Crime Analysis of the Metropolitan Region of Santiago de Chile: A Spatial Panel Data Approach
Abstract
:1. Introduction
2. Data
3. Spatial Panel Models
4. Results
log(ratio.per) ~ women + infant.mort + birth.rate + social.prog + cult.prog + ipp + school.att + reb + rem + poverty + green.areas + lag(women) + lag(infant.mort) + lag(birth.rate) + lag(social.prog) + lag(cult.prog) + lag(ipp) + lag(school.att) + lag(reb) + lag(rem) + lag(poverty + lag(green.areas) + log(ratio.per.1) + log(ratio.per.11) + log(ratio.prop.1) + log(ratio.prop.11),
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anselin, Luc. 2005. Exploring Spatial Data with GeoDa: A Workbook. Santa Barbara: Center for Spatially Integrated Social Science, UC Santa Barbara. [Google Scholar]
- Anser, Muhammad K., Zahid Yousaf, Abdelmohsen A. Nassani, Saad M. Alotaibi, Ahmad Kabbani, and Khalid Zaman. 2020. Dynamic linkages between poverty, inequality, crime, and social expenditures in a panel of 16 countries: Two-step GMM estimates. Economic Structures 9: 43. [Google Scholar] [CrossRef]
- Baltagi, Badi H. 2005. Econometric Analysis of Panel Data, 3rd ed. Chichester: Wiley. ISBN 10 0-470-01456-3. [Google Scholar]
- Beato, Cláudio, Betânia T. Peixoto, and Mônica Viegas. 2004. Crime, oportunidade e victimzaçao. Revista Brasileira de Ciencias Sociais 19: 73–90. [Google Scholar]
- Becker, Gary S. 1968. Crime and Punishment: An Economic Approach. In The Economic Dimensions of Crime. London: Palgrave Macmillan, pp. 13–68. [Google Scholar]
- Biblioteca del Congreso Nacional de Chile. 2014. Estadísticas Delictuales en Chile. Available online: http://cead.spd.gov.cl/estadisticas-delictuales/ (accessed on 23 September 2022).
- Bivand, Roger S., and David W. S. Wong. 2018. Comparing implementations of global and local indicators of spatial association. TEST 27: 716–48. [Google Scholar] [CrossRef]
- Bivand, Roger, Giovanni Millo, and Gianfranco Piras. 2021. A Review of Software for Spatial Econometrics in R. Mathematics 9: 1276. [Google Scholar] [CrossRef]
- Bivand, Roger, Tim Keitt, and Barry Rowlingson. 2021. rgdal: Bindings for the ’Geospatial’ Data Abstraction Library. R Package Version 1.5-23. Available online: https://CRAN.R-project.org/package=rgdal (accessed on 23 September 2022).
- Bronfenbrenner, Urie. 1981. The Ecology of Human Development. Cambridge: Harvard University Press. ISBN 9780674224575. [Google Scholar]
- Brunton-Smith, Ian, and Patrick Sturgis. 2011. Do neighborhood generate fear of crime? An empirical test using the British Crime Survey. Criminology 49: 331–69. [Google Scholar] [CrossRef]
- Buil-Gil, David, Angelo Moretti, and Samuel H. Langton. 2022. The accuracy of crime statistics: Assessing the impact of police data bias on geographic crime analysis. Journal of Experimental Criminology 18: 515–41. [Google Scholar] [CrossRef]
- Cardona, Arcadio. 2020. Factores implicados en el fracaso escolar de adolescentes con conducta delictiva. Revista Criminalidad 62: 219–32. [Google Scholar]
- Carrión, Fernando. 2008. Violencia urbana: Un asunto de ciudad. Eure 34: 111–30. [Google Scholar] [CrossRef]
- Chioda, Laura. 2016. Fin a la violencia en América Latina: Una Mirada a la Prevención desde la infancia a la edad adulta. Sinopsis. Washington, DC: Banco Mundial. [Google Scholar]
- Cliff, Andrew D., and Keith Ord. 1973. Spatial Autocorrelation. London: Pion. [Google Scholar]
- Cole, Julio H., and Andrés M. Gramajo. 2009. Homicide rates in a cross-section of countries: Evidence and interpretations. Population and Development Review 35: 749–76. [Google Scholar] [CrossRef]
- Connealy, Nathan T. 2020. Can we trust crime predictors and crime categories? Expansions on the potential problem of generalization. Applied Spatial Analysis and Policy 13: 669–92. [Google Scholar] [CrossRef]
- Cornish, Derek B., and Ronald V. Clarke. 1986. The Reasoning Criminal: Rational Choice Perspectives on Offending. New York: Springer. [Google Scholar]
- Corporación Latinobarómetro. 2016. Informe Latinobarómetro 2016. Available online: https://www.latinobarometro.org/latContents.jsp (accessed on 23 September 2022).
- Croissant, Yves, and Giovanni Millo. 2019. Panel Data Econometrics with R. Hoboken: Wiley. ISBN 978-1-118-94918-4. [Google Scholar]
- Dammert, Lucía, and Graciela A. L. Reyes. 2004. La prevención del delito en Chile. Una visión desde la comunidad. Santiago de Chile: CESC, Universidad de Chile. [Google Scholar]
- de la Fuente Mella, Hanns, and Claudia Mejías-Navarro. 2011. Análisis econométrico de los determinantes de la criminalidad. Política Criminal 6: 192–208. [Google Scholar] [CrossRef]
- Dong, Baomin, Peter H. Egger, and Yibei Guo. 2020. Is poverty the mother of crime? Evidence from homicide rates in China. PLoS ONE 15: e0233034. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, Isaac. 1973. Participation in illegitimate activities: A theoretical and empirical investigation. Journal of Political Economy 81: 521–65. [Google Scholar] [CrossRef]
- Elhorst, J. Paul. 2003. Specification and estimation of spatial panel data models. International Regional Science Review 26: 244–68. [Google Scholar] [CrossRef]
- Elhorst, J. Paul. 2009. Spatial panel data models. In Handbook of Applied Spatial Analysis. Edited by Manfred M. Fischer and Arthur Getis. Heildelberg: Springer, chp. 2. [Google Scholar]
- Elhorst, J. Paul. 2014. Spatial Econometrics. From Cross-Sectional Data to Spatial Panels. Heildelberg: Springer. [Google Scholar] [CrossRef]
- Fajnzylber, Pablo, Daniel Lederman, and Norman Loayza. 2000. On Crime and Victimization. Economía 1: 219–302. [Google Scholar] [CrossRef]
- Farrell, Albert D., Eva M. Kung, Kamila S. White, and Robert F. Valois. 2000. The structure of self-reported aggression, drug use, and delinquent behaviors during early adolescence. Journal of Clinical Child Psychology 29: 282–92. [Google Scholar] [CrossRef]
- Fiscalía de Chile. 2021. Áreas de Persecución, Delitos Violentos. Available online: http://www.fiscaliadechile.cl/Fiscalia/areas/violentos.jsp (accessed on 23 September 2022).
- García, Williams Gilberto Jiménez. 2016. La violencia y cohesión social, una aproximación a la construcción de un índice de cohesión social. Estudio de caso comuna 11 de Dosquebradas, año 2013. Revista de Direito da Cidade 8: 483–512. [Google Scholar] [CrossRef]
- García, Williams Gilberto Jiménez, and Ricardo Rafael Rentería Ramos. 2019. Aportes de la complejidad para la comprensión de las dinámicas de la violencia en las ciudades. Caso de estudio: Las ciudades de Bello y Palmira, Colombia (años 2010–2016). Revista Criminalidad 62: 9–43. [Google Scholar]
- Gaviria, Alejandro, and Carmen Pagés. 1999. Patterns of crime victimization in Latin American cities. Journal of Development Economics 67: 181–203. [Google Scholar] [CrossRef]
- Glaser, Stephanie, Robert C. Jung, and Karsten Schweikert. 2021. Spatial Panel Count Data: Modeling and Forecasting of Urban Crimes. Available online: https://ssrn.com/abstract=3701642 (accessed on 23 September 2022).
- Gleditsch, Kristian Skrede, Mauricio Rivera, and Bárbara Zárate-Tenorio. 2022. Can Education Reduce Violent Crime? Evidence from Mexico before and after the Drug War Onset. The Journal of Development Studies 58: 292–309. [Google Scholar] [CrossRef]
- Granados, Roberto Montero. 2011. Efectos fijos o aleatorios: Test de especificación. Documentos de Trabajo en Economía Aplicada. Granada: Universidad de Granada. [Google Scholar]
- Groff, Elizabeth, and Eric S. McCord. 2012. The role of neighborhood parks as crime generators. Security Journal 25: 1–24. [Google Scholar] [CrossRef]
- Hjalmarsson, Randi, and Lance Lochner. 2012. The Impact of Education on Crime: International Evidence. CESifo DICE Report. München: Institut—Leibniz—Institut für Wirtschaftsforschung an der Universität München, vol. 10, Iss. 2, ISSN 1613-6373. pp. 49–55. Available online: http://hdl.handle.net/10419/167078 (accessed on 23 September 2022).
- InSight Crime Foundation. 2022. Balance de InSight Crime de los homicidios en 2021. Available online: https://es.insightcrime.org/noticias/balance-insight-crime-homicidios-2021/ (accessed on 23 September 2022).
- International Monetary Fund. 2022. World Economic Outlook: War Sets Back the Global Recovery; Washington, DC: International Monetary Fund. Available online: https://www.imf.org/en/Publications/WEO/Issues/2022/04/19/world-economic-outlook-april-2022 (accessed on 23 September 2022).
- Krug, Gro Harlem, Linda L. Mercy, Etienne Dahlberg, and James A. Zhi. 2002. World Report on Violence and Health. Geneva: WHO. ISBN 9241545615. [Google Scholar]
- Lauridsen, Jørgen T., Fatma Zeren, and Ayşe Ari. 2013. A Spatial Panel Data Analysis of Crime Rates in EU. Available online: https://www.sdu.dk/-/media/files/om_sdu/institutter/ivoe/disc_papers/disc_2013/dpbe2_2013.pdf (accessed on 23 September 2022).
- Liesenfeld, Roman, Jean-François Richard, and Jan Vogler. 2017. Likelihood-Based Inference and Prediction in Spatio-Temporal Panel Count Models for Urban Crimes. Journal of Applied Econometrics 32: 600–20. [Google Scholar] [CrossRef] [Green Version]
- Machin, Stephen, Olivier Marie, and Suncčica Vujić. 2011. The crime reduction effect of education. The Economic Journal 121: 463–84. [Google Scholar] [CrossRef]
- Marquet, Oriol, S. Scott Ogletree, J. Aaron Hipp, Luis J. Suau, Candice B. Horvath, Alexander Sinykin, and Myron F. Floyd. 2020. Effects of Crime Type and Location on Park Use Behavior. Preventing Chronic Disease 17: E73. [Google Scholar] [CrossRef]
- Messner, Steven F., Lawrence E. Raffalovich, and Gretchen M. Sutton. 2010. Poverty, infant mortality, and homicide rates in cross-national perspective: Assessments of criterion and construct validity. Criminology 48: 509–37. [Google Scholar] [CrossRef]
- Millo, Giovanni, and Gianfranco Piras. 2012. splm: Spatial Panel Data Models in R. Journal of Statistical Software 47: 1–38. [Google Scholar] [CrossRef]
- Moran, Patrick A. P. 1950. A Test for the Serial Independence of Residuals. Biometrika 37: 178–81. [Google Scholar] [CrossRef]
- Núñez, Javier, Jorge Rivera, Javier Villavicencio, and Oscar Molina. 2003. Determinantes socioeconómicos y demográficos del crimen en chile: Evidencia desde un panel de datos de las regiones chilenas. Estudios de Economía 30: 55–85. [Google Scholar]
- R Core Team. 2020. R: A Language and Environment for Statistical Computing; Vienna: R Foundation for Statistical Computing. Available online: http://www.R-project.org/ (accessed on 23 September 2022).
- Sharkey, Patrick, Max Besbris, and Michael Friedson. 2016. Poverty and Crime. In The Oxford Handbook of the Social Science of Poverty. Edited by David Brady and Linda M. Burton. Oxford: OUP. [Google Scholar] [CrossRef]
- Shepley, Mardelle, Naomi Sachs, Hessam Sadatsafavi, Christine Fournier, and Kati Peditto. 2019. The Impact of Green Space on Violent Crime in Urban Environments: An Evidence Synthesis. International Journal of Environmental Research and Public Health 16: 5119. [Google Scholar] [CrossRef]
- Sinding, Steven W. 2009. Population, poverty and economic development. Philosophical Transactions of the Royal Society B: Biological Sciences 364: 3023–30. [Google Scholar] [CrossRef]
- Taylor, Sandie. 2016. Crime and Criminality: A Multidisciplinary Approach. New York: Routledge/Taylor & Francis Group. ISBN 978-1-138-88862-3. [Google Scholar]
- Velásquez, Alejo V., and Viviana García Pinzón. 2008. Violencia urbana, seguridad ciudadana y políticas públicas: La reducción de la violencia en las ciudades de Bogotá y Medellín (Colombia) 1991–2007. Pensamiento Iberoamericano 2: 249–70. [Google Scholar]
- Vieno, Alessio, Michele Roccato, and Silvia Russo. 2013. Is fear of crime mainly social and economic insecurity in disguise? A multilevel multinational analysis. Journal of Community and Applied Social Psychology 23: 519–35. [Google Scholar] [CrossRef]
- Wilson James, Q., and L. Kelling George. 1982. Broken windows: The police and neighborhood safety. Atlantic Monthly 249: 29–38. [Google Scholar]
- Wortley, Richard. 1997. Reconsidering the role of opportunity in situational crime prevention. In Rational Choice and Situational Crime Prevention. Edited by Graeme Newman, Ronald V. Clarke and S. Giora Shoham. Farnham: Ashgate Publishing, pp. 65–81. [Google Scholar]
- Ye, Xinyue, and Ling Wu. 2011. Analyzing the dynamics of homicide patterns in Chicago: ESDA and spatial panel approaches. Applied Geography 31: 800–7. [Google Scholar] [CrossRef]
1 Homicide (murder) | 7 Vehicle theft |
2 Robbery | 8 Burglary in an residential location |
3 Injuries | 9 Burglary in a non-residential location |
4 Other thefts with force | 10 Objects theft of or from vehicles |
5 Robbery by intimidation | 11 Robbery by surprise |
6 Robbery with violence | 12 Rape |
commune | day of the month |
quadrant | day of the year |
location | time of day |
crime | arrested |
year | sex |
month | education |
week | age |
Variable | Description |
---|---|
year | year |
commune | name of the commune |
area | communal area in km |
density | population density |
population | communal population estimated by INE |
women | percentage of female communal population |
infant.mort | infant mortality rate |
birth.rate | birth rate |
social.prog | share of social programme area in total budget (%) |
cult.prog | share of cultural programmes in total budget (%) |
ipp | permanent own income per capita (%) |
school.att | percentage of communal school attendance |
reb | school failure rate in basic education (communal) |
rem | school failure rate in secondary education (communal) |
poverty | percentage of the population living in poverty |
green.areas | m of green areas per capita |
Crimes against People | Crimes against Property |
---|---|
homicide (murder) | robbery |
injuries | other thefts with force |
robbery by intimidation | vehicle theft |
robbery with violence | burglary in an residential location |
robbery by surprise | burglary in a non-residential location |
rape | object theft of or from vehicles |
Year | Against People | Against Property | Totals |
---|---|---|---|
2010 | 95,444 | 145,238 | 240,682 |
2011 | 104,240 | 155,665 | 259,905 |
2012 | 89,292 | 142,298 | 231,590 |
2013 | 93,903 | 145,912 | 239,815 |
2014 | 98,276 | 149,384 | 247,660 |
2015 | 98,221 | 146,471 | 244,692 |
2016 | 91,985 | 132,557 | 224,542 |
2017 | 96,269 | 131,992 | 228,261 |
2018 | 101,366 | 124,450 | 225,816 |
totals | 868,996 | 1,273,967 | 2,142,963 |
Main Model | Reduced Model 1 | Reduced Model 2 | ||||
---|---|---|---|---|---|---|
Variable | p-Value | p-Value | p-Value | |||
women | −0.0259 | 0.0568 | −0.0140 | 0.2662 | −0.0128 | 0.3095 |
infant.mort | 0.0036 | 0.0414 | 0.0049 | 0.0062 | 0.0050 | 0.0053 |
birth.rate | 0.0285 | 0.0000 | 0.0275 | 0.0000 | 0.0272 | 0.0000 |
social.prog | 0.0028 | 0.2996 | 0.0028 | 0.2884 | 0.0027 | 0.3315 |
cult.prog | 0.0089 | 0.3986 | 0.0116 | 0.2692 | 0.0114 | 0.2787 |
ipp | −0.0085 | 0.9028 | −0.0367 | 0.5938 | −0.0635 | 0.3221 |
school.att | −0.0012 | 0.1905 | −0.0019 | 0.0122 | −0.0020 | 0.0087 |
reb | −0.0038 | 0.8956 | −0.0107 | 0.7147 | −0.0089 | 0.7590 |
rem | 0.0073 | 0.2251 | 0.0092 | 0.1236 | 0.0105 | 0.0740 |
poverty | 0.0041 | 0.0099 | 0.0028 | 0.0660 | 0.0025 | 0.0946 |
green.areas | 0.0109 | 0.0164 | 0.0085 | 0.0670 | 0.0093 | 0.0358 |
lag(women) | 0.0769 | 0.0200 | ||||
lag(infant.mort) | 0.0045 | 0.3254 | ||||
lag(birth.rate) | −0.0001 | 0.9926 | ||||
lag(social.prog) | 0.0106 | 0.1076 | ||||
lag(cult.prog) | −0.0316 | 0.2741 | ||||
lag(ipp) | 0.1982 | 0.2365 | ||||
lag(school.att) | −0.0021 | 0.2645 | ||||
lag(reb) | −0.0074 | 0.9089 | ||||
lag(rem) | 0.0191 | 0.2083 | ||||
lag(poverty) | −0.0083 | 0.0072 | ||||
lag(green.areas) | 0.0106 | 0.3626 | ||||
log(ratio.per.1) | 0.3516 | 0.0000 | 0.3775 | 0.0000 | 0.3975 | 0.0000 |
log(ratio.per.11) | −0.3298 | 0.0009 | −0.2423 | 0.0089 | −0.3222 | 0.0056 |
log(ratio.prop.1) | 0.0575 | 0.1954 | 0.0354 | 0.4144 | ||
log(ratio.prop.11) | −0.0534 | 0.5546 | −0.1098 | 0.1509 | ||
0.4150 | 0.0000 | 0.4389 | 0.0000 | 0.4370 | 0.0000 | |
Robust LM test | 1.2449 | 0.2645 | 3.4165 | 0.0645 | 2.3841 | 0.1226 |
0.9560 | 0.9538 | 0.9535 |
Year | Moran I | p-Value |
---|---|---|
2011 | −0.0070 | 0.5028 |
2012 | 0.9825 | 0.1629 |
2013 | −0.1089 | 0.5434 |
2014 | 0.3450 | 0.3650 |
2015 | −0.3009 | 0.6182 |
2016 | −0.6386 | 0.7384 |
2017 | −0.6672 | 0.7477 |
2018 | −0.5003 | 0.6916 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cadena-Urzúa, P.; Briz-Redón, Á.; Montes, F. Crime Analysis of the Metropolitan Region of Santiago de Chile: A Spatial Panel Data Approach. Soc. Sci. 2022, 11, 443. https://doi.org/10.3390/socsci11100443
Cadena-Urzúa P, Briz-Redón Á, Montes F. Crime Analysis of the Metropolitan Region of Santiago de Chile: A Spatial Panel Data Approach. Social Sciences. 2022; 11(10):443. https://doi.org/10.3390/socsci11100443
Chicago/Turabian StyleCadena-Urzúa, Pablo, Álvaro Briz-Redón, and Francisco Montes. 2022. "Crime Analysis of the Metropolitan Region of Santiago de Chile: A Spatial Panel Data Approach" Social Sciences 11, no. 10: 443. https://doi.org/10.3390/socsci11100443
APA StyleCadena-Urzúa, P., Briz-Redón, Á., & Montes, F. (2022). Crime Analysis of the Metropolitan Region of Santiago de Chile: A Spatial Panel Data Approach. Social Sciences, 11(10), 443. https://doi.org/10.3390/socsci11100443