The Impact of National Culture on Innovation: A Comparative Analysis between Developed and Developing Nations during the Pre- and Post-Crisis Period 2007–2021
Abstract
:1. Introduction
2. Literature Review
2.1. Hofstede’s 6D Model
2.2. The Global Innovation Index
2.3. The Relationship between Culture and Innovation
2.4. Hypothesis Development
3. Data and Methodology
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
All Countries | Developed Countries | Developing Countries | |
---|---|---|---|
PWI | 2.438042 | 2.149355 | 1.392218 |
IDV | 2.370354 | 1.791110 | 1.142869 |
MAS | 1.080714 | 1.177884 | 1.166662 |
UAI | 1.089466 | 1.248804 | 1.113357 |
LTO | 1.378003 | 1.433472 | 1.794596 |
IVR | 1.536238 | 1.886875 | 1.457669 |
Developed Countries (39 Countries) | Developing Countries (38 Countries) |
---|---|
Australia, Austria, Belgium, Canada, Chile, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hong Kong, Hungary, Iceland, Ireland, Italy, Japan, Latvia, Lithuania, Luxembourg, Malta, Netherlands New Zealand, Norway, Poland, Portugal, Romania, Singapore, Slovakia, Slovenia, South Korea, Spain, Sweden, Switzerland, UK, USA, Uruguay | Albania, Argentina, Armenia, Azerbaijan, Bosnia and Herzegovina, Brazil, Bulgaria, China, Colombia, Dominican Republic, Georgia, Indonesia, Jordan, Kazakhstan, Malaysia, Mexico, North Macedonia, Paraguay, Peru, Russia, South Africa, Thailand, Turkey, Algeria, Bangladesh, Bolivia, Burkina Faso, Egypt, El Salvador, India, Morocco, Mozambique, Nigeria, Pakistan, Philippines, Tanzania, Ukraine, Vietnam |
References
- Andrijauskiene, Meda, and Davia Dumciuviene. 2017. Hofstede’s cultural dimensions and national innovation level. Paper presented at DIEM: Dubrovnik International Economic Meeting, Dubrovnik, Croatia, October 12–14; vol. 3, pp. 189–205. [Google Scholar]
- Beugelsdijk, Sjoerd, and Christian Welzel. 2018. Dimensions and Dynamics of National Culture: Synthesizing Hofstede With Inglehart. Journal of Cross-Cultural Psychology 49: 1469–505. [Google Scholar] [CrossRef] [Green Version]
- Bligh, Michelle C., Jeffrey C. Kohles, and James R. Meindl. 2004. Charisma under crisis: Presidential leadership, rhetoric, and media responses before and after the September 11th terrorist attacks. The Leadership Quarterly 15: 211–39. [Google Scholar] [CrossRef]
- Bukowski, Andrzej, and Seweryn Rudnicki. 2019. Not Only Individualism: The Effects of Long-Term Orientation and Other Cultural Variables on National Innovation Success. Cross-Cultural Research 53: 119–62. [Google Scholar] [CrossRef]
- Byrne, Barbara M. 2010. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming. New York: Routledge. [Google Scholar]
- Cox, Pamela L., and Raihan H. Khan. 2017. Country culture and national innovation. Archives of Business Research 5: 85–101. [Google Scholar] [CrossRef]
- Danielsson, Erna. 2013. The roles of followers: An exploratory study of follower roles in a Swedish context. Leadership & Organization Development Journal 34: 708–23. [Google Scholar] [CrossRef]
- Dašić, Predrag, Jovan Dašić, Dejan Antanasković, and Nina Pavićević. 2020. Statistical Analysis and Modeling of Global Innovation Index (GII) of Serbia. In New Technologies, Development and Application III. NT 2020. Edited by I. Karabegović. Lecture Notes in Networks and Systems. Cham: Springer, vol. 128. [Google Scholar] [CrossRef]
- Dawson, Patrick, and Lisa Daniel. 2010. Understanding social innovation: A provisional framework. International Journal of Technology Management 51: 9–21. [Google Scholar] [CrossRef]
- Derindag, Omer Faruk, Maya Lambovska, and Daniela Todorova. 2021. Innovation development factors: Switzerland experience. Pressburg Economic Review 1: 57–65. [Google Scholar]
- Espig, Aline, Igor Tairan Mazzini, Clarice Zimmermann, and Luciano Castro de Carvalho. 2021. National culture and innovation: A multidimensional analysis. Innovation & Management Review. ahead-of-print. [Google Scholar] [CrossRef]
- Hair, Joseph F., William C. Black, Barry J. Babin, and Rolph E. Anderson. 2010. Multivariate Data Analysis, 7th ed. Upper Saddle River: Pearson Educational International. [Google Scholar]
- Halkos, George E., and Nickolaos G. Tzeremes. 2013. Modelling the effect of national culture on countries’ innovation performances: A conditional full frontier approach. International Review of Applied Economics 27: 656–78. [Google Scholar] [CrossRef] [Green Version]
- Handoyo, Sofik. 2018. The Role of National Culture in National Innovative Capacity. The Asian Journal of Technology Management 11: 137–49. [Google Scholar] [CrossRef]
- Hofstede, Geert. 1980. Culture’s Consequences: International Differences in Work-Related Values. Beverly Hills: Sage Publications. [Google Scholar]
- Hofstede, Geert. 2022. The 6-D Model of National Culture. Available online: https://geerthofstede.com/culture-geert-hofstede-gert-jan-hofstede/6d-model-of-national-culture/ (accessed on 2 October 2022).
- Hofstede, Geert, Gert Jan Hofstede, and Michael Minkov. 1991. Cultures and Organisations-Software of the Mind: Intercultural Cooperation and Its Importance for Survival. New York: McGraw-Hill. [Google Scholar]
- Hofstede, Geert, Gert Jan Hofstede, and Michael Minkov. 2010. Cultures and Organizations: Software of the Mind, 3rd ed. New York: McGraw-Hill Inc. [Google Scholar]
- Hu, Xiangting, Jianqing Ruan, and Xiaobo Zhang. 2021. Crisis-Induced Innovation: Quality Upgrading in Chinese Industrial Clusters. The Journal of Law, Economics, and Organization 37: 571–606. [Google Scholar] [CrossRef]
- Johnston, Ron, Kelvyn Jones, and David Manley. 2018. Confounding and collinearity in regression analysis: A cautionary tale and an alternative procedure, illustrated by studies of British voting behaviour. Quality & Quantity 52: 1957–76. [Google Scholar] [CrossRef] [Green Version]
- Jourdan, Louis F., Jr., and Michael Smith. 2021. National culture dimensions as predictors of innovation, creativity, and entrepreneurship. Journal of Global Business Insights 6: 154–71. [Google Scholar] [CrossRef]
- Kaasa, Anneli, and Maaja Vadi. 2008. How Does Culture Contribute to Innovation? Evidence from European Countries. University of Tartu–Faculty of Economics and Business Administration Working Paper Series 63; Tartu: Faculty of Economics and Business Administration, University of Tartu (Estonia). [Google Scholar]
- Kirkman, Bradley L., Kevin B. Low, and Cristina B. Gibson. 2006. A quarter century of culture’s consequences: A review of empirical research incorporating Hofstede’s cultural values framework. Journal of International Business Studies 37: 285–20. [Google Scholar] [CrossRef]
- Lažnjak, J. 2011. Dimensions of national innovation culture in Croatia content validity of Hofstede’s dimensions. Drustvena Istrazivanja 20: 1015–38. [Google Scholar] [CrossRef]
- Massart, Desire L., Leonard Kaufman, Peter J. Rousseeuw, and Annick Leroy. 1986. Least median of squares: A robust method for outlier and model error detection in regression and calibration. Analytica Chimica Acta 187: 171–79. [Google Scholar] [CrossRef]
- Minkov, Michael, Michael H. Bond, Pinaki Dutt, Michael Schachner, Oswaldo Morales, Carlos Sanchez, Janar Jandosova, Yerlan Khassenbekov, and Ben Mudd. 2018. A Reconsideration of Hofstede’s Fifth Dimension: New Flexibility Versus Monumentalism Data From 54 Countries. Cross-Cultural Research 52: 309–33. [Google Scholar] [CrossRef]
- Mumford, Michael D., Tamara L. Friedrich, Jay J. Caughron, and Cristina L. Byrne. 2007. Leader cognition in real-world settings: How do leaders think about crises? The Leadership Quarterly 18: 515–43. [Google Scholar] [CrossRef]
- OECD—Organisation for Economic Co-Operation and Development. 2018. Oslo Manual: Guidelines for Collecting and Interpreting Innovation Data, 4th ed. Paris: OECD. [Google Scholar] [CrossRef]
- Okoń-Horodyńska, Ewa. 2021. Crisis and Innovations: Are they Constructive or Destructive? Studies in Logic. Grammar and Rhetoric 66: 425–49. [Google Scholar] [CrossRef]
- Patanakul, Peerasit, and Jeffrey K. Pinto. 2014. Examining the roles of government policy on innovation. The Journal of High Technology Management Research 25: 97–107. [Google Scholar] [CrossRef]
- Porter, Michael E., and Scott Stern. 2001. National innovative capacity. The Global Competitiveness Report 2002: 102–18. [Google Scholar]
- Prim, Alexandre Luis, Luiz Stephancy Filho, Guilherme Augusto Cavallaro Zamur, and Luiz Carlos Di Serio. 2017. The relationship between national culture dimensions and degree of innovation. International Journal of Innovation Management 21: 1730001. [Google Scholar] [CrossRef]
- Reddy, Prasada. 2011. Global Innovation in Emerging Economies. London: Routledge. [Google Scholar] [CrossRef]
- Rinne, Tiffany, G. Daniel Steel, and John Fairweather. 2012. Hofstede and Shane revisited: The role of power distance and individualism in national-level innovation success. Cross-Cultural Research 46: 91–108. [Google Scholar] [CrossRef]
- Rousseeuw, Peter J. 1990. Robust estimation and identifying outliers. Handbook of Statistical Methods for Engineers and Scientists 16: 16.1–16.24. [Google Scholar]
- Şener, Sefer, and Ercan Sarıdoğan. 2011. The Effects Of Science-Technology-Innovation On Competitiveness And Economic Growth. Procedia–Social and Behavioral Sciences 24: 815–28. [Google Scholar] [CrossRef] [Green Version]
- Shane, Scott. 1993. Cultural influences on national rates of innovation. Journal of Business Venturing 8: 59–73. [Google Scholar] [CrossRef]
- Sun, Hongyi. 2009. A meta-analysis on the influence of national culture on innovation capability. International Journal of Entrepreneurship and Innovation Management 10: 353–60. [Google Scholar] [CrossRef]
- Taylor, Mark Zachary, and Sean Wilson. 2012. Does culture still matter?: The effects of individualism on national innovation rates. Journal of Business Venturing 27: 234–47. [Google Scholar] [CrossRef]
- Tekic, Anja, and Zeljico Tekic. 2021. Culture as antecedent of national innovation performance: Evidence from neo-configurational perspective. Journal of Business Research 125: 385–96. [Google Scholar] [CrossRef]
- WIPO. 2021. Global Innovation Index 2021: Tracking Innovation through the COVID-19 Crisis. Geneva: World Intellectual Property Organization. [Google Scholar]
- Yun, Jinhyo Joseph, Avvari V. Mohan, and Xiaofei Zhao. 2017. Collectivism, Individualism and Open Innovation: Introduction to the Special Issue on ‘Technology, Open Innovation, Markets and Complexity.’. Science, Technology and Society 22: 379–87. [Google Scholar] [CrossRef]
Source | Methodology | Database Used |
---|---|---|
Kaasa and Vadi (2008) | correlation analysis | Patenting intensity–Eurostat’s Regio database and European Social Survey 2007, 20 countries |
Sun (2009) | meta-analysis | Innovation capability acc. to Porter and Stern (2001) and Hofstede’s 4D (Hofstede et al. 1991) |
Rinne et al. (2012) | multivariate multiple linear regression | Global Innovation Index (GII) |
Halkos and Tzeremes (2013) | data envelopment analysis (DEA) | European Innovation Scoreboard 2007 (25 EU countries) |
Prim et al. (2017) | multiple linear technical regression | Global Innovation Index (GII) 2016, 72 countries |
Andrijauskiene and Dumciuviene (2017) | correlation analysis and multiple regression analysis | European Innovation Scoreboard 2016, 27 EU countries |
Handoyo (2018) | bivariate correlation analysis and multiple regression analysis | Hofstede’s national culture Index and Global Competitiveness Index, 77 countries |
Jourdan and Smith (2021) | multiple regression analysis, factor analysis | the Global Innovation Index (GII) (143 countries), the Global Entrepreneurship Index (GEI = 119), the Global Creativity Index (GCI = 118), and Bloomberg 50 most innovative countries (B50) |
Tekic and Tekic (2021) | fuzzy-set qualitative comparative analysis (fsQCA) | Global Innovation Index 2019, 91 countries |
Espig et al. (2021) | multiple linear regression | Hofstede’s national culture database, the Global Innovation Index and population data from the World Bank database from 2015 to 2018, 71 countries. |
Variables | N | Mean | St. Dev. | Min. | Max. | Skewness | Kurtosis | J-B Prob. |
---|---|---|---|---|---|---|---|---|
Ln(GII_07) | 77 | 1.048066 | 0.275793 | 0.506818 | 1.757858 | 0.190045 | 2.411639 | 0.455179 |
Ln(GII_09) | 77 | 1.225659 | 0.208799 | 0.862890 | 1.581038 | 0.270223 | 1.819480 | 0.066926 |
GII_19 | 77 | 41.49000 | 11.83708 | 22.87000 | 67.24000 | 0.251603 | 1.972037 | 0.122293 |
GII_21 | 77 | 39.99481 | 12.23134 | 19.70000 | 65.50000 | 0.199386 | 1.994216 | 0.152915 |
PWI | 77 | 62.31169 | 20.77211 | 11.00000 | 100.0000 | −0.347020 | 2.402276 | 0.260321 |
IDV | 77 | 42.49351 | 23.14919 | 10.00000 | 91.00000 | 0.465942 | 1.900330 | 0.035688 |
MAS | 77 | 48.19481 | 18.96676 | 5.000000 | 100.0000 | 0.025022 | 3.441407 | 0.728641 |
UAI | 77 | 67.58442 | 21.95890 | 8.000000 | 100.0000 | −0.487146 | 2.296691 | 0.098644 |
LTO | 77 | 47.72727 | 23.02152 | 7.000000 | 100.0000 | 0.193820 | 2.034557 | 0.176178 |
IVR | 77 | 44.70130 | 21.85422 | 0.000000 | 97.00000 | 0.176450 | 2.248526 | 0.330988 |
Ln(GII_07) | Ln(GII_09) | GII_19 | GII_21 | PWI | IDV | MAS | UAI | LTO | IVR | |
---|---|---|---|---|---|---|---|---|---|---|
Ln(GII_07) | 1.000000 | |||||||||
----- | ||||||||||
Ln(GII_09) | 0.898987 | 1.000000 | ||||||||
(0.0000) | ----- | |||||||||
GII_19 | 0.886044 | 0.943466 | 1.000000 | |||||||
(0.0000) | (0.0000) | ----- | ||||||||
GII_21 | 0.887254 | 0.934071 | 0.994022 | 1.000000 | ||||||
(0.0000) | (0.0000) | (0.0000) | ----- | |||||||
PWI | −0.607805 | −0.669686 | −0.636594 | −0.616166 | 1.000000 | |||||
(0.0000) | (0.0000) | (0.0000) | (0.0000) | ----- | ||||||
IDV | 0.695116 | 0.708043 | 0.698211 | 0.672882 | −0.723676 | 1.000000 | ||||
(0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | ----- | |||||
MAS | 0.070911 | −0.067462 | −0.033487 | −0.037622 | 0.141916 | 0.053301 | 1.000000 | |||
(0.5400) | (0.5599) | (0.7725) | (0.7453) | (0.2183) | (0.6452) | ----- | ||||
UAI | −0.372284 | −0.352717 | −0.337539 | −0.312942 | 0.259129 | −0.234234 | 0.007274 | 1.000000 | ||
(0.0009) | (0.0017) | (0.0027) | (0.0056) | (0.0229) | (0.0403) | (0.9499) | ----- | |||
LTO | 0.289699 | 0.322902 | 0.413263 | 0.436319 | 0.051276 | 0.108150 | 0.064761 | 0.081397 | 1.000000 | |
(0.0106) | (0.0042) | (0.0002) | (0.0001) | (0.6579) | (0.3491) | (0.5758) | (0.4816) | ----- | ||
IVR | 0.330275 | 0.295844 | 0.240250 | 0.226169 | -0.375957 | 0.296610 | −0.004143 | −0.182978 | −0.450619 | 1.000000 |
(0.0034) | (0.0090) | (0.0353) | (0.0479) | (0.0008) | (0.0088) | (0.9715) | (0.1112) | (0.0000) | ----- |
Dependent Variables | Ln(GII_07) | Ln(GII_09) | GII_19 | GII_21 | ||||
---|---|---|---|---|---|---|---|---|
Models | OLS | Robust | OLS | Robust | OLS | Robust | OLS | Robust |
PWI | −0.002854 ** | −0.002906 * | −0.003060 *** | −0.002865 *** | −0.162910 *** | −0.155237 *** | −0.169453 *** | −0.159133 *** |
(0.001413) | (0.001485) | (0.000995) | (0.000948) | (0.053950) | (0.056031) | (0.057668) | (0.060184) | |
IDV | 0.004258 *** | 0.003909 *** | 0.002960 *** | 0.003718 *** | 0.165820 *** | 0.176261 *** | 0.156257 *** | 0.167569 *** |
(0.001250) | (0.001314) | (0.000880) | (0.000838) | (0.047733) | (0.049575) | (0.051023) | (0.053249) | |
MAS | 0.000856 | 0.000730 | −0.000742 | −0.000989 | −0.025795 | −0.027511 | −0.029463 | −0.032742 |
(0.001030) | (0.001083) | (0.000725) | (0.000691) | (0.039338) | (0.040856) | (0.042049) | (0.043884) | |
UAI | −0.002684 *** | −0.002552 *** | −0.001778 *** | −0.000906 | −0.100386 *** | −0.096704 *** | −0.093758 ** | −0.093036 ** |
(0.000893) | (0.000939) | (0.000629) | (0.000599) | (0.034115) | (0.035431) | (0.036466) | (0.038057) | |
LTO | 0.004852 *** | 0.004950 *** | 0.003926 *** | 0.003775 *** | 0.265647 *** | 0.266500 *** | 0.290284 *** | 0.290233 *** |
(0.000958) | (0.001008) | (0.000675) | (0.000643) | (0.036597) | (0.038009) | (0.039119) | (0.040825) | |
IVR | 0.003623 *** | 0.003847 *** | 0.002337 *** | 0.002539 *** | 0.127366 *** | 0.135438 *** | 0.137386 *** | 0.144106 *** |
(0.001066) | (0.001121) | (0.000750) | (0.000715) | (0.040705) | (0.042275) | (0.043510) | (0.045408) | |
Constant | 0.791623 *** | 0.786725 *** | 1.154604 *** | 1.051247 *** | 34.25055 *** | 32.68135 *** | 31.67457 *** | 30.26788 *** |
(0.157226) | (0.165321) | (0.110713) | (0.105468) | (6.004710) | (6.236364) | (6.418554) | (6.698551) | |
Breusch-Pagan p-value | 0.7766 | - | 0.0719 | - | 0.3254 | - | 0.3097 | - |
adjust. | 0.647129 | 0.566746 | 0.694742 | 0.632580 | 0.720600 | 0.658437 | 0.701010 | 0.635567 |
Obs. | 77 | 77 | 77 | 77 | 77 | 77 | 77 | 77 |
Dependent Variables | Ln(GII_07) | Ln(GII_09) | GII_19 | GII_21 | ||||
---|---|---|---|---|---|---|---|---|
Models | OLS | Robust | OLS | Robust | OLS | Robust | OLS | Robust |
PWI | −0.000778 | −0.001409 | −0.001446 | −0.001347 | −0.076265 | −0.072946 | −0.075039 | −0.070211 |
(0.001791) | (0.001774) | (0.001036) | (0.001070) | (0.062185) | (0.069352) | (0.068265) | (0.076067) | |
IDV | 0.001164 | 0.000263 | −0.000560 | −0.000315 | 0.026027 | 0.025094 | 0.015890 | 0.018681 |
(0.001516) | (0.001502) | (0.000877) | (0.000906) | (0.052634) | (0.058700) | (0.057780) | (0.064383) | |
MAS | 0.001629 | 0.001464 | 6.06×10-5 | −0.000110 | 0.004078 | 0.003995 | 0.000295 | −0.001310 |
(0.001059) | (0.001049) | (0.000613) | (0.000633) | (0.036764) | (0.041002) | (0.040359) | (0.044972) | |
UAI | −0.003347 *** | −0.003236 *** | −0.002832 *** | −0.002438 *** | −0.150495 *** | −0.151523 *** | −0.144954 *** | −0.151368 *** |
(0.001110) | (0.001099) | (0.000642) | (0.000663) | (0.038537) | (0.042978) | (0.042305) | (0.047140) | |
LTO | 0.003923 *** | 0.004378 *** | 0.002446 *** | 0.002573 *** | 0.189846 *** | 0.203242 *** | 0.216101 *** | 0.233468 *** |
(0.001373) | (0.001359) | (0.000794) | (0.000820) | (0.047651) | (0.053143) | (0.052310) | (0.058289) | |
IVR | 0.005177 *** | 0.005137 *** | 0.003972 *** | 0.004396 *** | 0.196409 *** | 0.203497 *** | 0.203945 *** | 0.204453 *** |
(0.001691) | (0.0016740 | (0.000978) | (0.001010) | (0.058690) | (0.065454) | (0.064428) | (0.071791) | |
Constant | 0.890554 *** | 0.937889 *** | 1.356864 *** | 1.289585 *** | 42.75596 *** | 41.60606 *** | 39.93662 *** | 38.90452 *** |
(0.219765) | (0.217644) | (0.127121) | (0.131303) | (7.629076) | (8.508373) | (8.375022) | (9.332166) | |
Breusch-Pagan p-value | 0.5221 | − | 0.2439 | − | 0.7826 | − | 0.8559 | − |
adjust. | 0.510528 | 0.455223 | 0.645048 | 0.605178 | 0.621160 | 0.512370 | 0.569588 | 0.471913 |
Obs. | 39 | 39 | 39 | 39 | 39 | 39 | 39 | 39 |
Dependent Variables | Ln(GII_07) | Ln(GII_09) | GII_19 | GII_21 | ||||
---|---|---|---|---|---|---|---|---|
Models | OLS | Robust | OLS | Robust | OLS | Robust | OLS | Robust |
PWI | −0.002035 | −0.002142 | 0.000260 | −0.001009 | −0.033735 | −0.015162 | −0.064667 | −0.031370 |
(0.002511) | (0.002678) | (0.001253) | (0.000816) | (0.085837) | (0.088294) | (0.096758) | (0.100343) | |
IDV | 0.005508 ** | 0.005182 ** | 0.003016 ** | 0.002523 *** | 0.126414 | 0.146809* | 0.130779 | 0.166497* |
(0.002345) | (0.002501) | (0.001170) | (0.000762) | (0.080152) | (0.082446) | (0.090350) | (0.093698) | |
MAS | −0.000732 | −0.000764 | −0.000101 | 0.001085 | 0.037040 | 0.021645 | 0.019531 | −0.015232 |
(0.002518) | (0.002686) | (0.001257) | (0.000819) | (0.086081) | (0.088545) | (0.097033) | (0.100629) | |
UAI | −0.003249 ** | −0.003206 ** | −0.001198 * | −0.000596 | −0.067213 | −0.044761 | −0.066495 | −0.026960 |
(0.001382) | (0.001475) | (0.000690) | (0.000450) | (0.047260) | (0.048613) | (0.053273) | (0.055248) | |
LTO | 0.003696 ** | 0.003721 ** | 0.002151 *** | 0.003709 *** | 0.198665 *** | 0.173618 *** | 0.229556 *** | 0.181481 *** |
(0.001480) | (0.001579) | (0.000739) | (0.000481) | (0.050611) | (0.052060) | (0.057051) | (0.059165) | |
IVR | 0.002798 ** | 0.002939 ** | 0.000827 | 0.001749 *** | 0.061644 | 0.055528 | 0.078448 | 0.068854 |
(0.001318) | (0.001405) | (0.000657) | (0.000428) | (0.045042) | (0.046331) | (0.050772) | (0.052654) | |
Constant | 0.854685 *** | 0.862729 *** | 0.919344 *** | 0.808375 *** | 23.52133 ** | 21.85161 ** | 22.97308 ** | 20.48578 * |
(0.262217) | (0.279697) | (0.130854) | (0.085260) | (8.964136) | (9.220766) | (10.10468) | (10.47913) | |
Breusch-Pagan p-value | 0.1099 | - | 0.1621 | - | 0.0424 | - | 0.0514 | - |
adjust. | 0.267857 | 0.211523 | 0.285496 | 0.266592 | 0.319472 | 0.194222 | 0.302659 | 0.157053 |
Obs. | 38 | 38 | 38 | 38 | 38 | 38 | 38 | 38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-S.; Chernikov, S.U.; Nagy, S.; Degtereva, E.A. The Impact of National Culture on Innovation: A Comparative Analysis between Developed and Developing Nations during the Pre- and Post-Crisis Period 2007–2021. Soc. Sci. 2022, 11, 522. https://doi.org/10.3390/socsci11110522
Lee H-S, Chernikov SU, Nagy S, Degtereva EA. The Impact of National Culture on Innovation: A Comparative Analysis between Developed and Developing Nations during the Pre- and Post-Crisis Period 2007–2021. Social Sciences. 2022; 11(11):522. https://doi.org/10.3390/socsci11110522
Chicago/Turabian StyleLee, Han-Sol, Sergey U. Chernikov, Szabolcs Nagy, and Ekaterina A. Degtereva. 2022. "The Impact of National Culture on Innovation: A Comparative Analysis between Developed and Developing Nations during the Pre- and Post-Crisis Period 2007–2021" Social Sciences 11, no. 11: 522. https://doi.org/10.3390/socsci11110522
APA StyleLee, H.-S., Chernikov, S. U., Nagy, S., & Degtereva, E. A. (2022). The Impact of National Culture on Innovation: A Comparative Analysis between Developed and Developing Nations during the Pre- and Post-Crisis Period 2007–2021. Social Sciences, 11(11), 522. https://doi.org/10.3390/socsci11110522