Complexities in Case Definition of SARS-CoV-2 Reinfection: Clinical Evidence and Implications in COVID-19 Surveillance and Diagnosis
Abstract
:1. Introduction
2. Laboratory Diagnosis for Reinfection
2.1. Genome Sequencing
Period between First and Second Diagnosis (Days) | Age (Sex) | Health Status | Severity of Second Symptom Compared with the First | Vaccination History (Prior to Second Infection) | Genomic Analysis | Country |
---|---|---|---|---|---|---|
19 | 27 (M) | Immunocompetent | N/A | None *** | 9 single mutations | India [9] |
28 | 58 (M) | Immunocompetent | N/A | N/A | Different linages | Italy [15] |
31 | 56 (M) | Immunocompetent | Mild | N/A | Different linages | Italy [15] |
48 | 25 (M) | Immunocompetent | Severe | None *** | 11 single mutations | USA [7] |
55 | 24 (F) | Immunocompetent | N/A | None *** | 10 single mutations | India [9] |
59 | 89 (F) | Waldenström’s macroglobulinemia, treated with B-cell-depleting therapy (lymphocyte count = 0.4 × 109/L) | Severe (Death) | None *** | 10 nucleotides position | The Netherland [3] |
61 | 42 (M) | Immunocompetent | Severe | None *** | Several potential variations, including one high confidence variation | USA [5] |
63 | 46 (M) | Immunocompetent | Severe | None *** | Different linage including 18 mutations | Ecuador [4] |
65 | 31 (M) | Immunocompetent | N/A | None *** | 8 single mutations | India [9] |
65 | 40–44 (M) | Immunocompetent | N/A | None *** | Multiple allele | Qatar [11] |
66 | 27 (M) | Immunocompetent | N/A | None *** | 7 single mutations | India [9] |
93 | 51 * | Daily inhaled corticosteroids for asthma | Mild | None *** | Different clade | Belgium [2] |
100 | 75 (M) | N/A | Mild | None *** | Different clade | France [13] |
103 | 40–44 * | Immunocompetent | N/A | None *** | Multiple allele | Qatar [11] |
105 | 70 * | Immunocompetent | N/A | None *** | 34 nucleotides | France [12] |
108 | 25 * | Immunocompetent | Comparable ** | None *** | 9 single mutations | India [10] |
111 | 28 * | Immunocompetent | Comparable ** | None *** | 10 single mutations including a mutation within the receptor binding domain sites | India [10] |
118 | 70 (M) | N/A | Mild | None *** | Different clade | France [13] |
124 | 27 (F) | N/A | Comparable ** | None *** | Different clade | France [13] |
140 | 60–69 * | A history of severe emphysema on home oxygen, and hypertension | Mild | None *** | Different clade with 10 single mutations | USA [6] |
142 | 33 * | Immunocompetent | Mild | None *** | Different clades/linages | Hongkong [1] |
147 | 45 * | Immunocompetent | Severe | None *** | Different linages | Brazil [14] |
152 | 24 (M) | N/A | Severe | None *** | Different clade | France [13] |
158 | 26 (F) | N/A | Mild | None *** | Different clade | France [13] |
203 | 55 (M) | N/A | Comparable ** | None *** | Different clade | France [13] |
210 | 60 (M) | N/A | Mild | None *** | Different clade | France [13] |
213 | 53 (F) | N/A | Comparable ** | None *** | Different clade | France [13] |
217 | 59 (F) | N/A | Comparable ** | None *** | Different clade | France [13] |
231 | 77 (M) | N/A | Mild | None *** | Different clade | France [13] |
234 | 57 (F) | N/A | Comparable ** | None *** | Different clade | France [13] |
236 | 88 (F) | N/A | Mild | None *** | Different clade | France [13] |
239 | 92 (F) | N/A | Severe | None *** | Different clade | France [13] |
250 | 78 (M) | A history of type 2 diabetes mellitus, diabetic nephropathy on hemodialysis, chronic obstructive pulmonary disease (COPD), mixed central and obstructive sleep apnea, ischemic heart disease, with no history of immunosuppression | Severe | None *** | Different linages | UK [16] |
308 | 24 (M) | N/A | Comparable ** | None *** | Different clades | France [13] |
313 | 63 (M) | chronic obstructive pulmonary disease (COPD), type II diabetes, atrial fibrillation | Severe | Yes (Received Pfizer-BioNtek vaccination on 13 January 2021) | Different clades (Clade 20A, Clade 20E) | USA [8] |
2.2. Serological Testing
2.3. Clinical Diagnosis
3. Clinical Importance
4. Immunity in Reinfection
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- To, K.K.; Hung, I.F.; Ip, J.D.; Chu, A.W.; Chan, W.M.; Tam, A.R.; Fong, C.H.; Yuan, S.; Tsoi, H.W.; Ng, A.C.; et al. COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Van Elslande, J.; Vermeersch, P.; Vandervoort, K.; Wawina-Bokalanga, T.; Vanmechelen, B.; Wollants, E.; Laenen, L.; André, E.; Van Ranst, M.; Lagrou, K.; et al. Symptomatic Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Reinfection by a Phylogenetically Distinct Strain. Clin. Infect. Dis. 2021, 73, 354–356. [Google Scholar] [CrossRef]
- Mulder, M.; van der Vegt, D.; Oude Munnink, B.B.; GeurtsvanKessel, C.H.; van de Bovenkamp, J.; Sikkema, R.S.; Jacobs, E.M.G.; Koopmans, M.P.G.; Wegdam-Blans, M.C.A. Reinfection of SARS-CoV-2 in an immunocompromised patient: A case report. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Prado-Vivar, B.A.B.-W.; Monica, G.; Juan, J.M.; Sully, G.; Bernardo, R.-S.; Patricio, G.; Michelle, T.; Veronica, G.B.; Paul, C. COVID-19 Re-Infection by a Phylogenetically Distinct SARS-CoV-2 Variant, First Confirmed Event in South America. SSRN 2021. [Google Scholar] [CrossRef]
- Larson, D.; Brodniak, S.L.; Voegtly, L.J.; Cer, R.Z.; Glang, L.A.; Malagon, F.J.; Long, K.A.; Potocki, R.; Smith, D.R.; Lanteri, C.; et al. A Case of Early Re-infection with SARS-CoV-2. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Goldman, J.D.; Wang, K.; Roltgen, K.; Nielsen, S.C.A.; Roach, J.C.; Naccache, S.N.; Yang, F.; Wirz, O.F.; Yost, K.E.; Lee, J.Y.; et al. Reinfection with SARS-CoV-2 and Failure of Humoral Immunity: A case report. medRxiv 2020. [Google Scholar] [CrossRef]
- Tillett, R.L.; Sevinsky, J.R.; Hartley, P.D.; Kerwin, H.; Crawford, N.; Gorzalski, A.; Laverdure, C.; Verma, S.C.; Rossetto, C.C.; Jackson, D.; et al. Genomic evidence for reinfection with SARS-CoV-2: A case study. Lancet Infect. Dis. 2021, 21, 52–58. [Google Scholar] [CrossRef]
- Scarpati, G.; Piazza, O.; Pagliano, P.; Rizzo, F. COVID-19: A confirmed case of reinfection in a nurse. BMJ Case Rep. 2021, 14, e244507. [Google Scholar] [CrossRef]
- Shastri, J.A.P.; Swapneil, A.; Sachee, C.; Nirjhar, P.; Manish, S.; Chetan, K.; Akshay, A.; Vivekanand, S.V.; Janani, M.; Ranjeet, F.; et al. Whole Genome Sequencing Confirmed SARS-CoV-2 Reinfections among Healthcare Workers in India with Increased Severity in the Second Episode. SSRN 2020. [Google Scholar] [CrossRef]
- Gupta, V.; Bhoyar, R.C.; Jain, A.; Srivastava, S.; Upadhayay, R.; Imran, M.; Jolly, B.; Divakar, M.K.; Sharma, D.; Sehgal, P.; et al. Asymptomatic reinfection in two healthcare workers from India with genetically distinct SARS-CoV-2. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Abu-Raddad, L.J.; Chemaitelly, H.; Malek, J.A.; Ahmed, A.A.; Mohamoud, Y.A.; Younuskunju, S.; Ayoub, H.H.; Al Kanaani, Z.; Al Khal, A.; Al Kuwari, E.; et al. Assessment of the risk of SARS-CoV-2 reinfection in an intense re-exposure setting. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Colson, P.; Finaud, M.; Levy, N.; Lagier, J.C.; Raoult, D. Evidence of SARS-CoV-2 re-infection with a different genotype. J. Infect. 2021, 82, 84–123. [Google Scholar] [CrossRef]
- Brouqui, P.; Colson, P.; Melenotte, C.; Houhamdi, L.; Bedotto, M.; Devaux, C.; Gautret, P.; Million, M.; Parola, P.; Stoupan, D.; et al. COVID-19 re-infection. Eur. J. Clin. Investig. 2021, 51, e13537. [Google Scholar] [CrossRef]
- Nonaka, C.K.V.; Franco, M.M.; Gräf, T.; de Lorenzo Barcia, C.A.; de Ávila Mendonça, R.N.; de Sousa, K.A.F.; Neiva, L.M.C.; Fosenca, V.; Mendes, A.V.A.; de Aguiar, R.S.; et al. Genomic Evidence of SARS-CoV-2 Reinfection Involving E484K Spike Mutation, Brazil. Emerg. Infect. Dis. 2021, 27, 1522–1524. [Google Scholar] [CrossRef]
- Novazzi, F.; Baj, A.; Genoni, A.; Spezia, P.G.; Colombo, A.; Cassani, G.; Zago, C.; Pasciuta, R.; Della Gasperina, D.; Ageno, W.; et al. SARS-CoV-2 B.1.1.7 reinfection after previous COVID-19 in two immunocompetent Italian patients. J. Med. Virol. 2021, 93, 5648–5649. [Google Scholar] [CrossRef] [PubMed]
- Harrington, D.; Kele, B.; Pereira, S.; Couto-Parada, X.; Riddell, A.; Forbes, S.; Dobbie, H.; Cutino-Moguel, T. Confirmed Reinfection with SARS-CoV-2 Variant VOC-202012/01. Clin. Infect. Dis. 2021. [Google Scholar] [CrossRef] [PubMed]
- West, J.; Everden, S.; Nikitas, N. A case of COVID-19 reinfection in the UK. Clin. Med. 2021, 21, e52–e53. [Google Scholar] [CrossRef] [PubMed]
- Fageeh, H.; Alshehri, A.; Fageeh, H.; Bizzoca, M.E.; Lo Muzio, L.; Quadri, M.F.A. Re-infection of SARS-CoV-2: A case in a young dental healthcare worker. J. Infect. Public Health 2021, 14, 685–688. [Google Scholar] [CrossRef]
- Tomassini, S.; Kotecha, D.; Bird, P.W.; Folwell, A.; Biju, S.; Tang, J.W. Setting the criteria for SARS-CoV-2 reinfection-six possible cases. J. Infect. 2021, 82, 282–327. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Investigative Criteria for Suspected Cases of SARS-CoV-2 Reinfection (ICR). Available online: https://www.cdc.gov/coronavirus/2019-ncov/php/invest-criteria.html (accessed on 26 September 2021).
- Kemp, S.A.; Collier, D.A.; Datir, R.P.; Ferreira, I.; Gayed, S.; Jahun, A.; Hosmillo, M.; Rees-Spear, C.; Mlcochova, P.; Lumb, I.U.; et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature 2021, 592, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Turakhia, Y.; De Maio, N.; Thornlow, B.; Gozashti, L.; Lanfear, R.; Walker, C.R.; Hinrichs, A.S.; Fernandes, J.D.; Borges, R.; Slodkowicz, G.; et al. Stability of SARS-CoV-2 phylogenies. PLoS Genet. 2020, 16, e1009175. [Google Scholar] [CrossRef]
- Gee, J.; Marquez, P.; Su, J.; Calvert, G.M.; Liu, R.; Myers, T.; Nair, N.; Martin, S.; Clark, T.; Markowitz, L.; et al. First Month of COVID-19 Vaccine Safety Monitoring — United States, December 14, 2020–January 13, 2021. Morb. Mortal. Wkly. Rep. 2021, 70, 283. [Google Scholar] [CrossRef]
- Kubina, R.; Dziedzic, A. Molecular and Serological Tests for COVID-19 a Comparative Review of SARS-CoV-2 Coronavirus Laboratory and Point-of-Care Diagnostics. Diagnostics 2020, 10, 434. [Google Scholar] [CrossRef]
- Torres, D.A.; Ribeiro, L.; Riello, A.; Horovitz, D.D.G.; Pinto, L.F.R.; Croda, J. Reinfection of COVID-19 after 3 months with a distinct and more aggressive clinical presentation: Case report. J. Med. Virol. 2021, 93, 1857–1859. [Google Scholar] [CrossRef]
- Seow, J.; Graham, C.; Merrick, B.; Acors, S.; Pickering, S.; Steel, K.J.A.; Hemmings, O.; O’Byrne, A.; Kouphou, N.; Galao, R.P.; et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat. Microbiol. 2020, 5, 1598–1607. [Google Scholar] [CrossRef]
- Yang, J.R.; Deng, D.T.; Wu, N.; Yang, B.; Li, H.J.; Pan, X.B. Persistent viral RNA positivity during the recovery period of a patient with SARS-CoV-2 infection. J. Med. Virol. 2020, 92, 1681–1683. [Google Scholar] [CrossRef]
- Li, N.; Wang, X.; Lv, T. Prolonged SARS-CoV-2 RNA shedding: Not a rare phenomenon. J. Med. Virol. 2020, 92, 2286–2287. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yao, L.; Li, J.; Chen, L.; Song, Y.; Cai, Z.; Yang, C. Stability issues of RT-PCR testing of SARS-CoV-2 for hospitalized patients clinically diagnosed with COVID-19. J. Med. Virol. 2020, 92, 903–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020 (accessed on 26 September 2021).
- Hall, V.; Foulkes, S.; Charlett, A.; Atti, A.; Monk, E.; Simmons, R.; Wellington, E.; Cole, M.; Saei, A.; Oguti, B.; et al. Do antibody positive healthcare workers have lower SARS-CoV-2 infection rates than antibody negative healthcare workers? Large multi-centre prospective cohort study (the SIREN study), England: June to November 2020. medRxiv 2021. [Google Scholar] [CrossRef]
- Bont, L.; Versteegh, J.; Swelsen, W.T.; Heijnen, C.J.; Kavelaars, A.; Brus, F.; Draaisma, J.M.; Pekelharing-Berghuis, M.; van Diemen-Steenvoorde, R.A.; Kimpen, J.L. Natural reinfection with respiratory syncytial virus does not boost virus-specific T-cell immunity. Pediatr. Res. 2002, 52, 363–367. [Google Scholar] [CrossRef]
- Iwasaki, A. What reinfections mean for COVID-19. Lancet Infect. Dis. 2021, 21, 3–5. [Google Scholar] [CrossRef]
- Long, Q.X.; Tang, X.J.; Shi, Q.L.; Li, Q.; Deng, H.J.; Yuan, J.; Hu, J.L.; Xu, W.; Zhang, Y.; Lv, F.J.; et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 2020, 26, 1200–1204. [Google Scholar] [CrossRef] [PubMed]
- Dan, J.M.; Mateus, J.; Kato, Y.; Hastie, K.M.; Yu, E.D.; Faliti, C.E.; Grifoni, A.; Ramirez, S.I.; Haupt, S.; Frazier, A.; et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 2021, 371. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, M.M.; Reddy, A.J.; Rothberg, M.B. Reinfection Rates among Patients who Previously Tested Positive for COVID-19: A Retrospective Cohort Study. Clin. Infect. Dis. 2021. [Google Scholar] [CrossRef]
- Hansen, C.H.; Michlmayr, D.; Gubbels, S.M.; Mølbak, K.; Ethelberg, S. Assessment of protection against reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in Denmark in 2020: A population-level observational study. Lancet 2021, 397, 1204–1212. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. COVID-19 Breakthrough Case Investigations and Reporting. Available online: https://www.cdc.gov/vaccines/covid-19/health-departments/breakthrough-cases.html (accessed on 26 September 2021).
- Gard Nelson, O.B.; Spilman, P.; Niazi, K.; Rabizadeh, S.; Soon-Shiong, P. Molecular dynamic simulation reveals E484K mutation enhances spike RBD-ACE2 affinity and the combination of E484K, K417N and N501Y mutations (501Y.V2 variant) induces conformational change greater than N501Y mutant alone, potentially resulting in an escape mutant. bioRxiv 2021. [Google Scholar] [CrossRef]
- Re-Infection of SARS-CoV-2 in a 40s Women: 11 New Cases in Aichi Prefecture. (In Japanese). Available online: https://www.tokai-tv.com/tokainews/article_20200908_139615 (accessed on 26 September 2021).
- Reinfection of Two Women in Their 20s with a Different SARS-CoV-2 Strain. (In Japanese). Available online: https://www.okinawatimes.co.jp/articles/-/645120 (accessed on 26 September 2021).
Laboratory Method | Strength of Evidence | Turnaround Time | Period of Detection (Days) | Resources Needed | Limitations |
---|---|---|---|---|---|
1. Virus isolation | High * | 3–7 days | Up to 2 weeks | Requires BSL-3 facility | Trained personnel, BSL-3 facility, Trained personnel, BSL-3 facility |
2. Genetic evidence (sequence divergence) | High | 3–24 h | Up to 3 weeks | Sequencing equipment | Requires 2-point sampling of first and second episode, detection only during virus shedding period |
3. Antibody IgM/IgG test (ELISA) | Supportive | 2–3 h | Beyond 5 days | Equipment for ELISA | Supportive evidence (non-conclusive) |
Rapid test IgG/IgM | 30 min | Beyond 5 days | Point-of-care | ||
4. Avidity test | Supportive | Few hours | Beyond 5 days | Equipment for ELISA | Supportive evidence (non-conclusive) |
5. Neutralization test(More than four-fold increase) | Supportive | 3–10 days | Beyond 5 days | Requires BSL-3 facility (live virus) | Trained personnel, BSL-3 facility, limited access |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamasaki, L.; Moi, M.L. Complexities in Case Definition of SARS-CoV-2 Reinfection: Clinical Evidence and Implications in COVID-19 Surveillance and Diagnosis. Pathogens 2021, 10, 1262. https://doi.org/10.3390/pathogens10101262
Yamasaki L, Moi ML. Complexities in Case Definition of SARS-CoV-2 Reinfection: Clinical Evidence and Implications in COVID-19 Surveillance and Diagnosis. Pathogens. 2021; 10(10):1262. https://doi.org/10.3390/pathogens10101262
Chicago/Turabian StyleYamasaki, Lisa, and Meng Ling Moi. 2021. "Complexities in Case Definition of SARS-CoV-2 Reinfection: Clinical Evidence and Implications in COVID-19 Surveillance and Diagnosis" Pathogens 10, no. 10: 1262. https://doi.org/10.3390/pathogens10101262
APA StyleYamasaki, L., & Moi, M. L. (2021). Complexities in Case Definition of SARS-CoV-2 Reinfection: Clinical Evidence and Implications in COVID-19 Surveillance and Diagnosis. Pathogens, 10(10), 1262. https://doi.org/10.3390/pathogens10101262