Lan, R.; Wang, H.; Du, P.; Bai, X.; Ji, S.; Meng, Q.; Jin, D.; et al. Minimum Core Genome Sequence Typing of Bacterial Pathogens: A Unified Approach for Clinical and Public Health Microbiology. J. Clin. Microbiol. 2013, 51, 2582–2591. [Google Scholar] [CrossRef] [Green Version]
- Ozer, E.A.; Allen, J.P.; Hauser, A.R. Characterization of the core and accessory genomes of Pseudomonas aeruginosa using bioinformatic tools Spine and AGEnt. BMC Genom. 2014, 15, 737. [Google Scholar] [CrossRef] [Green Version]
- Beceiro, A.; Tomás, M.; Bou, G. Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clin. Microbiol. Rev. 2013, 26, 185–230. [Google Scholar] [CrossRef] [Green Version]
- Yoon, H.; Ansong, C.; Adkins, J.N.; Heffron, F. Discovery of Salmonella virulence factors translocated via outer membrane vesicles to murine macrophages. Infect. Immun. 2011, 79, 2182–2192. [Google Scholar] [CrossRef] [Green Version]
- Rowe, B.; Ward, L.R.; Threlfall, E.J. Multidrug-resistant Salmonella typhi: A worldwide epidemic. Clin. Infect. Dis. 1997, 24, S106–S109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, J.; Kemper, N.; Hartung, J.; Janusch, F.; Mohring, S.A.I.; Hamscher, G. Analysis of fluoroquinolones in dusts from intensive livestock farming and the co-occurrence of fluoroquinolone-resistant Escherichia coli. Sci. Rep. 2019, 9, 5117. [Google Scholar] [CrossRef] [PubMed]
- Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of Quinolone Action and Resistance. Biochemistry 2014, 53, 1565–1574. [Google Scholar] [CrossRef]
- Ngoi, S.T.; Thong, K.L. High Resolution Melting Analysis for Rapid Mutation Screening in Gyrase and Topoisomerase IV Genes in Quinolone-Resistant Salmonella enterica. BioMed Res. Int. 2014, 2014, 718084. [Google Scholar] [CrossRef]
- Li, S.; Zhang, S.; Baert, L.; Jagadeesan, B.; Ngom-Bru, C.; Griswold, T.; Katz, L.S.; Carleton, H.A.; Deng, X.; Dudley, E.G. Implications of Mobile Genetic Elements for Salmonella enterica Single-Nucleotide Polymorphism Subtyping and Source Tracking Investigations. Appl. Environ. Microbiol. 2019, 85, e01985-19. [Google Scholar] [CrossRef]
- Mutai, W.C.; Waiyaki, P.G.; Kariuki, S.; Muigai, A.W.T. Plasmid profiling and incompatibility grouping of multidrug resistant Salmonella enterica serovar Typhi isolates in Nairobi, Kenya. BMC Res. Notes 2019, 12, 422. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.J.; Thorsness, J.L.; Anderson, C.P.; Lynne, A.M.; Foley, S.L.; Han, J.; Fricke, W.F.; McDermott, P.F.; White, D.G.; Khatri, M.; et al. Horizontal gene transfer of a ColV plasmid has resulted in a dominant avian clonal type of Salmonella enterica serovar Kentucky. PLoS ONE 2010, 5, e15524. [Google Scholar] [CrossRef]
- Carattoli, A. Plasmids and the spread of resistance. Int. J. Med. Microbiol. 2013, 303, 298–304. [Google Scholar] [CrossRef]
- Oliva, M.; Monno, R.; D’Addabbo, P.; Pesole, G.; Dionisi, A.M.; Scrascia, M.; Chiara, M.; Horner, D.S.; Manzari, C.; Luzzi, I.; et al. A novel group of IncQ1 plasmids conferring multidrug resistance. Plasmid 2017, 89, 22–26. [Google Scholar] [CrossRef]
- Oladeinde, A.; Cook, K.; Orlek, A.; Zock, G.; Herrington, K.; Cox, N.; Plumblee Lawrence, J.; Hall, C. Hotspot mutations and ColE1 plasmids contribute to the fitness of Salmonella Heidelberg in poultry litter. PLoS ONE 2018, 13, e0202286. [Google Scholar] [CrossRef] [Green Version]
- Molla, B.; Miko, A.; Pries, K.; Hildebrandt, G.; Kleer, J.; Schroeter, A.; Helmuth, R. Class 1 integrons and resistance gene cassettes among multidrug resistant Salmonella serovars isolated from slaughter animals and foods of animal origin in Ethiopia. Acta Trop. 2007, 103, 142–149. [Google Scholar] [CrossRef]
- Cury, J.; Jové, T.; Touchon, M.; Néron, B.; Rocha, E.P. Identification and analysis of integrons and cassette arrays in bacterial genomes. Nucleic Acids Res. 2016, 44, 4539–4550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krauland, M.G.; Marsh, J.W.; Paterson, D.L.; Harrison, L.H. Integron-mediated multidrug resistance in a global collection of nontyphoidal Salmonella enterica isolates. Emerg. Infect. Dis. 2009, 15, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Hayward, M.R.; AbuOun, M.; La Ragione, R.M.; Tchórzewska, M.A.; Cooley, W.A.; Everest, D.J.; Petrovska, L.; Jansen, V.A.; Woodward, M.J. SPI-23 of S. Derby: Role in adherence and invasion of porcine tissues. PLoS ONE 2014, 9, e107857. [Google Scholar] [CrossRef] [Green Version]
- Lou, L.; Zhang, P.; Piao, R.; Wang, Y. Salmonella Pathogenicity Island 1 (SPI-1) and Its Complex Regulatory Network. Front. Cell Infect. Microbiol. 2019, 9, 270. [Google Scholar] [CrossRef] [Green Version]
- Knodler, L.A.; Celli, J.; Hardt, W.D.; Vallance, B.A.; Yip, C.; Finlay, B.B. Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. Mol. Microbiol. 2002, 43, 1089–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Feng, L.; Yang, B.; Zhang, W.; Wang, P.; Jiang, X.; Wang, L. Signal transduction pathway mediated by the novel regulator LoiA for low oxygen tension induced Salmonella Typhimurium invasion. PLoS Pathog. 2017, 13, e1006429. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.L.; Kaczmarek, M.T.; Kucharski, L.M.; Maguire, M.E. Magnesium transport in Salmonella typhimurium: Regulation of mgtA and mgtCB during invasion of epithelial and macrophage cells. Microbiology 1998, 144, 1835–1843. [Google Scholar] [CrossRef] [Green Version]
- Dorsey, C.W.; Laarakker, M.C.; Humphries, A.D.; Weening, E.H.; Bäumler, A.J. Salmonella enterica serotype Typhimurium MisL is an intestinal colonization factor that binds fibronectin. Mol. Microbiol. 2005, 57, 196–211. [Google Scholar] [CrossRef]
- Morgan, E.; Campbell, J.D.; Rowe, S.C.; Bispham, J.; Stevens, M.P.; Bowen, A.J.; Barrow, P.A.; Maskell, D.J.; Wallis, T.S. Identification of host-specific colonization factors of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 2004, 54, 994–1010. [Google Scholar] [CrossRef] [PubMed]
- Velásquez, J.C.; Hidalgo, A.A.; Villagra, N.; Santiviago, C.A.; Mora, G.C.; Fuentes, J.A. SPI-9 of Salmonella enterica serovar Typhi is constituted by an operon positively regulated by RpoS and contributes to adherence to epithelial cells in culture. Microbiology 2016, 162, 1367–1378. [Google Scholar] [CrossRef]
- Shi, L.; Adkins, J.N.; Coleman, J.R.; Schepmoes, A.A.; Dohnkova, A.; Mottaz, H.M.; Norbeck, A.D.; Purvine, S.O.; Manes, N.P.; Smallwood, H.S.; et al. Proteomic Analysis of Salmonella enterica Serovar Typhimurium Isolated from RAW 264.7 Macrophages. J. Biol. Chem. 2006, 281, 29131–29140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoelzer, K.; Moreno Switt, A.I.; Wiedmann, M. Animal contact as a source of human non-typhoidal salmonellosis. Vet. Res. 2011, 42, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimont, P.A.; Weill, F.X. Antigenic Formulae of the Salmonella serovars, 9th ed.; WHO Collaborating Centre for Reference and Research on Salmonella Institut Pasteur: Paris, France, 2007. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes De Novo Assembler. Curr. Protoc. Bioinform 2020, 70, e102. [Google Scholar] [CrossRef] [PubMed]
- Bosi, E.; Donati, B.; Galardini, M.; Brunetti, S.; Sagot, M.F.; Lió, P.; Crescenzi, P.; Fani, R.; Fondi, M. MeDuSa: A multi-draft based scaffolder. Bioinformatics 2015, 31, 2443–2451. [Google Scholar] [CrossRef] [Green Version]
Sample ID | Source | Size (Mb) | GC Content | Number of Contigs with Protein Encoding Genes | Number of Subsystems | Number of Coding Sequences | Number of RNA |
---|---|---|---|---|---|---|---|
SS01 | Duck | 4.81 | 52.1 | 163 | 367 | 4906 | 93 |
SS02 | Pig | 4.99 | 51.8 | 180 | 365 | 5176 | 104 |
SS03 | Dog | 4.81 | 52.2 | 12 | 366 | 4882 | 102 |
SS04 | Pig | 4.84 | 52.2 | 200 | 367 | 4979 | 96 |
SS05 | Broiler | 4.80 | 52.0 | 201 | 365 | 4955 | 104 |
SS06 | Pig | 4.79 | 52.1 | 129 | 367 | 4877 | 104 |
SS07 | Broiler | 4.64 | 52.2 | 130 | 363 | 4668 | 90 |
SS08 | Broiler | 4.73 | 52.2 | 178 | 367 | 4806 | 101 |
SS09 | Pet food | 4.64 | 52.2 | 138 | 363 | 4679 | 94 |
SS10 | Broiler | 4.72 | 52.2 | 148 | 367 | 4782 | 92 |
SS11 | Broiler | 4.83 | 52.1 | 28 | 366 | 4954 | 98 |
SS12 | Crested Goshawk | 4.95 | 52.0 | 26 | 371 | 5091 | 93 |
SS13 | Moorhen | 5.02 | 51.9 | 50 | 370 | 5208 | 91 |
SS14 | Turkey | 4.80 | 52.2 | 192 | 366 | 4907 | 89 |
SS15 | Duck | 4.79 | 52.2 | 173 | 366 | 4903 | 84 |
SS16 | Pig | 4.85 | 52.1 | 192 | 366 | 5030 | 87 |
SS17 | Pig | 4.85 | 52.1 | 186 | 366 | 5013 | 86 |
SS18 | Turkey | 4.76 | 52.2 | 148 | 367 | 4822 | 93 |
SS19 | Turkey | 4.72 | 52.2 | 143 | 367 | 4777 | 89 |
SS20 | Pig | 4.90 | 52.1 | 158 | 369 | 5028 | 102 |
SS21 | Broiler | 4.73 | 52.2 | 116 | 365 | 4793 | 102 |
SS22 | Pig | 4.78 | 52.0 | 127 | 367 | 4866 | 100 |
SS23 | Broiler | 4.74 | 52.2 | 21 | 366 | 4787 | 98 |
Sample ID | Cofactors, Vitamins, Prosthetic Groups, Pigments | Cell Wall and Capsule | Virulence, Disease and Defense | Potassium Metabolism | Phages, Prophages, Transposable Elements, Plasmids | Membrane Transport | Iron Acquisition and Metabolism | RNA Metabolism | Protein Metabolism | Regulation and Cell Signaling | DNA Metabolism | Dormancy and Sporulation | Respiration | Stress Response | Metabolism of Aromatic Compounds | Amino Acids and Derivatives | Phosphorus Metabolism | Carbohydrates |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS01 | 176 | 67 | 59 | 15 | 21 | 127 | 28 | 56 | 219 | 52 | 87 | 1 | 133 | 87 | 27 | 341 | 35 | 335 |
SS02 | 175 | 65 | 64 | 15 | 22 | 120 | 29 | 56 | 226 | 54 | 90 | 1 | 132 | 87 | 27 | 343 | 35 | 337 |
SS03 | 175 | 67 | 53 | 15 | 21 | 127 | 28 | 56 | 231 | 52 | 87 | 1 | 124 | 85 | 27 | 340 | 35 | 335 |
SS04 | 175 | 67 | 58 | 15 | 26 | 131 | 29 | 58 | 222 | 52 | 88 | 1 | 134 | 86 | 27 | 343 | 35 | 339 |
SS05 | 175 | 65 | 57 | 15 | 20 | 128 | 28 | 56 | 223 | 52 | 88 | 1 | 133 | 86 | 27 | 341 | 35 | 335 |
SS06 | 173 | 65 | 58 | 15 | 20 | 126 | 28 | 56 | 226 | 52 | 87 | 1 | 134 | 85 | 27 | 340 | 35 | 335 |
SS07 | 173 | 67 | 56 | 15 | 9 | 115 | 28 | 56 | 220 | 52 | 83 | 1 | 133 | 86 | 27 | 341 | 35 | 334 |
SS08 | 175 | 65 | 63 | 15 | 17 | 128 | 28 | 56 | 226 | 53 | 85 | 1 | 133 | 86 | 27 | 341 | 35 | 335 |
SS09 | 173 | 67 | 56 | 15 | 9 | 115 | 28 | 56 | 218 | 52 | 83 | 1 | 133 | 86 | 27 | 341 | 35 | 334 |
SS10 | 175 | 65 | 61 | 15 | 17 | 127 | 28 | 56 | 224 | 53 | 85 | 1 | 133 | 86 | 27 | 341 | 35 | 335 |
SS11 | 174 | 67 | 54 | 15 | 13 | 148 | 28 | 56 | 224 | 52 | 95 | 1 | 128 | 87 | 27 | 339 | 35 | 337 |
SS12 | 175 | 67 | 53 | 15 | 22 | 139 | 28 | 57 | 224 | 53 | 93 | 2 | 121 | 85 | 27 | 341 | 40 | 335 |
SS13 | 175 | 67 | 56 | 15 | 21 | 147 | 28 | 57 | 220 | 53 | 94 | 2 | 123 | 85 | 27 | 341 | 40 | 335 |
SS14 | 175 | 65 | 55 | 15 | 19 | 117 | 28 | 56 | 222 | 52 | 88 | 1 | 131 | 86 | 27 | 340 | 35 | 337 |
SS15 | 175 | 65 | 51 | 15 | 19 | 117 | 28 | 56 | 216 | 52 | 88 | 1 | 131 | 86 | 27 | 340 | 35 | 337 |
SS16 | 175 | 65 | 60 | 15 | 23 | 117 | 28 | 56 | 224 | 52 | 88 | 1 | 134 | 86 | 27 | 340 | 35 | 337 |
SS17 | 175 | 65 | 57 | 15 | 23 | 117 | 28 | 56 | 223 | 52 | 88 | 1 | 134 | 86 | 27 | 340 | 35 | 337 |
SS18 | 175 | 67 | 60 | 16 | 16 | 127 | 28 | 56 | 225 | 52 | 86 | 1 | 131 | 86 | 27 | 341 | 35 | 335 |
SS19 | 173 | 65 | 55 | 15 | 14 | 127 | 28 | 55 | 228 | 52 | 86 | 1 | 131 | 85 | 27 | 341 | 35 | 335 |
SS20 | 175 | 67 | 58 | 15 | 24 | 140 | 28 | 56 | 220 | 55 | 89 | 1 | 134 | 86 | 27 | 343 | 35 | 336 |
SS21 | 173 | 65 | 57 | 15 | 15 | 128 | 28 | 57 | 226 | 52 | 85 | 1 | 133 | 85 | 29 | 339 | 35 | 335 |
SS22 | 175 | 65 | 61 | 15 | 20 | 125 | 28 | 56 | 227 | 52 | 87 | 1 | 132 | 85 | 27 | 343 | 35 | 335 |
SS23 | 175 | 67 | 54 | 16 | 15 | 126 | 28 | 56 | 223 | 52 | 86 | 1 | 125 | 85 | 27 | 341 | 35 | 335 |
Phenotypic Resistance (ug/mL) a | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Isolates | AMK | TB | GM | CL | AMP | CI | SXZ | TMP | TC | WGS-Predicted Resistance | Antimicrobial Resistance Genes |
SS01 | 4 | >128 | 64 | >256 | >256 | <0.125 | >1024 | >256 | 128 | AMK, TB, GM, CL, AMP, SXZ, TMP, TC | aac(6’)-Iaa, aac(3)-IV, cmlA1, catA2, blaTEM-1B, sul1, sul2, sul3, dfrA12, tet(A) |
SS02 | 2 | 32 | <0.5 | 8 b | >256 | <0.125 | >1024 | >256 | 128 | AMK, TB, CL, AMP, SXZ, TMP, TC | aac(6’)-Iaa, cmlA1, catA2, blaTEM-1B, sul3, dfrA12, tet(A), tet(M) |
SS03 | 2 | >128 | 64 | >256 | >256 | <0.125 | >1024 | >256 | 128 | AMK, TB, GM, CL, AMP, SXZ, TMP, TC | aac(6’)-Iaa, aac(3)-IV, catA2, cmlA1, blaTEM-1B, sul2, sul3, sul1, dfrA12, tet(A) |
SS04 | 1 | >128 | 32 | >256 | >256 | 32 b | >1024 | >256 | 256 | AMK, TB, GM, CL, AMP, SXZ, TMP, TC | aac(6’)-Iaa, aac(3)-IV, cmlA1, blaTEM-1B, sul3, sul1, dfrA12, tet(A) |
SS05 | 4 | >128 | 32 | 64 | >256 | 0.25 | >1024 | >256 | 128 | AMK, TB, GM, CL, AMP, SXZ, TMP, TC | aac(6’)-Iaa, aac(3)-IV, cmlA1, catA2, blaTEM-1B, sul2, sul1, sul3, dfrA12, tet(A) |
SS06 | 2 | >128 | 32 | 4 b | >256 | <0.125 | >1024 | >256 | 128 | AMK, TB, GM, CL, AMP, SXZ, TMP, TC | aac(6’)-Iaa, aac(3)-IV, blaTEM-1B, sul1, dfrA12, tet(A) |
SS07 | 2 | 32 | 1 | >256 | 1 | <0.125 | >1024 | <0.5 | 1 | AMK, TB, CL, SXZ | aac(6’)-Iaa, catA2, cmlA1, sul3, sul2 |
SS08 | 2 | >128 | 32 | 64 | >256 | 0.25 | >1024 | >256 | 128 | AMK, TB, GM, CL, AMP, SXZ, TMP, TC | aac(6’)-Iaa, aac(3)-IV, cmlA1, blaTEM-1B, sul3, sul1, dfrA12, tet(A) |
SS09 | 2 | 32 | <0.5 | >256 | 1 | 0.25 | >1024 | <0.5 | 1 | AMK, TB, CL, SXZ | aac(6’)-Iaa, catA2, cmlA1, sul3, sul2 |
SS10 | 2 | >128 | 64 | 64 | >256 | 0.25 | >1024 | >256 | 128 | AMK, TB, GM, CL, AMP, SXZ, TMP, TC | aac(6’)-Iaa, aac(3)-IV, cmlA1, blaTEM-1B, sul1, sul3, dfrA12, tet(A) |
SS11 | 2 | >128 | 16 | 256 | >256 | 0.25 | >1024 | >256 | 128 | AMK, TB, GM, CL, AMP, SXZ, TMP, TC | aac(6’)-Iaa, aac(3)-IV, floR, cmlA1, blaTEM-1B, sul2, dfrA12, tet(A) |
SS12 | 2 | >128 | 64 | 64 | >256 | 0.25 | >1024 | >256 | 256 | AMK, TB, GM, CL, AMP, SXZ, TMP, TC | aac(6’)-Iaa, aac(3)-IV, cmlA1, blaTEM-1B, sul2, sul1, sul3, dfrA12, tet(A) |
SS13 | 2 | >128 | 32 | 64 | >256 | 0.25 | >1024 | >256 | 128 | AMK, TB, GM, CL, AMP, SXZ, TMP, TC | aac(6’)-Iaa, aac(3)-IV, cmlA1, blaTEM-1B, sul1, sul3, sul2, dfrA12, tet(A) |
SS14 | 1 | >128 | 32 | >256 | 2 | 32 b | >1024 | >256 | 256 | AMK, TB, GM, CL, SXZ, TMP, TC | aac(6’)-Iaa, aac(3)-IV, floR, cmlA1, sul3, sul1, dfrA12, tet(A) |
SS15 | 1 | >128 | 32 | >256 | 2 | 32 b | >1024 | >256 | 256 | AMK, TB, GM, CL, SXZ, TMP, TC | aac(6’)-Iaa, aac(3)-IV, cmlA1, floR, sul3, sul1, dfrA12, tet(A) |
SS16 | 1 | >128 | 16 | >256 | >256 b | 32 b | >1024 | >256 | 2 | AMK, TB, GM, CL, SXZ, TMP | aac(6’)-Iaa, aac(3)-IV, floR, cmlA1, sul3, sul1, dfrA12 |
SS17 | 1 | >128 | 32 | >256 | 256 b | 32 b | >1024 | >256 | 2 | AMK, TB, GM, CL, SXZ, TMP | aac(6’)-Iaa, aac(3)-IV, cmlA1, floR, sul3, sul1, dfrA12 |
SS18 | 2 | >128 | 32 | 64 | >256 | 0.25 | >1024 | >256 | 128 | AMK, TB, GM, CL, AMP, SXZ, TMP, TC | aac(6’)-Iaa, aac(3)-IV, cmlA1, floR, blaTEM-1B, sul3, sul2, sul1, dfrA12, tet(A) |
SS19 | 2 | 32 | <0.5 | 64 | 1 | 0.25 | >1024 | >256 | 128 | AMK, TB, CL, SXZ, TMP, TC | aac(6’)-Iaa, cmlA1, sul1, dfrA12, tet(A) |
SS20 | 8 | >128 | 1 | >256 | >256 | >64 | >1024 | >256 | 256 | AMK, TB, GM, CL, AMP, CI, SXZ, TMP, | aac(6’)-Ib-cr, aac(6’)-Iaa, aac(3)-IV, cmlA1, catA2, blaTEM-1B, sul1, sul3, sul2, dfrA12, tet(A) |
SS21 | 2 | 32 | <0.5 | 4 | >256 | <0.125 | >1024 | >256 | 128 | AMK, TB, AMP, SXZ, TMP, TC | aac(6’)-Iaa, blaTEM-1B, sul1, dfrA12, tet(A) |
SS22 | 2 | >128 | <0.5 | 128 | >256 | <0.125 | >1024 | >256 | 128 | AMK, TB, CL, AMP, SXZ, TMP, TC | aac(6’)-Iaa, cmlA1, blaTEM-1B, sul1, sul3, dfrA12, tet(A) |
SS23 | 4 | >128 | 32 | 256 | >256 | 0.25 | >1024 | >256 | 128 | AMK, TB, GM, CL, AMP, SXZ, TMP, TC | aac(6’)-Iaa, aac(3)-IV, floR, cmlA1, blaTEM-1B, sul1, sul2, sul3, dfrA12, tet(A) |
Isolates | Plasmids | Presence of Class I Integron | Gene Cassette Found on Integron | SPI |
---|---|---|---|---|
SS01 | IncFIB(K) | 1 | dfrA12 aadA cmlA sul3 | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS02 | IncHI2, IncHI2A | 1 | dfrA12 aadA cmlA | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS03 | IncFIB(K) | 1 | dfrA12 aadA cmlA sul3 | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS04 | IncFIB(K) | 1 | dfrA12 aadA cmlA sul3 | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS05 | IncFIB(K) | 1 | dfrA12 aadA cmlA sul3 | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS06 | Col(pHAD28), IncFIB(K) | 1 | dfrA12 aadA | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS07 | - | 1 | aadA cmlA sul3 | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS08 | Col156, Col440II, IncFIB(K) | 1 | dfrA12 aadA cmlA sul3 | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS09 | - | 1 | aadA cmlA sul3 | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS10 | Col440II, IncFIB(K) | 1 | dfrA12 aadA cmlA sul3 | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS11 | Col(BS512), IncFIB(K), IncX1, IncL | 1 | dfrA12 aadA cmlA sul2 | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS12 | IncFIB(K) | 1 | dfrA12 aadA cmlA sul3 | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS13 | IncFIB(K), IncI2 | 1 | dfrA12 aadA cmlA sul3 | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS14 | Col440I, IncFIB(K), IncQ1 | 1 | dfrA12 aadA cmlA tetR tet(A) | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS15 | Col440I, IncFIB(K), IncQ1 | 1 | dfrA12 aadA cmlA tetR tet(A) | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS16 | IncFIB(K), IncQ1 | 1 | dfrA12 aadA cmlA sul3 | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS17 | IncFIB(K), IncQ1 | 1 | dfrA12 aadA cmlA sul3 | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS18 | IncFIB(K) | 1 | dfrA12 aadA cmlA sul3 | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS19 | IncFIB(K) | 1 | dfrA12 aadA cmlA | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS20 | IncFIB(K), IncFII(pCTU2), IncI1-I(Alpha) | 1 | dfrA12 aadA aac(6’)-Ib-cr cmlA sul3 | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS21 | IncFIB(K) | 0 | - | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS22 | IncFIB(K) | 1 | dfrA12 aadA cmlA tetR tet(A) | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
SS23 | IncFIB(K) | 1 | dfrA12 aadA cmlA sul3 | 1, 2, 3, 4, 5, 9, 13, 14, C63PI |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, I.-C.; Wu, H.-H.; Chen, Z.-W.; Chou, C.-H. Prevalence of IncFIB Plasmids Found among Salmonella enterica Serovar Schwarzengrund Isolates from Animal Sources in Taiwan Using Whole-Genome Sequencing. Pathogens 2021, 10, 1024. https://doi.org/10.3390/pathogens10081024
Li I-C, Wu H-H, Chen Z-W, Chou C-H. Prevalence of IncFIB Plasmids Found among Salmonella enterica Serovar Schwarzengrund Isolates from Animal Sources in Taiwan Using Whole-Genome Sequencing. Pathogens. 2021; 10(8):1024. https://doi.org/10.3390/pathogens10081024
Chicago/Turabian StyleLi, I-Chen, Hsiu-Hui Wu, Zeng-Weng Chen, and Chung-Hsi Chou. 2021. "Prevalence of IncFIB Plasmids Found among Salmonella enterica Serovar Schwarzengrund Isolates from Animal Sources in Taiwan Using Whole-Genome Sequencing" Pathogens 10, no. 8: 1024. https://doi.org/10.3390/pathogens10081024
APA StyleLi, I.-C., Wu, H.-H., Chen, Z.-W., & Chou, C.-H. (2021). Prevalence of IncFIB Plasmids Found among Salmonella enterica Serovar Schwarzengrund Isolates from Animal Sources in Taiwan Using Whole-Genome Sequencing. Pathogens, 10(8), 1024. https://doi.org/10.3390/pathogens10081024