From Coxiella burnetii Infection to Pregnancy Complications: Key Role of the Immune Response of Placental Cells
Abstract
1. Introduction
2. Natural History of C. burnetii Infection in Pregnancy
3. Coxiella burnetii
4. The Placenta, a Target Tissue for C. burnetii
5. Placental Cells and C. burnetii Infection
5.1. Trophoblasts
5.2. Immune Cells
5.2.1. Macrophages
5.2.2. Dendritic Cells
5.2.3. Mast Cells
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stein, A.; Lepidi, H.; Mege, J.L.; Marrie, T.J.; Raoult, D. Repeated Pregnancies in BALB/c Mice Infected with Coxiella Burnetii Cause Disseminated Infection, Resulting in Stillbirth and Endocarditis. J. Infect. Dis. 2000, 181, 188–194. [Google Scholar] [CrossRef]
- Eldin, C.; Mélenotte, C.; Mediannikov, O.; Ghigo, E.; Million, M.; Edouard, S.; Mege, J.-L.; Maurin, M.; Raoult, D. From Q Fever to Coxiella Burnetii Infection: A Paradigm Change. Clin. Microbiol. Rev. 2017, 30, 115–190. [Google Scholar] [CrossRef]
- Maurin, M.; Raoult, D. Q Fever. Clin. Microbiol. Rev. 1999, 12, 518–553. [Google Scholar]
- Tissot-Dupont, H.; Vaillant, V.; Rey, S.; Raoult, D. Role of Sex, Age, Previous Valve Lesion, and Pregnancy in the Clinical Expression and Outcome of Q Fever after a Large Outbreak. Clin. Infect. Dis. 2007, 44, 232–237. [Google Scholar] [CrossRef]
- Roest, H.-J.; van Gelderen, B.; Dinkla, A.; Frangoulidis, D.; van Zijderveld, F.; Rebel, J.; van Keulen, L. Q Fever in Pregnant Goats: Pathogenesis and Excretion of Coxiella Burnetii. PLoS ONE 2012, 7, e48949. [Google Scholar] [CrossRef]
- Kourtis, A.P.; Read, J.S.; Jamieson, D.J. Pregnancy and Infection. N. Engl. J. Med. 2014, 370, 2211–2218. [Google Scholar] [CrossRef]
- Baud, D.; Peter, O.; Langel, C.; Regan, L.; Greub, G. Seroprevalence of Coxiella Burnetii and Brucella Abortus among Pregnant Women. Clin. Microbiol. Infect. 2009, 15, 499–501. [Google Scholar] [CrossRef]
- Sappenfield, E.; Jamieson, D.J.; Kourtis, A.P. Pregnancy and Susceptibility to Infectious Diseases. Infect. Dis. Obstet. Gynecol. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Syrucek, L.; Sobeslavsky, O.; Gutvirth, I. Isolation of Coxiella Burneti from Human Placentas. J. Hyg. Epidemiol. Microbiol. Immunol. 1958, 2, 29–35. [Google Scholar]
- Melenotte, C.; Protopopescu, C.; Million, M.; Edouard, S.; Carrieri, M.P.; Eldin, C.; Angelakis, E.; Djossou, F.; Bardin, N.; Fournier, P.-E.; et al. Clinical Features and Complications of Coxiella Burnetii Infections from the French National Reference Center for Q Fever. JAMA Netw. Open 2018, 1, e181580. [Google Scholar] [CrossRef]
- Ghaoui, H.; Bitam, I.; Ait-Oudhia, K.; Achour, N.; Saad-Djaballah, A.; Saadnia, F.Z.; Kedjour, S.; Fournier, P.-E. Coxiella Burnetii Infection with Women’s Febrile Spontaneous Abortion Reported in Algiers. New Microbes New Infect. 2018, 26, 8–14. [Google Scholar] [CrossRef]
- Raoult, D.; Fenollar, F.; Stein, A. Q Fever during Pregnancy: Diagnosis, Treatment, and Follow-Up. Arch. Intern. Med. 2002, 162, 701–704. [Google Scholar]
- Ghanem-Zoubi, N.; Paul, M. Q Fever during Pregnancy: A Narrative Review. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2020, 26, 864–870. [Google Scholar] [CrossRef]
- Boden, K.; Brueckmann, A.; Wagner-Wiening, C.; Hermann, B.; Henning, K.; Junghanss, T.; Seidel, T.; Baier, M.; Straube, E.; Theegarten, D. Maternofetal Consequences of Coxiella Burnetii Infection in Pregnancy: A Case Series of Two Outbreaks. BMC Infect. Dis. 2012, 12, 359. [Google Scholar] [CrossRef]
- Stein, A.; Raoult, D. Q Fever during Pregnancy: A Public Health Problem in Southern France. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 1998, 27, 592–596. [Google Scholar] [CrossRef]
- Nielsen, S.Y.; Mølbak, K.; Henriksen, T.B.; Krogfelt, K.A.; Larsen, C.S.; Villumsen, S. Adverse Pregnancy Outcomes and Coxiella Burnetii Antibodies in Pregnant Women, Denmark. Emerg. Infect. Dis. 2014, 20, 925–931. [Google Scholar] [CrossRef]
- Alemneh, T.; Melaku, A. Q Fever (Coxiellosis) in Animals and Humans. Biology 2018, 5, 4. [Google Scholar]
- Nielsen, S.Y.; Andersen, A.-M.N.; Mølbak, K.; Hjøllund, N.H.; Kantsø, B.; Krogfelt, K.A.; Henriksen, T.B. No Excess Risk of Adverse Pregnancy Outcomes among Women with Serological Markers of Previous Infection with Coxiella Burnetii: Evidence from the Danish National Birth Cohort. BMC Infect. Dis. 2013, 13, 87. [Google Scholar] [CrossRef]
- Quijada, S.G.; Terán, B.M.; Murias, P.S.; Anitua, A.A.; Cermeño, J.L.B.; Frías, A.B. Q Fever and Spontaneous Abortion. Clin. Microbiol. Infect. 2012, 18, 533–538. [Google Scholar] [CrossRef]
- Arricau-Bouvery, N.; Souriau, A.; Bodier, C.; Dufour, P.; Rousset, E.; Rodolakis, A. Effect of Vaccination with Phase I and Phase II Coxiella Burnetii Vaccines in Pregnant Goats. Vaccine 2005, 23, 4392–4402. [Google Scholar] [CrossRef]
- Oporto, B.; Barandika, J.F.; Hurtado, A.; Aduriz, G.; Moreno, B.; Garcia-Perez, A.L. Incidence of Ovine Abortion by Coxiella Burnetii in Northern Spain. Ann. N. Y. Acad. Sci. 2006, 1078, 498–501. [Google Scholar] [CrossRef]
- Bouvery, N.A.; Souriau, A.; Lechopier, P.; Rodolakis, A. Experimental Coxiella Burnetii Infection in Pregnant Goats: Excretion Routes. Vet. Res. 2003, 34, 423–433. [Google Scholar] [CrossRef]
- Abinanti, F.R.; Lennette, E.H.; Winn, J.F.; Welsh, H.H. Q Fever Studies. XVIII. Presence of Coxiella Burnetii in the Birth Fluids of Naturally Infected Sheep. Am. J. Hyg. 1953, 58, 385–388. [Google Scholar]
- Rodolakis, A.; Berri, M.; Héchard, C.; Caudron, C.; Souriau, A.; Bodier, C.C.; Blanchard, B.; Camuset, P.; Devillechaise, P.; Natorp, J.C.; et al. Comparison of Coxiella Burnetii Shedding in Milk of Dairy Bovine, Caprine, and Ovine Herds. J. Dairy Sci. 2007, 90, 5352–5360. [Google Scholar] [CrossRef]
- Stein, A.; Louveau, C.; Lepidi, H.; Ricci, F.; Baylac, P.; Davoust, B.; Raoult, D. Q Fever Pneumonia: Virulence of Coxiella Burnetii Pathovars in a Murine Model of Aerosol Infection. Infect. Immun. 2005, 73, 2469–2477. [Google Scholar] [CrossRef]
- Public Health Weekly Reports for DECEMBER 30, 1938. Public Health Rep. Wash. DC 1896 1938, 53, 2259–2309.
- Long, C.M.; Beare, P.A.; Cockrell, D.C.; Larson, C.L.; Heinzen, R.A. Comparative Virulence of Diverse Coxiella Burnetii Strains. Virulence 2019, 10, 133–150. [Google Scholar] [CrossRef]
- Glazunova, O.; Roux, V.; Freylikman, O.; Sekeyova, Z.; Fournous, G.; Tyczka, J.; Tokarevich, N.; Kovacava, E.; Marrie, T.J.; Raoult, D. Coxiella Burnetii Genotyping. Emerg. Infect. Dis. 2005, 11, 1211–1217. [Google Scholar] [CrossRef]
- Russell-Lodrigue, K.E.; Andoh, M.; Poels, M.W.J.; Shive, H.R.; Weeks, B.R.; Zhang, G.Q.; Tersteeg, C.; Masegi, T.; Hotta, A.; Yamaguchi, T.; et al. Coxiella Burnetii Isolates Cause Genogroup-Specific Virulence in Mouse and Guinea Pig Models of Acute Q Fever. Infect. Immun. 2009, 77, 5640–5650. [Google Scholar] [CrossRef]
- Abnave, P.; Muracciole, X.; Ghigo, E. Coxiella Burnetii Lipopolysaccharide: What Do We Know? Int. J. Mol. Sci. 2017, 18, 2509. [Google Scholar] [CrossRef]
- Honstettre, A.; Ghigo, E.; Moynault, A.; Capo, C.; Toman, R.; Akira, S.; Takeuchi, O.; Lepidi, H.; Raoult, D.; Mege, J.-L. Lipopolysaccharide from Coxiella Burnetii Is Involved in Bacterial Phagocytosis, Filamentous Actin Reorganization, and Inflammatory Responses through Toll-like Receptor 4. J. Immunol. Baltim. Md 1950 2004, 172, 3695–3703. [Google Scholar]
- Hackstadt, T.; Peacock, M.G.; Hitchcock, P.J.; Cole, R.L. Lipopolysaccharide Variation in Coxiella Burnetti: Intrastrain Heterogeneity in Structure and Antigenicity. Infect. Immun. 1985, 48, 359–365. [Google Scholar] [CrossRef]
- Hendrix, L.R.; Samuel, J.E.; Mallavia, L.P. Differentiation of Coxiella Burnetii Isolates by Analysis of Restriction-Endonuclease-Digested DNA Separated by SDS-PAGE. J. Gen. Microbiol. 1991, 137, 269–276. [Google Scholar] [CrossRef]
- Hackstadt, T. Antigenic Variation in the Phase I Lipopolysaccharide of Coxiella Burnetii Isolates. Infect. Immun. 1986, 52, 337–340. [Google Scholar] [CrossRef]
- Seshadri, R.; Paulsen, I.T.; Eisen, J.A.; Read, T.D.; Nelson, K.E.; Nelson, W.C.; Ward, N.L.; Tettelin, H.; Davidsen, T.M.; Beanan, M.J.; et al. Complete Genome Sequence of the Q-Fever Pathogen Coxiella Burnetii. Proc. Natl. Acad. Sci. USA 2003, 100, 5455–5460. [Google Scholar] [CrossRef]
- Téllez, A.; Sanz Moreno, J.; Valkova, D.; Domingo, C.; Anda, P.; de Ory, F.; Albarrán, F.; Raoult, D. Q Fever in Pregnancy: Case Report after a 2-Year Follow-Up. J. Infect. 1998, 37, 79–81. [Google Scholar] [CrossRef]
- Angelakis, E.; Million, M.; D’Amato, F.; Rouli, L.; Richet, H.; Stein, A.; Rolain, J.-M.; Raoult, D. Q Fever and Pregnancy: Disease, Prevention, and Strain Specificity. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2013, 32, 361–368. [Google Scholar] [CrossRef]
- Pinhal-Enfield, G.; Leibovich, J.; Vas, N. The Role of Macrophages in the Placenta. In Embryology—Updates and Highlights on Classic Topics; Violin Pereira, L., Ed.; InTech: London, UK, 2012; ISBN 978-953-51-0465-0. [Google Scholar]
- Mezouar, S.; Mege, J.-L. Gene Expression Profiling of Placenta from Normal to Pathological Pregnancies. In Placenta; Ahmed, R.G., Ed.; IntechOpen: London, UK, 2018; ISBN 978-1-78984-598-3. [Google Scholar]
- Hansen, M.S.; Rodolakis, A.; Cochonneau, D.; Agger, J.F.; Christoffersen, A.-B.; Jensen, T.K.; Agerholm, J.S. Coxiella Burnetii Associated Placental Lesions and Infection Level in Parturient Cows. Vet. J. Lond. Engl. 1997 2011, 190, e135–e139. [Google Scholar] [CrossRef]
- Muskens, J.; Wouda, W.; von Bannisseht-Wijsmuller, T.; van Maanen, C. Prevalence of Coxiella Burnetii Infections in Aborted Fetuses and Stillborn Calves. Vet. Rec. 2012, 170, 260. [Google Scholar] [CrossRef]
- Mezouar, S.; Katsogiannou, M.; Ben Amara, A.; Bretelle, F.; Mege, J.-L. Placental Macrophages: Origin, Heterogeneity, Function and Role in Pregnancy-Associated Infections. Placenta 2021, 103, 94–103. [Google Scholar] [CrossRef]
- Bildfell, R.J.; Thomson, G.W.; Haines, D.M.; McEwen, B.J.; Smart, N. Coxiella Burnetii Infection Is Associated with Placentitis in Cases of Bovine Abortion. J. Vet. Diagn. Investig. Off. Publ. Am. Assoc. Vet. Lab. Diagn. Inc 2000, 12, 419–425. [Google Scholar] [CrossRef]
- van Moll, P.; Baumgärtner, W.; Eskens, U.; Hänichen, T. Immunocytochemical Demonstration of Coxiella Burnetii Antigen in the Fetal Placenta of Naturally Infected Sheep and Cattle. J. Comp. Pathol. 1993, 109, 295–301. [Google Scholar] [CrossRef]
- Munster, J.M.; Leenders, A.C.A.P.; Hamilton, C.J.C.M.; Hak, E.; Aarnoudse, J.G.; Timmer, A. Placental Histopathology after Coxiella Burnetii Infection during Pregnancy. Placenta 2012, 33, 128–131. [Google Scholar] [CrossRef]
- Sánchez, J.; Souriau, A.; Buendía, A.J.; Arricau-Bouvery, N.; Martínez, C.M.; Salinas, J.; Rodolakis, A.; Navarro, J.A. Experimental Coxiella Burnetii Infection in Pregnant Goats: A Histopathological and Immunohistochemical Study. J. Comp. Pathol. 2006, 135, 108–115. [Google Scholar] [CrossRef]
- Sobotta, K.; Bonkowski, K.; Liebler-Tenorio, E.; Germon, P.; Rainard, P.; Hambruch, N.; Pfarrer, C.; Jacobsen, I.D.; Menge, C. Permissiveness of Bovine Epithelial Cells from Lung, Intestine, Placenta and Udder for Infection with Coxiella Burnetii. Vet. Res. 2017, 48, 23. [Google Scholar] [CrossRef]
- Baumgärtner, W.; Bachmann, S. Histological and Immunocytochemical Characterization of Coxiella Burnetii-Associated Lesions in the Murine Uterus and Placenta. Infect. Immun. 1992, 60, 5232–5241. [Google Scholar] [CrossRef]
- Eitan, K.; Howard, A.; Danny, A. Q Fever in Pregnancy—Case Presentation and Literature Review. Int. J. Clin. Med. 2013, 04, 364–368. [Google Scholar] [CrossRef][Green Version]
- Ghigo, E.; Capo, C.; Tung, C.-H.; Raoult, D.; Gorvel, J.-P.; Mege, J.-L. Coxiella Burnetii Survival in THP-1 Monocytes Involves the Impairment of Phagosome Maturation: IFN-Gamma Mediates Its Restoration and Bacterial Killing. J. Immunol. Baltim. Md 1950 2002, 169, 4488–4495. [Google Scholar] [CrossRef]
- Ghigo, E.; Pretat, L.; Desnues, B.; Capo, C.; Raoult, D.; Mege, J.-L. Intracellular Life of Coxiella Burnetii in Macrophages. Ann. N. Y. Acad. Sci. 2009, 1166, 55–66. [Google Scholar] [CrossRef]
- Barry, A.O.; Mege, J.-L.; Ghigo, E. Hijacked Phagosomes and Leukocyte Activation: An Intimate Relationship. J. Leukoc. Biol. 2011, 89, 373–382. [Google Scholar] [CrossRef]
- Ben Amara, A.; Ghigo, E.; Le Priol, Y.; Lépolard, C.; Salcedo, S.P.; Lemichez, E.; Bretelle, F.; Capo, C.; Mege, J.-L. Coxiella Burnetii, the Agent of Q Fever, Replicates within Trophoblasts and Induces a Unique Transcriptional Response. PLoS ONE 2010, 5. [Google Scholar] [CrossRef]
- Dilworth, M.R.; Sibley, C.P. Review: Transport across the Placenta of Mice and Women. Placenta 2013, 34, S34–S39. [Google Scholar] [CrossRef]
- Schmidt, A.; Morales-Prieto, D.M.; Pastuschek, J.; Fröhlich, K.; Markert, U.R. Only Humans Have Human Placentas: Molecular Differences between Mice and Humans. J. Reprod. Immunol. 2015, 108, 65–71. [Google Scholar] [CrossRef]
- Mezouar, S.; Ben Amara, A.; Chartier, C.; Gorvel, L.; Mege, J.-L. A Fast and Reliable Method to Isolate Human Placental Macrophages. Curr. Protoc. Immunol. 2019, 125, e77. [Google Scholar] [CrossRef]
- Mezouar, S.; Ben Amara, A.; Vitte, J.; Mege, J.-L. Isolation of Human Placental Mast Cells. Curr. Protoc. Cell Biol. 2018, 80, e52. [Google Scholar] [CrossRef]
- Uren, S.; Boyle, W. Isolation of Macrophages from Human Placenta. J. Immunol. Methods 1985, 78, 25–34. [Google Scholar] [CrossRef]
- Wetzka, B.; Clark, D.E.; Charnock-Jones, D.S.; Zahradnik, H.P.; Smith, S.K. Isolation of Macrophages (Hofbauer Cells) from Human Term Placenta and Their Prostaglandin E2 and Thromboxane Production. Hum. Reprod. 1997, 12, 847–852. [Google Scholar] [CrossRef]
- Tang, Z.; Tadesse, S.; Norwitz, E.; Mor, G.; Abrahams, V.M.; Guller, S. Isolation of Hofbauer Cells from Human Term Placentas with High Yield and Purity. Am. J. Reprod. Immunol. N. Y. N 1989 2011, 66, 336–348. [Google Scholar] [CrossRef]
- Mezouar, S.; Benammar, I.; Boumaza, A.; Diallo, A.B.; Chartier, C.; Buffat, C.; Boudjarane, J.; Halfon, P.; Katsogiannou, M.; Mege, J.-L. Full-Term Human Placental Macrophages Eliminate Coxiella Burnetii through an IFN-γ Autocrine Loop. Front. Microbiol. 2019, 10, 2434. [Google Scholar] [CrossRef]
- Ben Amara, A.; Gorvel, L.; Baulan, K.; Derain-Court, J.; Buffat, C.; Vérollet, C.; Textoris, J.; Ghigo, E.; Bretelle, F.; Maridonneau-Parini, I.; et al. Placental Macrophages Are Impaired in Chorioamnionitis, an Infectious Pathology of the Placenta. J. Immunol. Baltim. Md 1950 2013, 191, 5501–5514. [Google Scholar] [CrossRef]
- Lay, G.; Poquet, Y.; Salek-Peyron, P.; Puissegur, M.-P.; Botanch, C.; Bon, H.; Levillain, F.; Duteyrat, J.-L.; Emile, J.-F.; Altare, F. Langhans Giant Cells from M. Tuberculosis-Induced Human Granulomas Cannot Mediate Mycobacterial Uptake. J. Pathol. 2007, 211, 76–85. [Google Scholar] [CrossRef]
- Benoit, M.; Desnues, B.; Mege, J.-L. Macrophage Polarization in Bacterial Infections. J. Immunol. 2008, 181, 3733–3739. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; He, M.; Wang, Y.; Liao, A.-H. Modulators of the Balance between M1 and M2 Macrophages during Pregnancy. Front. Immunol. 2017, 8. [Google Scholar] [CrossRef]
- Benoit, M.; Barbarat, B.; Bernard, A.; Olive, D.; Mege, J.-L. Coxiella Burnetii, the Agent of Q Fever, Stimulates an Atypical M2 Activation Program in Human Macrophages. Eur. J. Immunol. 2008, 38, 1065–1070. [Google Scholar] [CrossRef]
- Tsao, F.-Y.; Wu, M.-Y.; Chang, Y.-L.; Wu, C.-T.; Ho, H.-N. M1 Macrophages Decrease in the Deciduae from Normal Pregnancies but Not from Spontaneous Abortions or Unexplained Recurrent Spontaneous Abortions. J. Formos. Med. Assoc. 2018, 117, 204–211. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, X.-H.; Jin, L. Macrophage Polarization in Physiological and Pathological Pregnancy. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef]
- Xu, Y.; Romero, R.; Miller, D.; Kadam, L.; Mial, T.N.; Plazyo, O.; Garcia-Flores, V.; Hassan, S.S.; Xu, Z.; Tarca, A.L.; et al. An M1-like Macrophage Polarization in Decidual Tissue during Spontaneous Preterm Labor That Is Attenuated by Rosiglitazone Treatment. J. Immunol. Baltim. Md 1950 2016, 196, 2476–2491. [Google Scholar] [CrossRef]
- Mezouar, S.; Mege, J. Changing the Paradigm of IFN-γ at the Interface between Innate and Adaptive Immunity: Macrophage-derived IFN-γ. J. Leukoc. Biol. 2020, 108, 419–426. [Google Scholar] [CrossRef]
- Shannon, J.G.; Howe, D.; Heinzen, R.A. Virulent Coxiella Burnetii Does Not Activate Human Dendritic Cells: Role of Lipopolysaccharide as a Shielding Molecule. Proc. Natl. Acad. Sci. USA 2005, 102, 8722–8727. [Google Scholar] [CrossRef]
- Gorvel, L.; Ben Amara, A.; Ka, M.B.; Textoris, J.; Gorvel, J.-P.; Mege, J.-L. Myeloid Decidual Dendritic Cells and Immunoregulation of Pregnancy: Defective Responsiveness to Coxiella Burnetii and Brucella Abortus. Front. Cell. Infect. Microbiol. 2014, 4, 179. [Google Scholar] [CrossRef]
- Krystel-Whittemore, M.; Dileepan, K.N.; Wood, J.G. Mast Cell: A Multi-Functional Master Cell. Front. Immunol. 2015, 6, 620. [Google Scholar] [CrossRef]
- Varricchi, G.; Rossi, F.W.; Galdiero, M.R.; Granata, F.; Criscuolo, G.; Spadaro, G.; de Paulis, A.; Marone, G. Physiological Roles of Mast Cells: Collegium Internationale Allergologicum Update 2019. Int. Arch. Allergy Immunol. 2019, 1–15. [Google Scholar] [CrossRef]
- Abraham, S.N.; St John, A.L. Mast Cell-Orchestrated Immunity to Pathogens. Nat. Rev. Immunol. 2010, 10, 440–452. [Google Scholar] [CrossRef]
- Galli, S.J.; Nakae, S.; Tsai, M. Mast Cells in the Development of Adaptive Immune Responses. Nat. Immunol. 2005, 6, 135–142. [Google Scholar] [CrossRef]
- Woidacki, K.; Popovic, M.; Metz, M.; Schumacher, A.; Linzke, N.; Teles, A.; Poirier, F.; Fest, S.; Jensen, F.; Rabinovich, G.A.; et al. Mast Cells Rescue Implantation Defects Caused by C-Kit Deficiency. Cell Death Dis. 2013, 4, e462. [Google Scholar] [CrossRef]
- Mezouar, S.; Vitte, J.; Gorvel, L.; Ben Amara, A.; Desnues, B.; Mege, J.-L. Mast Cell Cytonemes as a Defense Mechanism against Coxiella Burnetii. mBio 2019, 10. [Google Scholar] [CrossRef]
- Suryawanshi, H.; Morozov, P.; Straus, A.; Sahasrabudhe, N.; Max, K.E.A.; Garzia, A.; Kustagi, M.; Tuschl, T.; Williams, Z. A Single-Cell Survey of the Human First-Trimester Placenta and Decidua. Sci. Adv. 2018, 4, eaau4788. [Google Scholar] [CrossRef]
Species | Placenta Histology and Cellular infiltration | Coxiella burnetii Presence in Placenta | References | |
---|---|---|---|---|
Human | Symptomatic woman | Maternal part:
|
| [36,45] |
Asymptomatic woman | Maternal part:
|
| ||
Goat | Maternal part:
| Maternal part:
| [5,22,46] | |
Cow | Maternal part:
|
| [40,43,45,47] | |
Mouse | Maternal part:
|
| [48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarza, S.M.; Mezouar, S.; Mege, J.-L. From Coxiella burnetii Infection to Pregnancy Complications: Key Role of the Immune Response of Placental Cells. Pathogens 2021, 10, 627. https://doi.org/10.3390/pathogens10050627
Zarza SM, Mezouar S, Mege J-L. From Coxiella burnetii Infection to Pregnancy Complications: Key Role of the Immune Response of Placental Cells. Pathogens. 2021; 10(5):627. https://doi.org/10.3390/pathogens10050627
Chicago/Turabian StyleZarza, Sandra Madariaga, Soraya Mezouar, and Jean-Louis Mege. 2021. "From Coxiella burnetii Infection to Pregnancy Complications: Key Role of the Immune Response of Placental Cells" Pathogens 10, no. 5: 627. https://doi.org/10.3390/pathogens10050627
APA StyleZarza, S. M., Mezouar, S., & Mege, J.-L. (2021). From Coxiella burnetii Infection to Pregnancy Complications: Key Role of the Immune Response of Placental Cells. Pathogens, 10(5), 627. https://doi.org/10.3390/pathogens10050627