Molecular Characterization of German Acinetobacter baumannii Isolates and Multilocus Sequence Typing (MLST) Analysis Based on WGS Reveals Novel STs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates
2.2. Identification and Molecular Characterization of Strains
2.3. DNA Extraction and Whole-Genome Sequencing (WGS)
2.4. Multilocus Sequence Typing (MLST)
3. Results
3.1. Identification of A. baumannii Strains
3.2. MLST Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Howard, A.; O’Donoghue, M.; Feeney, A.; Sleator, R.D. Acinetobacter baumannii: An emerging opportunistic pathogen. Virulence 2012, 3, 243–250. [Google Scholar] [CrossRef]
- Wareth, G.; Brandt, C.; Sprague, L.D.; Neubauer, H.; Pletz, M.W. Spatio-temporal distribution of Acinetobacter baumannii in Germany-A comprehensive systematic review of studies on resistance development in humans (2000–2018). Microorganisms 2020, 8, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewers, C.; Klotz, P.; Leidner, U.; Stamm, I.; Prenger-Berninghoff, E.; Gottig, S.; Semmler, T.; Scheufen, S. OXA-23 and ISAba1-OXA-66 class D beta-lactamases in Acinetobacter baumannii isolates from companion animals. Int. J. Antimicrob. Agents 2017, 49, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Klotz, P.; Gottig, S.; Leidner, U.; Semmler, T.; Scheufen, S.; Ewers, C. Carbapenem-resistance and pathogenicity of bovine Acinetobacter indicus-like isolates. PLoS ONE 2017, 12, e0171986. [Google Scholar] [CrossRef] [PubMed]
- Wareth, G.; Abdel-Glil, M.Y.; Schmoock, G.; Steinacker, U.; Kaspar, H.; Neubauer, H.; Sprague, L.D. Draft genome sequence of an Acinetobacter baumannii isolate recovered from a horse with conjunctivitis in Germany. Microbiol. Resour. Announc. 2019, 8. [Google Scholar] [CrossRef] [Green Version]
- Cho, G.S.; Li, B.; Rostalsky, A.; Fiedler, G.; Rosch, N.; Igbinosa, E.; Kabisch, J.; Bockelmann, W.; Hammer, P.; Huys, G.; et al. Diversity and antibiotic susceptibility of Acinetobacter strains from milk powder produced in Germany. Front. Microbiol. 2018, 9, 536. [Google Scholar] [CrossRef] [Green Version]
- Wareth, G.; Linde, J.; Hammer, P.; Nguyen, N.H.; Nguyen, T.N.M.; Splettstoesser, W.D.; Makarewicz, O.; Neubauer, H.; Sprague, L.D.; Pletz, M.W. Phenotypic and WGS-derived antimicrobial resistance profiles of clinical and non-clinical Acinetobacter baumannii isolates from Germany and Vietnam. Int. J. Antimicrob. Agents 2020, 56, 106127. [Google Scholar] [CrossRef]
- Wareth, G.; Neubauer, H.; Sprague, L.D. Acinetobacter baumannii—A neglected pathogen in veterinary and environmental health in Germany. Vet. Res. Commun. 2019, 43, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Nemec, A.; Krizova, L.; Maixnerova, M.; Sedo, O.; Brisse, S.; Higgins, P.G. Acinetobacter seifertii sp. nov., a member of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex isolated from human clinical specimens. Int. J. Syst. Evol. Microbiol. 2015, 65, 934–942. [Google Scholar] [CrossRef] [Green Version]
- Cosgaya, C.; Mari-Almirall, M.; Van Assche, A.; Fernandez-Orth, D.; Mosqueda, N.; Telli, M.; Huys, G.; Higgins, P.G.; Seifert, H.; Lievens, B.; et al. Acinetobacter dijkshoorniae sp. nov., a member of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex mainly recovered from clinical samples in different countries. Int. J. Syst. Evol. Microbiol. 2016, 66, 4105–4111. [Google Scholar] [CrossRef]
- Higgins, P.G.; Schneiders, T.; Hamprecht, A.; Seifert, H. In Vivo selection of a missense mutation in adeR and conversion of the novel blaOXA-164 gene into blaOXA-58 in carbapenem-resistant Acinetobacter baumannii isolates from a hospitalized patient. Antimicrob. Agents Chemother. 2010, 54, 5021–5027. [Google Scholar] [CrossRef] [Green Version]
- Jain, C.; Rodriguez, R.L.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef] [Green Version]
- Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014, 15, R46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartual, S.G.; Seifert, H.; Hippler, C.; Luzon, M.A.; Wisplinghoff, H.; Rodriguez-Valera, F. Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J. Clin. Microbiol. 2005, 43, 4382–4390. [Google Scholar] [CrossRef] [Green Version]
- Diancourt, L.; Passet, V.; Nemec, A.; Dijkshoorn, L.; Brisse, S. The population structure of Acinetobacter baumannii: Expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS ONE 2010, 5, e10034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaiarsa, S.; Batisti Biffignandi, G.; Esposito, E.P.; Castelli, M.; Jolley, K.A.; Brisse, S.; Sassera, D.; Zarrilli, R. Comparative analysis of the two Acinetobacter baumannii multilocus sequence typing (MLST) schemes. Front. Microbiol. 2019, 10, 930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenyon, J.J.; Hall, R.M. Variation in the complex carbohydrate biosynthesis loci of Acinetobacter baumannii genomes. PLoS ONE 2013, 8, e62160. [Google Scholar] [CrossRef] [Green Version]
- Murugaiyan, J.; Walther, B.; Stamm, I.; Abou-Elnaga, Y.; Brueggemann-Schwarze, S.; Vincze, S.; Wieler, L.H.; Lubke-Becker, A.; Semmler, T.; Roesler, U. Species differentiation within the Staphylococcus intermedius group using a refined MALDI-TOF MS database. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2014, 20, 1007–1015. [Google Scholar] [CrossRef] [Green Version]
- Turton, J.F.; Woodford, N.; Glover, J.; Yarde, S.; Kaufmann, M.E.; Pitt, T.L. Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. J. Clin. Microbiol. 2006, 44, 2974–2976. [Google Scholar] [CrossRef] [Green Version]
- Woodford, N.; Ellington, M.J.; Coelho, J.M.; Turton, J.F.; Ward, M.E.; Brown, S.; Amyes, S.G.; Livermore, D.M. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents 2006, 27, 351–353. [Google Scholar] [CrossRef]
- Kobs, V.C.; Ferreira, J.A.; Bobrowicz, T.A.; Ferreira, L.E.; Deglmann, R.C.; Westphal, G.A.; França, P.H. The role of the genetic elements blaOXA and IS Aba 1 in the Acinetobacter calcoaceticus-Acinetobacter baumannii complex in carbapenem resistance in the hospital setting. Rev. Soc. Bras. Med. Trop 2016, 49, 433–440. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. A J. Comput. Mol. Cell Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Rossello-Mora, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef] [Green Version]
- Klotz, P.; Higgins, P.G.; Schaubmar, A.R.; Failing, K.; Leidner, U.; Seifert, H.; Scheufen, S.; Semmler, T.; Ewers, C. Seasonal occurrence and carbapenem susceptibility of bovine Acinetobacter baumannii in Germany. Front. Microbiol. 2019, 10, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayakumar, S.; Biswas, I.; Veeraraghavan, B. Accurate identification of clinically important Acinetobacter spp.: An update. Future Sci. OA 2019, 5, Fso395. [Google Scholar] [CrossRef] [Green Version]
- Szabados, F.; Tix, H.; Anders, A.; Kaase, M.; Gatermann, S.G.; Geis, G. Evaluation of species-specific score cutoff values of routinely isolated clinically relevant bacteria using a direct smear preparation for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based bacterial identification. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2012, 31, 1109–1119. [Google Scholar] [CrossRef]
- Turton, J.F.; Ward, M.E.; Woodford, N.; Kaufmann, M.E.; Pike, R.; Livermore, D.M.; Pitt, T.L. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol. Lett. 2006, 258, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Wendel, A.F.; Malecki, M.; Otchwemah, R.; Tellez-Castillo, C.J.; Sakka, S.G.; Mattner, F. One-year molecular surveillance of carbapenem-susceptible A. baumannii on a German intensive care unit: Diversity or clonality. Antimicrob. Resist. Infect. Control 2018, 7, 145. [Google Scholar] [CrossRef]
- Hamidian, M.; Nigro, S.J. Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microb. Genom. 2019, 5. [Google Scholar] [CrossRef]
- Molter, G.; Seifert, H.; Mandraka, F.; Kasper, G.; Weidmann, B.; Hornei, B.; Ohler, M.; Schwimmbeck, P.; Kroschel, P.; Higgins, P.G.; et al. Outbreak of carbapenem-resistant Acinetobacter baumannii in the intensive care unit: A multi-level strategic management approach. J. Hosp. Infect. 2016, 92, 194–198. [Google Scholar] [CrossRef]
- Eigenbrod, T.; Reuter, S.; Gross, A.; Kocer, K.; Gunther, F.; Zimmermann, S.; Heeg, K.; Mutters, N.T.; Nurjadi, D. Molecular characterization of carbapenem-resistant Acinetobacter baumannii using WGS revealed missed transmission events in Germany from 2012–2015. J. Antimicrob. Chemother. 2019, 74, 3473–3480. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, Y.; Hunfeld, K.P.; Borgmann, S.; Maneg, D.; Blobner, W.; Werner, G.; Higgins, P.G. Carbapenem-resistant Acinetobacter baumannii ST78 with OXA-72 carbapenemase and ESBL gene blaCTX-M-115. J. Antimicrob. Chemother. 2016, 71, 1426–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linz, B.; Mukhtar, N.; Shabbir, M.Z.; Rivera, I.; Ivanov, Y.V.; Tahir, Z.; Yaqub, T.; Harvill, E.T. Virulent epidemic pneumonia in sheep caused by the human pathogen Acinetobacter baumannii. Front. Microbiol. 2018, 9, 2616. [Google Scholar] [CrossRef]
- Ewers, C.; Klotz, P.; Scheufen, S.; Leidner, U.; Göttig, S.; Semmler, T. Genome sequence of OXA-23 producing Acinetobacter baumannii IHIT7853, a carbapenem-resistant strain from a cat belonging to international clone IC1. Gut Pathog. 2016, 8, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frickmann, H.; Crusius, S.; Walter, U.; Podbielski, A. Management eines Ausbruchs nosokomialer Pneumonien durch einen neuen multiresistenten Acinetobacter baumannii-Klon. Pneumologie 2010, 64, 686–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savin, M.; Parcina, M.; Schmoger, S.; Kreyenschmidt, J.; Kasbohrer, A.; Hammerl, J.A. Draft genome sequences of Acinetobacter baumannii isolates recovered from sewage water from a poultry slaughterhouse in Germany. Microbiol. Resour. Announc. 2019, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pasteur ST. | No. of Isolates | % | Origin of Isolates |
---|---|---|---|
ST/241 | 19 | 21.4 | Milk powder sample |
ST/153 | 12 | 13.5 | Milk powder sample |
ST/40 | 12 | 13.5 | Milk powder sample |
ST/1119 | 6 | 6.7 | Milk powder sample |
ST/273 | 3 | 3.4 | Milk powder sample |
ST/364 | 1 | 1.1 | Milk powder sample |
ST/33 | 1 | 1.1 | Milk powder sample |
ST/2 | 8 | 9 | Human |
ST/164 | 2 | 2.3 | Human |
ST/604 | 1 | 1.1 | Human |
ST/215 | 1 | 1.1 | Human |
ST/78 | 1 | 1.1 | Human |
ST/1 | 1 | 1.1 | Human |
ST/52 | 1 | 1.1 | DSM30007 (Human) |
ST/437 | 1 | 1.1 | DSM105126 (Human) |
ST/46 | 1 | 1.1 | Animal |
ND | 18 | 20.3 | 17 Milk powder sample/1 Animal |
Total | 89 | 100 |
STs | ID | Origin | Year | cpn60 | fusA | gltA | pyrG | recA | rplB | rpoB |
---|---|---|---|---|---|---|---|---|---|---|
1410 | 18Y0036 | Animal | 2016 | 40 | 3 | 2 | 1 | 2 | 2 | 2 |
1414 | 18Y0093 | Milk powder | 2005 | 3 | 3 | 6 | 2 | 3 | 1 | 2 |
18Y0112 | Milk powder | 2005 | 3 | 3 | 6 | 2 | 3 | 1 | 2 | |
1416 | 18Y0111 | Milk powder | 2005 | 3 | 3 | 2 | 2 | 2 | 4 | 14 |
1417 | 18Y0141 | Milk powder | 2006 | 3 | 3 | 2 | 2 | 9 | 2 | 2 |
1418 | 18Y0169 | Milk powder | 2007 | 3 | 2 | 2 | 2 | 3 | 1 | 2 |
1419 | 18Y0192 | Milk powder | 2009 | 156 | 3 | 56 | 1 | 13 | 1 | 1 |
1421 | 18Y0245 | Milk powder | 2012 | 69 | 4 | 2 | 2 | 7 | 1 | 4 |
ID | Origin | Year | cpn60 | fusA | gltA | pyrG | recA | rplB | rpoB | Novel Allele * | |
---|---|---|---|---|---|---|---|---|---|---|---|
UT | 18Y0092 | Milk powder | 2005 | 1 | 2 | ~140 | 1 | 51 | 1 | 4 | (Pas_gltA_2 G >A) |
UT | 18Y0103 | Milk powder | 2005 | ~155 | 3 | 13 | 1 | 3 | 1 | ~14 | (Pas_cpn60_25 G >A) (Pas_rpoB_14 C >T) |
18Y0107 | Milk powder | 2005 | ~155 | 3 | 13 | 1 | 3 | 1 | ~14 | ||
18Y0237 | Milk powder | 2011 | ~155 | 3 | 13 | 1 | 3 | 1 | ~14 | (Pas_cpn60_46 A>G) (Pas_rpoB_14 C>T) | |
18Y0228 | Milk powder | 2011 | ~155 | 3 | 13 | 1 | 3 | 1 | ~14 | (Pas_cpn60_155C>T) (Pas_rpoB_14 C>T) | |
UT | 18Y0195 | Milk powder | 2009 | 3 | 2 | 2 | ~2 | 5 | 1 | 5 | (Pas_pyrG_2 T>C) |
UT | 18Y0125 | Milk powder | 2006 | 8 | 1 | ~5 | 3 | 6 | 2 | 3 | Similar to ST/152 with a difference in one nucleotide (Pas_gltA_5 T >C) |
18Y0143 | Milk powder | 2006 | 8 | 1 | ~5 | 3 | 6 | 2 | 3 | ||
18Y0180 | Milk powder | 2008 | 8 | 1 | ~5 | 3 | 6 | 2 | 3 | ||
18Y0190 | Milk powder | 2009 | 8 | 1 | ~5 | 3 | 6 | 2 | 3 |
Oxford ST. | No. of Isolates | % | Origin of Isolates |
---|---|---|---|
ST/613 | 19 | 21.4 | Milk powder |
ST/427 | 10 | 11.2 | Milk powder |
ST/1182 | 1 | 1.1 | Milk powder |
ST/1418 | 2 | 2.3 | Human |
ST/195 | 1 | 1.1 | Human |
ST/348 | 1 | 1.1 | Human |
ST/806 | 1 | 1.1 | Human |
ST/944 | 1 | 1.1 | Human |
ST/931 | 1 | 1.1 | DSM30007 (Human) |
ST/112 | 1 | 1.1 | DSM105126 (Human) |
ND | 51 | 57.4 | 41 Milk powder; 8 Human; 2 Animal |
Total | 89 | 100 |
ST | ID | gltA | gyrB | gdhB | recA | cpn60 | Gpi | rpoD | Novel Allele * |
---|---|---|---|---|---|---|---|---|---|
UT | 18Y0036 | 1 | 121 | 2 | 2 | 36 | 98 | 30 | |
UT | 18Y0093 | 2 | 97 | ~73 | 1 | 1 | 68 | ~6 | (Oxf_gdhB_73 T>G, T>C) (Oxf_rpoD_6 T>G) (Oxf_gpi_68 T>C) |
18Y0112 | 2 | 97 | ~73 | 1 | 1 | 68 | ~6 | ||
UT | 18Y0111 | 1 | 113 | ~189 | 2 | 1 | 253 | 4 | (Oxf_gdhB_66 A>G) |
UT | 18Y0141 | 1 | 47 | 140 | 6 | 1 | ~264 | 43 | Oxf_gpi_264 T>C, C>G, A>G, G>T, G>A, T>C, A>T, T>C, T>C) |
1182 | 18Y0169 | 1 | 12 | 56 | 1 | 1 | 107 | 26 | |
UT | 18Y0192 | 35 | 31 | 49 | 11 | ~1 | 54 | ~5 | (Oxf_cpn60_1 C>A) (Oxf_rpoD_5 T>C) |
UT | 18Y0245 | 1 | 15 | 59 | 28 | 94 | 157 | 45 | Oxf_cpn60 has uncertain hit, and ST is unclear |
UT | 18Y0092 | ~1 | 17 | 42 | 60 | 4 | 140 | 151 | (Oxf_gltA_1 G>A) |
UT | 18Y0103 | 24 | 52 | 139 | 1 | ~44 | 99 | 50 | (Oxf_cpn60_26 G>A) |
18Y0107 | 24 | 52 | 139 | 1 | ~44 | 99 | 50 | ||
18Y0237 | 24 | 52 | 139 | 1 | ~44 | 99 | 50 | ||
18Y0228 | 24 | 52 | 139 | 1 | ~44 | 99 | 50 | (Oxf_cpn60_16 C>T) | |
UT | 18Y0195 | 1 | 41 | 186 | 11 | 1 | 164 | 6 | |
UT | 18Y0125 | 98 | 12 | 40 | 26 | 32 | 103 | 4 | |
18Y0143 | 98 | 12 | 40 | 26 | 32 | 103 | 4 | ||
18Y0180 | 98 | 12 | 40 | 26 | 32 | 103 | 4 | ||
18Y0190 | 98 | 12 | 40 | 26 | 32 | 103 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wareth, G.; Linde, J.; Hammer, P.; Splettstoesser, W.D.; Pletz, M.W.; Neubauer, H.; Sprague, L.D. Molecular Characterization of German Acinetobacter baumannii Isolates and Multilocus Sequence Typing (MLST) Analysis Based on WGS Reveals Novel STs. Pathogens 2021, 10, 690. https://doi.org/10.3390/pathogens10060690
Wareth G, Linde J, Hammer P, Splettstoesser WD, Pletz MW, Neubauer H, Sprague LD. Molecular Characterization of German Acinetobacter baumannii Isolates and Multilocus Sequence Typing (MLST) Analysis Based on WGS Reveals Novel STs. Pathogens. 2021; 10(6):690. https://doi.org/10.3390/pathogens10060690
Chicago/Turabian StyleWareth, Gamal, Jörg Linde, Philipp Hammer, Wolf D. Splettstoesser, Mathias W. Pletz, Heinrich Neubauer, and Lisa D. Sprague. 2021. "Molecular Characterization of German Acinetobacter baumannii Isolates and Multilocus Sequence Typing (MLST) Analysis Based on WGS Reveals Novel STs" Pathogens 10, no. 6: 690. https://doi.org/10.3390/pathogens10060690
APA StyleWareth, G., Linde, J., Hammer, P., Splettstoesser, W. D., Pletz, M. W., Neubauer, H., & Sprague, L. D. (2021). Molecular Characterization of German Acinetobacter baumannii Isolates and Multilocus Sequence Typing (MLST) Analysis Based on WGS Reveals Novel STs. Pathogens, 10(6), 690. https://doi.org/10.3390/pathogens10060690