Big Data in Education. A Bibliometric Review
Abstract
:1. Introduction
2. Method
2.1. Sample
2.2. Data Analysis
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Al Nuaimi, Eiman, Hind Al Neyadi, Nader Mohamed, and Jameela Al-Jaroodi. 2015. Applications of big data to smart cities. Journal of Internet Services and Applications 6: 1–15. [Google Scholar] [CrossRef]
- Ardanuy Baró, Jordi. 2012. Breve Introducción a la Bibliometría. Barcelona: University of Barcelona. [Google Scholar]
- Área, Manuel. 2011. Tic, identidad digital y educación. Reencuentro 62: 97–99. [Google Scholar]
- Aretio, Lorenzo García. 2017. Educación a distancia y virtual: calidad, disrupción, aprendizajes adaptativo y móvil. RIED. Revista Iberoamericana de Educación a Distancia 20: 9–25. [Google Scholar] [CrossRef]
- Asur, Sitaram, and Bernardo A. Huberman. 2010. Predicting the future with Social Media. Paper presented at 2010 IEEE/WIC/ACM International Conference of Web Intelligence and Intelligent Agent Technology, Toronto, ON, Canada, August 31–September 3. [Google Scholar]
- Batanero, José María Fernández, Miguel María Reyes Rebollo, and Marta Montenegro Rueda. 2019. Impact of ICT on students with high abilities. Bibliographic review (2008–2018). Computers and Education 137: 48–58. [Google Scholar] [CrossRef]
- Bennett, W. Lance. 2015. Changing citizenship in the digital age. In Civic Life Online: Learning How Digital Media Can Engage Youth. Edited by W. Lance Bennett. Cambridge: MIT Press. [Google Scholar]
- Caballero, Francisco Sierra. 2013. Ciudadanía, Tecnología y Cultura: Nodos Conceptuales para Pensar la Nueva Mediación Digital. Barcelona: Gedisa. [Google Scholar]
- Chen, Hsinchun, Roger HL Chiang, and Veda C. Storey. 2012. Business intelligence and analytics: From Big data to big impact. MIS Quarterly 36: 1165–88. [Google Scholar] [CrossRef]
- Chen, Min, Shiwen Mao, and Yunhao Liu. 2014. Big Data: A Survey. Mobile Networks and Applications 19: 171–209. [Google Scholar] [CrossRef]
- Correa, José-Miguel. 2015. ¿Cómo aprender a ser maestro?: Tic, género y narrativas visuales de futuras maestras de educación infantil. Reire 8: 256–68. [Google Scholar]
- Daniel, Ben Kei. 2015. Big Data and analytics in higher education: Opportunities and challenges. British journal of Educational Technology 46: 904–20. [Google Scholar] [CrossRef]
- Daniel, Ben Kei. 2017. Big Data and data science: A critical review of issues for educational research. British Journal of Educational Technology 50: 101–13. [Google Scholar] [CrossRef]
- DatAnalysis 15M. 2013. Tecnopolítica: La Potencia de las Multitudes Conectadas. El Sistema-Red 15M Como Nuevo Paradigma de la Política Distribuida. Available online: http://journals.uoc.edu/ojs/index.php/in3-working-paper-series/article/view/1878 (accessed on 29 May 2019).
- Dishon, Gideon. 2017. New data, old tensions: Big data, personalized learning, and the challenges of progressive education. Theory and Research in Education 15: 272–89. [Google Scholar] [CrossRef]
- Dussel, Ines. 2012. Aprender a Enseñar en la Cultura Digital. Buenos Aires: Fundación Santillana. [Google Scholar]
- Dussel, Ines. 2014. ¿Es el currículum relevante en la cultura digital? Debates y desafíos sobre la autoridad cultural contemporánea. Archivos Analíticos de Política Educativa 22: 1–22. [Google Scholar]
- Eichstaedt, Johannes C., Hansen Andrew Schwartz, Margaret L. Kern, Gregory Park, Darwin R. Labarthe, Raina M. Merchant, Sneha Jha, Megha Agrawal, Lukasz A. Dziurzynski, Maarten Sap, and et al. 2015. Psychological language on Twitter predicts county-level heart disease mortality. Psychological Science 26: 159–69. [Google Scholar] [CrossRef]
- Elia, Gianluca, Gianluca Solazzo, Gianluca Lorenzo, and Giuseppina Passiante. 2019. Assessing learners’ satisfaction in collaborative online courses through a big data approach. Computers in Human Behavior 92: 589–99. [Google Scholar] [CrossRef]
- Genevieve Bell, Melissa Gregg, and Nick Seaver. 2015. Data, Now Bigger and Better! Edited by Tom Boellstorff and Bill Maurer. Chicago: Prickly Paradigm Press. [Google Scholar]
- Ghani, Norjihan Abdul, Suraya Hamid, Ibrahim Abaker Targio Hashem, and Ejaz Ahmed. Forthcoming. Social media big data analytics: A survey. Computers in Human Behavior. [CrossRef]
- Gibson, David. 2017. Big data in higher education: research methods and analytics supporting the learning journey. Technology, Knowledge and Learning 22: 237–41. [Google Scholar] [CrossRef]
- Glänzel, Wolfgang, and Urs Schoepflin. 1999. A bibliometric study of reference literature in the sciences and social sciences. Information Processing & Management 35: 31–44. [Google Scholar]
- Gorospe, José Miguel Correa, Lorea Fernández Olaskoaga, Aingeru Gutiérrez-Cabello Barragán, Daniel Losada Iglesias, and Begoña Ochoa-Aizpurua Agirre. 2015. Formación del profesorado, tecnología educativa e identidad docente digital. Revista Latinoamericana de Tecnología Educativa 14: 46–6. [Google Scholar]
- Hernández, Dolors Reig. 2012. Socionomia. In ¿Vas a Perderte la Revolución Social? Barcelona: Ediciones Deusto. [Google Scholar]
- Hicks, Stephanie C., and Rafael A. Irizarry. 2018. A guide to teaching data science. The American Statistician 72: 382–91. [Google Scholar] [CrossRef]
- Hinojo-Lucena, Francisco-Javier, Inmaculada Aznar-Díaz, María-Pilar Cáceres-Reche, and José-María Romero-Rodríguez. 2019. Artificial Intelligence in Higher Education: A Bibliometric Study on its Impact in the Scientific Literature. Education Science 9: 51. [Google Scholar] [CrossRef]
- Huda, Miftachul, Andino Maseleno, Masitah Shahrill, Kamarul Azmi Jasmi, Ismail Mustari, and Bushrah Basiron. 2017. Exploring adaptive teaching competencies in big data era. International Journal of Emerging Technologies in Learning (iJET) 12: 68–83. [Google Scholar] [CrossRef]
- Huda, Miftachul, Andino Maseleno, Pardimin Atmotiyoso, Maragustam Siregar, Roslee Ahmad, Kamarul Jasmi, and Nasrul Muhamad. 2018. Big data emerging technology: insights into innovative environment for online learning resources. International Journal of Emerging Technologies in Learning (iJET) 13: 23–36. [Google Scholar] [CrossRef]
- Hussain, Amir, and Erik Cambria. 2018. Semi-supervised learning for big social data analysis. Neurocomputing 275: 1662–73. [Google Scholar] [CrossRef]
- Injadat, MohammadNoor, Fadi Salo, and Ali Bou Nassif. 2016. Data mining techniques in social media: A survey. Neurocomputing 214: 654–70. [Google Scholar] [CrossRef]
- Jagadish, Hosagrahar Visvesvaraya. 2016. The values challenge for Big Data. In Bulletin of the IEEE Computer Society Technical Committee on Data Engineering. Kentucky: IEEE COMPUTER SOCIETY, pp. 77–84. [Google Scholar]
- Jin, Xiaolong, Benjamin W. Wah, Xueqi Cheng, and Yuanzhuo Wang. 2015. Significance and challenges of big data research. Big Data Research 2: 59–64. [Google Scholar] [CrossRef]
- Khan, Muhammad, Md Karim, and Yangwoo Kim. 2018. A two-stage big data analytics framework with real world applications using spark machine learning and long Short-term memory network. Symmetry 10: 485. [Google Scholar] [CrossRef]
- Liang, Jiajun, Jian Yang, Yongji Wu, Chao Li, and Li Zheng. 2016. Big data application in education: dropout prediction in Edx MOOCs. Paper presented at 2016 IEEE Second International Conference on Multimedia Big Data (BigMM), Taipei, Taiwan, April 20–22. [Google Scholar]
- Martín-Barbero, Jesús. 2012. Ciudad educativa: De una sociedad con sistema educativo a una sociedad de saberes compartidos. In Educación Expandida. Edited by Rubén Díaz and Juan Freire. Sevilla: Zemos98, pp. 103–28. [Google Scholar]
- Medici, Emilio. 2009. La Receta de la Industria Creativa Como Motor de Desarrollo y Sus Contradicciones. Nuevas Economías de la Cultura. Madrid: YProductions. [Google Scholar]
- Menon, Ashwin, Shiv Gaglani, M. Ryan Haynes, and Sean Tackett. 2017. Using “big data” to guide implementation of a web and mobile adaptive learning platform for medical students. Medical Teacher 39: 975–80. [Google Scholar] [CrossRef]
- Merceron, Agathe, Paulo Blikstein, and George Siemens. 2015. Learning analytics: from big data to meaningful data. Journal of Learning Analytics 2: 4–8. [Google Scholar] [CrossRef]
- Moreno-Carriles, Rosa María. 2018. Big data¿ Pero qué es? Angiología 70: 191–94. [Google Scholar] [CrossRef]
- Ni, Lionel M., Haoyu Tan, and Jiang Xiao. 2016. Rethinking big data in a networked world. Frontiers of Computer Science 10: 965–67. [Google Scholar] [CrossRef]
- Oravec, Chesney S., Mustafa Motiwala, Kevin Reed, Tamekia L. Jones, and Paul Klimo Jr. 2019. Big data research in pediatric neurosurgery: Content, statistical output, and bibliometric analysis. Pediatric Neurosurgery 54: 85–97. [Google Scholar] [CrossRef]
- Perlado-Lamo-de-Espinosa, Marta, Natalia Papí-Gálvez, and María Bergaz-Portolés. 2019. Del planificador de medios al experto en medios: El efecto digital de la publicidad. Comunicar 27: 105–14. [Google Scholar] [CrossRef]
- Picciano, Anthony G. 2012. The evolution of big data and learning analytics in American higher education. Journal of Asynchronous Learning Networks 16: 9–20. [Google Scholar] [CrossRef]
- Price, Derek J. 1986. Little Science, Big Science ... and Beyond. Nueva York: Columbia University Press. [Google Scholar]
- Provost, Foster, and Tom Fawcett. 2013. Data science and its relationship to Big Data and data-driven decision Making. Big Data 1: 51–59. [Google Scholar] [CrossRef] [PubMed]
- Pugna, Irina Bogdana, Adriana Duțescu, and Oana Georgiana Stănilă. 2019. Corporate attitudes towards Big Data and its impact on performance management: A qualitative study. Sustainability 11: 684. [Google Scholar] [CrossRef]
- Reidenberg, Joel R., and Florian Schaub. 2018. Achieving big data privacy in education. Theory and Research in Education 16: 263–79. [Google Scholar] [CrossRef]
- Rodríguez-García, Antonio Manuel, Juan Manuel Trujillo, and José Sánchez. 2019. Impact of scientific productivity on digital competence of future teachers: bibliometric approach on Scopus and Web of Science. Revista Complutense de Educación 30: 623–46. [Google Scholar] [CrossRef]
- Saiki, Sachio, Naoki Fukuyasu, Kohei Ichikawa, Tetsuya Kanda, Masahide Nakamura, Shinsuke Matsumoto, Shinichi Yoshida, and Shinji Kusumoto. 2018. A Study of Practical Education Program on AI, Big Data, and Cloud Computing through Development of Automatic Ordering System. Paper presented at 2018 IEEE International Conference on Big Data, Cloud Computing, Data Science & Engineering (BCD), Yonago, Japan, July 10–12. [Google Scholar]
- Salazar, Javier. 2016. Big Data en la educación. Revista Digital Universitaria 1: 1–16. [Google Scholar]
- Sanchez, Antonio, and Lisa Burnell Ball. 2015. From Big Data to smart data: Teaching data mining and visualization. Paper presented at International Conference on Frontiers in Education: Computer Science and Computer Engineering (FECS)), Las Vegas, NV, USA, July 27–30. [Google Scholar]
- Seufert, Sabine, Christoph Meier, Matthias Soellner, and Roman Rietsche. 2019. A pedagogical perspective on Big Data and learning analytics: A conceptual model for digital learning support. Technology, Knowledge and Learning, 1–21. [Google Scholar] [CrossRef]
- Shum, Simon Buckingham, and Rebecca Ferguson. 2012. Social learning analytics. Educational Technology and Society 15: 3–26. [Google Scholar]
- Sudolska, Agata, Andrzej Lis, and Róża Błaś. 2019. Cloud computing research profiling: Mapping scholarly community and identifying thematic boundaries of the field. Social Science 8: 112. [Google Scholar] [CrossRef]
- Urbizagástegui Alvarado, Rubén. 2016. El crecimiento de la literatura sobre la ley de Bradford. Investigación Bibliotecológica 30: 51–72. [Google Scholar] [CrossRef] [Green Version]
- Veltri, Giuseppe Alessandro. 2017. Big Data is not only about data: The two cultures of modelling. Big Data & Society 4: 1–6. [Google Scholar] [CrossRef]
- Waller, Matthew A., and Stanley E. Fawcett. 2013. Data Science, Predictive analytics, and Big Data: A revolution that will transform supply chain design and management. Journal of Business Logistics 34: 77–84. [Google Scholar] [CrossRef]
- Williams, Matthew L., Pete Burnap, and Luke Sloan. 2017. Crime sensing with Big Data: The affordances and limitations of using open-source communications to estimate crime patterns. The British Journal of Criminology 57: 320–40. [Google Scholar] [CrossRef]
- Williamson, Ben. 2015. Governing software: Networks, databases and algorithmic power in the digital governance of public education. Learning, Media and Technology 40: 83–105. [Google Scholar] [CrossRef]
Year | Articles Number | |||
---|---|---|---|---|
WOS | Scopus | ERIC | PsycINFO | |
2010 | 0 | 1 | 0 | 0 |
2011 | 0 | 0 | 0 | 1 |
2012 | 2 | 6 | 3 | 0 |
2013 | 6 | 13 | 9 | 3 |
2014 | 23 | 46 | 20 | 6 |
2015 | 75 | 98 | 27 | 20 |
2016 | 92 | 116 | 37 | 31 |
2017 | 146 | 200 | 38 | 31 |
2018 | 147 | 226 | 40 | 28 |
Total | 491 | 706 | 174 | 120 |
Journals | |||
---|---|---|---|
WOS | Scopus | ERIC | PsycINFO |
ESTP | JAOT | ISEDJ | Computers in Human Behavior |
Agro Food Industry Hi Tech | Technical Bulletin | Journal of Learning Analytics | Neurocomputing |
iJET | Agro Food Industry Hi Tech | JISE | DSJIE |
Engineering | Frontiers of Computer Science | Theory and Research in Education | Learning, Media and Technology |
Big Data | KUYEB | BIT | |
Theory and Research in Education | iJET | ||
IJACSA | |||
Big Data society | |||
IEEE access | |||
Medical Teacher | |||
American Statistician | |||
BIT | |||
EJMSTE | |||
LNET | |||
Sustainability | |||
Technology Knowledge and Learning |
Country | Database | |||
---|---|---|---|---|
WOS | Scopus | ERIC | PsycINFO | |
United States (USA) | 188 | 238 | 18 | 13 |
China | 84 | 223 | 12 | 4 |
United Kingdom (UK) | 70 | 71 | 8 | 4 |
Australia | 32 | 27 | 5 | 1 |
Canada | 19 | 30 | 4 | 1 |
Germany | 19 | 15 | 1 | 0 |
India | 18 | 20 | 2 | 1 |
Italy | 13 | 13 | 1 | 0 |
Sweden | 11 | 9 | 1 | 0 |
Saudi Arabia | 9 | 8 | 1 | 0 |
South Korea | 8 | 27 | 1 | 0 |
Japan | 6 | 13 | 1 | 0 |
Brazil | 3 | 4 | 2 | 0 |
Reference | Year | Citations | |||
---|---|---|---|---|---|
WOS | Scopus | ERIC | PsycINFO | ||
H. Chen et al. (2012) | 2012 | 1111 | 1810 | 0 | 0 |
Waller and Fawcett (2013) | 2013 | 242 | 320 | 0 | 0 |
Eichstaedt et al. (2015) | 2015 | 111 | 142 | 0 | 79 |
Al Nuaimi et al. (2015) | 2015 | 92 | 138 | 0 | 0 |
Daniel (2015) | 2015 | 67 | 112 | 0 | 0 |
Picciano (2012) | 2012 | 0 | 125 | 0 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín-Marín, J.-A.; López-Belmonte, J.; Fernández-Campoy, J.-M.; Romero-Rodríguez, J.-M. Big Data in Education. A Bibliometric Review. Soc. Sci. 2019, 8, 223. https://doi.org/10.3390/socsci8080223
Marín-Marín J-A, López-Belmonte J, Fernández-Campoy J-M, Romero-Rodríguez J-M. Big Data in Education. A Bibliometric Review. Social Sciences. 2019; 8(8):223. https://doi.org/10.3390/socsci8080223
Chicago/Turabian StyleMarín-Marín, José-Antonio, Jesús López-Belmonte, Juan-Miguel Fernández-Campoy, and José-María Romero-Rodríguez. 2019. "Big Data in Education. A Bibliometric Review" Social Sciences 8, no. 8: 223. https://doi.org/10.3390/socsci8080223
APA StyleMarín-Marín, J. -A., López-Belmonte, J., Fernández-Campoy, J. -M., & Romero-Rodríguez, J. -M. (2019). Big Data in Education. A Bibliometric Review. Social Sciences, 8(8), 223. https://doi.org/10.3390/socsci8080223