The Latest Research on RT-QuIC Assays—A Literature Review
Abstract
1. Introduction
2. The Advantages of RT–QuIC Assays
3. The Development of RT–QuIC Assays and Future
4. RT–QuIC in Degenerative Neurological Diseases
4.1. Human Prion Disease
Number | Number (Controls) | Sensitivity | Specificity | Samples | Reference | |
---|---|---|---|---|---|---|
definite cases of sCJD | 34 | 165 | 85 | 100 | CSF | [9] |
definite cases of sCJD | 123 | 103 | 89 | 99 | CSF | [33] |
genetic prion disease | 56 | 50 | 83 | 100 | CSF | [32] |
definite and probable cases of sCJD | 15 | 43 | 77 | 100 | CSF | [35] |
13 | 97 | 100 | OM | |||
definite cases of sCJD | 10 | 1 | FG: 91 SG: 96 | 100 | CSF | [27] |
definite and probable cases of sCJD | 43 | 100 | 77 | 100 | CSF | [36] |
definite cases of sCJD | 81 | 64 | FG: 69 SG:94 | 100 | Skin samples | [29] |
definite and probable cases of sCJD | 276 | 915 | 81 | 94 | CSF | [34] |
genetic prion diseases | 17 | 91 | ||||
variable protease-sensitive prionopathy | 1 | 0 | ||||
definite cases of sCJD | 12 | 15 | 100 | 100 | Skin | [37] |
sCJD | 10 | 17 | SG: 97 | 100 | OM | [28] |
12 | FG: 72 SG: 86 | 100 | CSF | |||
definite cases of sCJD | 174 | 82 | SG: 92–95% | 98.5–100 | CSF | [24] |
definite cases of sCJD | 11 | 6 | 100 | 100 | Eyes | [38] |
65 | 118 | 97 | 99 | CSF | [39] | |
definite cases of sCJD | 12 | 2 | 100 | 100 | Peripheral nerve | [40] |
sCJD | 4 | 10 | 100 | 100 | Digestive organs | [41] |
all CJD patients | 32 | 37 | Ha23–231: 68.6 | 100 | Skin punch biopsies | [42] |
all CJD patients | 102 | 80 | 96 | 100 | CSF and OM | [43] |
4.2. Synucleinopathies
Disease | Sample | Number | Number (Controls) | Sensitivity | Specificity | Reference |
---|---|---|---|---|---|---|
DLB and PD | Brain and CSF | 12 | 20 | 92 | 100 | [44] |
CSF | 17 | 15 | 65 | 100 | ||
20 | 95 | |||||
PD | Brain and CSF | 76 | ND | 88.5 | 94 | [45] |
DLB | 40 | 100 | ||||
MSA | 10 | 89 | ||||
MSA and PD | Brain | 7 | 2 | 100 | 100 | [46] |
DLB | DLB brain tissues | 17 | 28 | 94 | 100 | [47] |
PD | 12 | 92 | ||||
PB, MSA | OM | 18 | 18 | 81.8 | 84.4 | [48] |
CBD, PSP | 11 | 16.7 | ||||
DLB | CSF | 29 | 49 | 93 | 96 | [49] |
MSA | 1 | 100 | 100 | |||
PD, incidental Lewy body | Submandibular gland tissues (FFPE) | 15 | 11 | 100 | 100 | [50] |
LB | CSF | 21 | 101 | 95 | 84–98 | [54] |
DLB | 7 | 94 | ||||
PD | 34 | 97 | ||||
iRBD | 28 | 93 | ||||
PAF | 18 | 100 | ||||
PD and other synucleinopathies. | Skin | 57 | 73 | 93–94 | 93–98 | [56] |
4.3. Tauopathies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Volpicelli-Daley, L.; Brundin, P. Prion-like propagation of pathology in Parkinson disease. Handb. Clin. Neurol. 2018, 153, 321–335. [Google Scholar]
- Dartigues, J.F. Alzheimer’s disease: A global challenge for the 21st century. Lancet Neurol. 2009, 8, 1082–1083. [Google Scholar] [CrossRef]
- Holtzman, D.M.; Morris, J.C.; Goate, A. Alzheimer’s disease: The challenge of the second century. Sci. Transl. Med. 2011, 3, 77sr71. [Google Scholar] [CrossRef] [PubMed]
- Dementia. Available online: https://www.who.int/en/news-room/fact-sheets/detail/dementia (accessed on 21 September 2020).
- 2020 Alzheimer’s disease facts and figures. Alzheimers Dement. 2020, 16, 391–460. [CrossRef]
- Walker, L.C. Prion-like mechanisms in Alzheimer disease. Handb. Clin. Neurol. 2018, 153, 303–319. [Google Scholar] [PubMed]
- Caughey, B.; Lansbury, P.T. Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 2003, 26, 267–298. [Google Scholar] [CrossRef] [PubMed]
- Wilham, J.M.; Orrú, C.D.; Bessen, R.A.; Atarashi, R.; Sano, K.; Race, B.; Meade-White, K.D.; Taubner, L.M.; Timmes, A.; Caughey, B. Rapid end-point quantitation of prion seeding activity with sensitivity comparable to bioassays. PLoS Pathog. 2010, 6, e1001217. [Google Scholar] [CrossRef]
- Atarashi, R.; Satoh, K.; Sano, K.; Fuse, T.; Yamaguchi, N.; Ishibashi, D.; Matsubara, T.; Nakagaki, T.; Yamanaka, H.; Shirabe, S. Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat. Med. 2011, 17, 175–178. [Google Scholar] [CrossRef]
- Mori, T.; Atarashi, R.; Furukawa, K.; Takatsuki, H.; Satoh, K.; Sano, K.; Nakagaki, T.; Ishibashi, D.; Ichimiya, K.; Nishida, N. A direct assessment of human prion adhered to steel wire using realtime quaking-induced conversion. Sci. Rep. 2016, 6, 24993. [Google Scholar] [CrossRef]
- Collinge, J.; Palmer, M.S.; Sidle, K.C.; Hill, A.F.; Gowland, I.; Meads, J.; Asante, E.; Bradley, R.; Doey, L.J.; Lantos, P.L. Unaltered susceptibility to BSE in transgenic mice expressing human prion protein. Nature 1995, 378, 779–783. [Google Scholar] [CrossRef]
- Hill, A.F.; Desbruslais, M.; Joiner, S.; Sidle, K.C.; Gowland, I.; Collinge, J.; Doey, L.J.; Lantos, P. The same prion strain causes vCJD and BSE. Nature 1997, 389, 448–450. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, Y.; Mohri, S.; Ironside, J.W.; Muramoto, T.; Kitamoto, T. Humanized knock-in mice expressing chimeric prion protein showed varied susceptibility to different human prions. Am. J. Pathol. 2003, 163, 2585–2593. [Google Scholar] [CrossRef]
- Telling, G.C.; Scott, M.; Hsiao, K.K.; Foster, D.; Yang, S.L.; Torchia, M.; Sidle, K.C.; Collinge, J.; DeArmond, S.J.; Prusiner, S.B. Transmission of Creutzfeldt-Jakob disease from humans to transgenic mice expressing chimeric human-mouse prion protein. Proc. Natl. Acad. Sci. USA 1994, 91, 9936–9940. [Google Scholar] [CrossRef]
- Saborio, G.P.; Permanne, B.; Soto, C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 2001, 411, 810–813. [Google Scholar] [CrossRef] [PubMed]
- Soto, C.; Saborio, G.P.; Anderes, L. Cyclic amplification of protein misfolding: Application to prion-related disorders and beyond. Trends Neurosci. 2002, 25, 390–394. [Google Scholar] [CrossRef]
- Yokoyama, T.; Takeuchi, A.; Yamamoto, M.; Kitamoto, T.; Ironside, J.W.; Morita, M. Heparin enhances the cell-protein misfolding cyclic amplification efficiency of variant Creutzfeldt–Jakob disease. Neurosci. Lett. 2011, 498, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Imamura, M.; Tabeta, N.; Kato, N.; Matsuura, Y.; Iwamaru, Y.; Yokoyama, T.; Murayama, Y. Heparan sulfate and heparin promote faithful prion replication in vitro by binding to normal and abnormal prion proteins in protein misfolding cyclic amplification. J. Biol. Chem. 2016, 291, 26478–26486. [Google Scholar] [CrossRef] [PubMed]
- Rubenstein, R.; Chang, B. Re-assessment of PrPSc distribution in sporadic and variant CJD. PLoS ONE 2013, 8, e66352. [Google Scholar] [CrossRef]
- Bougard, D.; Brandel, J.-P.; Bélondrade, M.; Béringue, V.; Segarra, C.; Fleury, H.; Laplanche, J.-L.; Mayran, C.; Nicot, S.; Green, A.; et al. Detection of prions in the plasma of presymptomatic and symptomatic patients with variant Creutzfeldt–Jakob disease. Sci. Transl. Med. 2016, 8, 370. [Google Scholar] [CrossRef]
- Moda, F.; Gambetti, P.; Notari, S.; Concha-Marambio, L.; Catania, M.; Park, K.W.; Maderna, E.; Suardi, S.; Haïk, S.; Soto, C.; et al. Prions in the urine of patients with variant Creutzfeldt–Jakob disease. N. Engl. J. Med. 2014, 371, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, X.; Yuan, C.-G.; Ma, J. Generating a Prion with Bacterially xpressed Recombinant Prion Protein. Science 2010. [Google Scholar] [CrossRef]
- Peden, A.H.; McGuire, L.I.; Appleford, N.E.J.; Mallinson, G.; Wilham, J.M.; Orrú, C.D.; Caughey, B.; Ironside, J.W.; Knight, R.S.; Will, R.G.; et al. Sensitive and specific detection of sporadic Creutzfeldt–Jakob disease brain prion protein using real-time quaking induced conversion. J. Gen. Virol. 2012, 93, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Foutz, A.; Appleby, B.S.; Hamlin, C.; Liu, X.; Yang, S.; Cohen, Y.; Chen, W.; Blevins, J.; Fausett, C.; Wang, H.; et al. Diagnostic and prognostic value of human prion detection in cerebrospinal fluid. Ann. Neurol. 2017, 81, 79–92. [Google Scholar] [CrossRef]
- Cramm, M.; Schmitz, M.; Karch, A.; Mitrova, E.; Kuhn, F.; Schroeder, B.; Raeber, A.; Varges, D.; Kim, Y.S.; Satoh, K.; et al. Stability and Reproducibility underscore utility of RT-QuIC for diagnosis of creutzfeldt-jakob Disease. Mol. Neurobiol. 2016, 53, 1896–1904. [Google Scholar] [CrossRef] [PubMed]
- Orrú, C.D.; Wilham, J.M.; Raymond, L.D.; Kuhn, F.; Schroeder, B.; Raeber, A.J.; Caughey, B. Prion disease blood test using immunoprecipitation and improved quaking-induced conversion. mBio 2011, 2, e00078-11. [Google Scholar] [CrossRef] [PubMed]
- Orrú, C.D.; Groveman, B.R.; Hughson, A.G.; Zanusso, G.; Coulthart, M.B.; Caughey, B. Rapid and sensitive RT-QuIC detection of human Creutzfeldt–Jakob disease using cerebrospinal fluid. MBio 2015, 6, e02451-14. [Google Scholar] [CrossRef] [PubMed]
- Bongianni, M.; Orrù, C.; Groveman, B.R.; Sacchetto, L.; Fiorini, M.; Tonoli, G.; Triva, G.; Capaldi, S.; Testi, S.; Ferrari, S.; et al. Diagnosis of human prion disease using real-time quaking-induced conversion testing of olfactory mucosa and cerebrospinal fluid samples. JAMA Neurol 2017, 74, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Groveman, B.R.; Orrú, C.D.; Hughson, A.G.; Bongianni, M.; Fiorini, M.; Imperiale, D.; Ladogana, A.; Pocchiari, M.; Zanusso, G.; Caughey, B. Extended and direct evaluation of RT-QuIC assays for Creutzfeldt- Jakob disease diagnosis. Ann. Clin. Transl. Neurol. 2016, 4, 139–144. [Google Scholar] [CrossRef]
- Franceschini, A.; Baiardi, S.; Hughson, A.G.; McKenzie, N.; Moda, F.; Rossi, M.; Capellari, S.; Green, A.; Parchi, P. High diagnostic value of second generation CSF RT-QuIC across the wide spectrum of CJD prions. Sci. Rep. 2017, 7, 10655. [Google Scholar] [CrossRef] [PubMed]
- Ladogana, A.; Sanchez-Juan, P.; Mitrová, E.; Green, A.; Cuadrado-Corrales, N.; Sánchez-Valle, R.; Koscova, S.; Aguzzi, A.; Sklaviadis, T.; Zerr, I.; et al. Cerebrospinal fluid biomarkers in human genetic transmissible spongiform encephalopathies. J. Neurol. 2009, 256, 1620–1628. [Google Scholar] [CrossRef]
- Sano, K.; Satoh, K.; Atarashi, R.; Takashima, H.; Iwasaki, Y.; Yoshida, M.; Sanjo, N.; Murai, H.; Mizusawa, H.; Nishida, N. Early detection of abnormal prion protein in genetic human prion diseases now possible using real-time QuIC assay. PLoS ONE 2013, 8, e54915. [Google Scholar] [CrossRef]
- McGuire, L.I.; Peden, A.H.; Orrú, C.D.; Wilham, J.M.; Appleford, N.E.; Mallinson, G.; Andrews, M.; Head, M.W.; Caughey, B.; Green, A.J.E.; et al. RT-QuIC analysis of cerebrospinal fluid in sporadic Creutzfeldt–Jakob disease. Ann. Neurol. 2012, 72, 278–285. [Google Scholar] [CrossRef]
- Lattanzio, F.; Abu-Rumeileh, S.; Franceschini, A.; Kai, H.; Amore, G.; Poggiolini, I.; Rossi, M.; Baiardi, S.; McGuire, L.; Parchi, P.; et al. Prion-specific and surrogate CSF biomarkers in Creutzfeldt–Jakob disease: Diagnostic accuracy in relation to molecular subtypes and analysis of neuropathological correlates of p-tau and Ab42 levels. Acta Neuropathol. 2017, 133, 559–578. [Google Scholar] [CrossRef]
- Orrú, C.D.; Bongianni, M.; Tonoli, G.; Ferrari, S.; Hughson, A.G.; Groveman, B.R.; Fiorini, M.; Pocchiari, M.; Monaco, S.; Caughey, B.; et al. A test for Creutzfeldt–Jakob disease using nasal brushings. N. Engl. J. Med. 2014, 371, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Choi, Y.G.; Lee, Y.J.; Park, S.J.; Choi, H.S.; Choi, K.C.; Choi, E.K.; Kim, Y.S. Real-time quakinginduced conversion analysis for the diagnosis of sporadic Creutzfeldt–Jakob disease in Korea. J. Clin. Neurol. 2016, 12, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Orrú, C.D.; Yuan, J.; Appleby, B.S.; Li, B.; Li, Y.; Winner, D.; Wang, Z.; Zhan, Y.A.; Rodgers, M.; Zou, W.Q.; et al. Prion seeding activity and infectivity in skin samples from patients with sporadic Creutzfeldt-Jakob disease. Sci Transl Med. 2017, 9, eaam7785. [Google Scholar] [CrossRef]
- Orrù, C.D.; Soldau, K.; Cordano, C.; Llibre-Guerra, J.; Green, A.J.; Sanchez, H.; Groveman, B.R.; Edland, S.D.; Safar, J.G.; Lin, J.H.; et al. Prion Seeds Distribute throughout the Eyes of Sporadic Creutzfeldt-Jakob Disease Patients. mBio 2018, 9, e02095-18. [Google Scholar] [CrossRef] [PubMed]
- Hermann, P.; Laux, M.; Glatzel, M.; Matschke, J.; Knipper, T.; Goebel, S.; Treig, J.; Schulz-Schaeffer, W.; Cramm, M.; Schmitz, M.; et al. Validation and utilization of amended diagnostic criteria in Creutzfeldt-Jakob disease surveillance. Neurology 2018, 91, e331–e338. [Google Scholar] [CrossRef] [PubMed]
- Baiardi, S.; Redaelli, V.; Ripellino, P.; Rossi, M.; Franceschini, A.; Moggio, M.; Sola, P.; Ladogana, A.; Fociani, P.; Magherini, A.; et al. Prion-related peripheral neuropathy in sporadic Creutzfeldt-Jakob disease. J. Neurol. Neurosurg Psychiatry 2019, 90, 424–427. [Google Scholar] [CrossRef] [PubMed]
- Satoh, K.; Fuse, T.; Nonaka, T.; Dong, T.; Takao, M.; Nakagaki, T.; Ishibashi, D.; Taguchi, Y.; Mihara, B.; Iwasaki, Y.; et al. Postmortem Quantitative Analysis of Prion Seeding Activity in the Digestive System. Molecules 2019, 24, 4601. [Google Scholar] [CrossRef] [PubMed]
- Mammana, A.; Baiardi, S.; Rossi, M.; Franceschini, A.; Donadio, V.; Capellari, S.; Caughey, B.; Parchi, P. Detection of prions in skin punch biopsies of Creutzfeldt-Jakob disease patients. Ann. Clin. Transl. Neurol. 2020, 7, 559–564. [Google Scholar] [CrossRef]
- Fiorini, M.; Iselle, G.; Perra, D.; Bongianni, M.; Capaldi, S.; Sacchetto, L.; Ferrari, S.; Mombello, A.; Vascellari, S.; Testi, S.; et al. High Diagnostic Accuracy of RT-QuIC Assay in a Prospective Study of Patients with Suspected sCJD. Int. J. Mol. Sci. 2020, 21, 880. [Google Scholar] [CrossRef]
- Fairfoul, G.; McGuire, L.I.; Pal, S.; Ironside, J.W.; Neumann, J.; Christie, S.; Joachim, C.; Esiri, M.; Evetts, S.G.; Green, A.J. Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies. Ann. Clin. Transl. Neurol. 2016, 3, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Shahnawaz, M.; Tokuda, T.; Waragai, M.; Mendez, N.; Ishii, R.; Trenkwalder, C.; Mollenhauer, B.; Soto, C. Development of a biochemical diagnosis of Parkinson disease by detection of alpha-synuclein misfolded aggregates in cerebrospinal fluid. JAMA Neurol. 2017, 74, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Sano, K.; Atarashi, R.; Satoh, K.; Ishibashi, D.; Nakagaki, T.; Iwasaki, Y.; Yoshida, M.; Murayama, S.; Mishima, K.; Nishida, N. Prion-Like Seeding of Misfolded α-Synuclein in the Brains of Dementia with Lewy Body Patients in RT-QuIC. Mol. Neurobiol. 2018, 55, 3916–3930. [Google Scholar] [CrossRef] [PubMed]
- Groveman, B.R.; Orrù, C.D.; Hughson, A.G.; Raymond, L.D.; Zanusso, G.; Ghetti, B.; Campbell, K.J.; Safar, J.; Galasko, D.; Caughey, B. Rapid and ultra-sensitive quantitation of disease-associated alpha-synuclein seeds in brain and cerebrospinal fluid by alphaSyn RT-QuIC. Acta Neuropathol. Commun. 2018, 6, 7. [Google Scholar] [CrossRef]
- De Luca, C.M.D.; Elia, A.D.; Portaleone, S.M.; Cazzaniga, F.A.; Rossi, M.; Bistaffa, E.; De Cecco, E.; Narkiewicz, J.; Salzano, G.; Moda, F.; et al. Efficient RT-QuIC seeding activity for alpha-synuclein in olfactory mucosa samples of patients with Parkinson’s disease and multiple system atrophy. Transl. Neurodegener. 2019, 8, 24. [Google Scholar] [CrossRef]
- Bongianni, M.; Ladogana, A.; Capaldi, S.; Klotz, S.; Baiardi, S.; Cagnin, A.; Perra, D.; Fiorini, M.; Poleggi, A.; Zanusso, G. Alpha-Synuclein RT-QuIC assay in cerebrospinal fluid of patients with dementia with Lewy bodies. Ann. Clin. Transl. Neurol. 2019, 6, 2120–2126. [Google Scholar] [CrossRef]
- Manne, S.; Kondru, N.; Jin, H.; Anantharam, V.; Huang, X.; Kanthasamy, A.; Kanthasamy, A.G. alpha-Synuclein real-time quaking-induced conversion in the submandibular glands of Parkinson’s disease patients. Mov. Disord. 2019, 35, 268–278. [Google Scholar] [CrossRef]
- Kang, U.J.; Boehme, A.K.; Bs, G.F.; Shahnawaz, M.; Ma, T.C.; Hutten, S.J.; Green, A.; Soto, C. Comparative study of cerebrospinal fluid alpha-synuclein seeding aggregation assays for diagnosis of Parkinson’s disease. Mov. Disord. 2019, 34, 536–544. [Google Scholar] [CrossRef]
- Van Rumund, A.; Green, A.J.E.; Fairfoul, G.; Esselink, R.A.J.; Bloem, B.R.; Verbeek, M.M. Alpha-Synuclein real-time quaking-induced conversion in the cerebrospinal fluid of uncertain cases of parkinsonism. Ann. Neurol. 2019, 85, 777–781. [Google Scholar] [CrossRef]
- Garrido, A.; Fairfoul, G.; Tolosa, E.S.; Marti, M.J.; Green, A.; Barcelona, L.S.G. Alpha-synuclein RT-QuIC in cerebrospinal fluid of LRRK2-linked Parkinson’s disease. Ann. Clin. Transl. Neurol. 2019, 6, 1024–1032. [Google Scholar] [CrossRef]
- Rossi, M.; Candelise, N.; Baiardi, S.; Capellari, S.; Giannini, G.; Orrù, C.D.; Antelmi, E.; Mammana, A.; Hughson, A.G.; Parchi, P. Ultrasensitive RT-QuIC assay with high sensitivity and specificity for Lewy body-associated synucleinopathies. Acta Neuropathol. 2020, 140, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Iranzo, A.; Fairfoul, G.; Na Ayudhaya, A.C.; Serradell, M.; Gelpi, E.; Vilaseca, I.; Sanchez-Valle, R.; Gaig, C.; Santamaria, J.; Tolosa, E.; et al. Detection of α-synuclein in CSF by RT-QuIC in patients with isolated rapid-eye-movement sleep behaviour disorder: A longitudinal observational study. Lancet Neurol. 2021, 20, 203–212. [Google Scholar] [CrossRef]
- Wang, Z.; Becker, K.; Donadio, V.; Siedlak, S.; Yuan, J.; Rezaee, M.; Incensi, A.; Kuzkina, A.; Orrú, C.D.; Tatsuoka, C.; et al. Skin α-Synuclein Aggregation Seeding Activity as a Novel Biomarker for Parkinson Disease. JAMA Neurol. 2020, 78, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Manne, S.; Kondru, N.; Jin, H.; Serrano, G.E.; Anantharam, V.; Kanthasamy, A.; Adler, C.H.; Beach, T.G.; Kanthasamy, A.G. Blinded RT-QuIC Analysis of α-Synuclein Biomarker in Skin Tissue From Parkinson’s Disease Patients. Mov. Disord. 2020, 35, 2230–2239. [Google Scholar] [CrossRef]
- Salvadores, N.; Shahnawaz, M.; Scarpini, E.; Tagliavini, F.; Soto, C. Detection of misfolded Aβ oligomers for sensitive biochemical diagnosis of Alzheimer’s disease. Cell Rep. 2014, 7, 261–268. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Sperling, R.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef]
- Saijo, E.; Ghetti, B.; Zanusso, G.; Oblak, A.; Furman, J.L.; Diamond, M.I.; Kraus, A.; Caughey, B. Ultrasensitive and selective detection of 3-repeat tau seeding activity in Pick disease brain and cerebrospinal fluid. Acta Neuropathol. 2017, 133, 751–765. [Google Scholar] [CrossRef]
- Kraus, A.; Saijo, E.; Metrick, M.A., II; Newell, K.; Sigurdson, C.J.; Zanusso, G.; Ghetti, B.; Caughey, B. Seeding selectivity and ultrasensitive detection of tau aggregate conformers of Alzheimer disease. Acta Neuropathol. 2019, 137, 585–598. [Google Scholar] [CrossRef]
- Tennanta, J.M.; Hendersona, D.M.; Wisniewskib, T.M.; Hoovera, E.A. RT-QuIC detection of tauopathies using full-length tau substrates. Prion 2020, 14, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Metrick, M.A., II; Ferreira, N.D.C.; Saijo, E.; Kraus, A.; Newell, K.; Zanusso, G.; Vendruscolo, M.; Ghetti, B.; Caughey, B. A single ultrasensitive assay for detection and discrimination of tau aggregates of Alzheimer and Pick diseases. Acta Neuropathol. Commun. 2020, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Saijo, E.; Metrick, M.A., II; Koga, S.; Parchi, P.; Litvan, I.; Spina, S.; Boxer, A.; Rojas, J.C.; Galasko, D.; Caughey, B.; et al. 4-Repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration. Acta Neuropathol. 2020, 139, 63–77. [Google Scholar] [CrossRef] [PubMed]
Sample | Number and Disease | Result | Reference |
---|---|---|---|
Brain and CSF | 8 cases: PiD 13 cases: AD | Tau RT–QuIC that can detect tau seeds in 2 µl aliquots of PiD brain dilutions down to 10−7–10−9. PiD seeding activities were 102-fold higher in frontal and temporal lobes compared to cerebellar cortex. Strikingly, this test was 103- to 105-fold less responsive when seeded with brain containing predominant 4-repeat (4R) tau aggregates. | [60] |
7 cases: PSP, 4 cases: CBD, 3 cases: FTDP-17 | |||
Brains | 16 cases: AD | AD RT–QuIC detected seeding activity in AD brains at dilutions as extreme as 107–1010-fold but was 102–106-fold less responsive when seeded with brain from most cases of other types of tauopathy | [61] |
Brains | 11 cases: AD, 4 cases: PiD, 3 cases: PSP, 2 cases: FTLD 2 cases: control subjects | Using full-length recombinant tau substrates to detect tau seeding activity in AD and other human tauopathies, it will contribute to the further development of early detection of AD and other tauopathies | [62] |
Brains | 8 cases: 3R Tau 13 cases: 3R/4R Tau 13 cases: 4R Tau | K12 RT–QuIC assay allows the ultrasensitive detection and discrimination of both 3R and 3R/4R types of pathological tau using a single tau substrate (K12CFh) | [63] |
Brain and CSF | + 4R tau pathology included 16 cases: PSP, 9 cases: CBD, 3 cases: FTDP- 17 MAPT with the P301L mutation, 5 cases: FTDP17 MAPT with the N279K mutation and IVS10 + 3G > A mutation, and 3R predominant 4R tau deposition. + 3R/4R tau pathology from 6 sporadic AD, 3 cases: familial AD, 3 cases: control subjects, and 3 cases: PART. + 3R Tau from 8 cases PiD | Developed 4R RT–QuIC for the 4-repeat (4R) tau aggregates of PSP, CBD, and other diseases with 4R tauopathy. The assay detected seeds in 106–109-fold dilutions of 4R tauopathy brain tissue but was orders of magnitude less responsive to brain with other types of tauopathy, such as from AD. | [64] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, T.-T.-T.; Satoh, K. The Latest Research on RT-QuIC Assays—A Literature Review. Pathogens 2021, 10, 305. https://doi.org/10.3390/pathogens10030305
Dong T-T-T, Satoh K. The Latest Research on RT-QuIC Assays—A Literature Review. Pathogens. 2021; 10(3):305. https://doi.org/10.3390/pathogens10030305
Chicago/Turabian StyleDong, Thi-Thu-Trang, and Katsuya Satoh. 2021. "The Latest Research on RT-QuIC Assays—A Literature Review" Pathogens 10, no. 3: 305. https://doi.org/10.3390/pathogens10030305
APA StyleDong, T.-T.-T., & Satoh, K. (2021). The Latest Research on RT-QuIC Assays—A Literature Review. Pathogens, 10(3), 305. https://doi.org/10.3390/pathogens10030305