Emotion-Driven Architectural Image Generation and EEG-Based Evaluation: Divergent Subjective and Physiological Responses to AI-Modified Design Elements
Abstract
1. Introduction
1.1. Architectural Elements and Emotional Perception
1.2. Emotion-Driven SD Spatial Generation Workflow
1.3. Theoretical Foundations for Emotion-Adaptive Architectural Design
1.4. Research on Subjective–Physiological Consistency
2. Materials and Methods
2.1. Generation Workflow and Experimental Image Selection
2.1.1. Corpus Construction and Keyword Expansion
2.1.2. Emotion-Oriented Generation and LoRA Fine-Tuning Mechanism
2.1.3. Experimental Stimulus Selection and Design-Element Manipulations
2.1.4. Quantitative Validation of Design-Element Manipulations
2.2. Experimental Participants
2.3. Experimental Methodology
- (1)
- EEG preparation and baseline acquisition: Following informed consent, EEG electrodes were fitted and a resting-state baseline (60 s) recorded.
- (2)
- Stimulus presentation and recording: Twenty-four architectural images were sequentially presented, each for 20 s, with synchronous EEG recording. Stimulus duration was set at 20 s. This study adopted a common practice in environmental psychology and physiological signal research, employing relatively extended presentation durations (15–20 s) in EEG experiments to ensure subjects attained stable emotional states and generated measurable physiological responses [53].
- (3)
- Subjective scoring and transition intervals: Following each stimulus, participants completed a relaxation–arousal rating (40 s), after which a grey-background crosshair fixation point (10 s) was presented to mitigate interference from consecutive stimuli.
- (4)
- Experiment conclusion: Electrodes were removed and data saved upon task completion.

2.3.1. Subjective Emotional Assessment
2.3.2. Physiological Indicator Assessment
2.4. Data Analysis Methods
3. Results
3.1. Questionnaire Survey
3.2. Variations in RAB Responses Across Architectural Elements
3.3. Comparative Analysis of Arousal Levels and RAB Metric Values for the P4 Channel
3.4. Comparison of Subjective Questionnaire and RAB Metric Values
4. Discussion
4.1. Key Findings
4.2. Design Implications
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| EEG | Electroencephalography |
| ECG | Electrocardiography |
| EDA | Electrodermal Activity |
| RAB | Ratio of Alpha to Beta power |
| LMM | Further Linear Mixed Model |
| ML | Maximum Likelihood |
| AIC | Akaike Information Criterion |
| BIC | Bayesian Information Criterion |
| LRT | Likelihood Ratio Test |
| LoRA | Low-Rank Adaptation |
| ControlNet | Conditional control network for structure/geometry constraints |
| CFG | Classifier-Free Guidance |
| GANs | Generative adversarial networks |
| BCIs | Brain-computer interfaces |
References
- Küller, R.; Mikellides, B.; Janssens, J. Color, Arousal, and Performance—A Comparison of Three Experiments. Color Res. Appl. 2009, 34, 141–152. [Google Scholar] [CrossRef]
- Cho, J.E.; Kang, S.Y.; Hong, Y.Y.; Jun, H.J. Predicting Architectural Space Preferences Using EEG-Based Emotion Analysis: A CNN-LSTM Approach. Appl. Sci. 2025, 15, 4217. [Google Scholar] [CrossRef]
- Abbas, S.; Okdeh, N.; Roufayel, R.; Kovacic, H.; Sabatier, J.-M.; Fajloun, Z.; Abi Khattar, Z. Neuroarchitecture: How the Perception of Our Surroundings Impacts the Brain. Biology 2024, 13, 220. [Google Scholar] [CrossRef]
- Shemesh, A.; Leisman, G.; Bar, M.; Grobman, Y.J. The Emotional Influence of Different Geometries in Virtual Spaces: A Neurocognitive Examination. J. Environ. Psychol. 2022, 81, 101802. [Google Scholar] [CrossRef]
- Weijs, M.L.; Jonauskaite, D.; Reutimann, R.; Mohr, C.; Lenggenhager, B. Effects of Environmental Colours in Virtual Reality: Physiological Arousal Affected by Lightness and Hue. R. Soc. Open Sci. 2023, 10, 230432. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.A. A Circumplex Model of Affect. J. Pers. Soc. Psychol. 1980, 39, 1161–1178. [Google Scholar] [CrossRef]
- Mehrabian, A.; Russell, J.A. An Approach to Environmental Psychology; The MIT Press: Cambridge, MA, USA, 1974; ISBN 978-0-262-13090-5. [Google Scholar]
- Nasar, J.L. Urban Design Aesthetics: The Evaluative Qualities of Building Exteriors. Environ. Behav. 1994, 26, 377–401. [Google Scholar] [CrossRef]
- Aspinall, P.; Mavros, P.; Coyne, R.; Roe, J. The Urban Brain: Analysing Outdoor Physical Activity with Mobile EEG. Br. J. Sports Med. 2015, 49, 272–276. [Google Scholar] [CrossRef]
- Bower, I.; Tucker, R.; Enticott, P.G. Impact of Built Environment Design on Emotion Measured via Neurophysiological Correlates and Subjective Indicators: A Systematic Review. J. Environ. Psychol. 2019, 66, 101344. [Google Scholar] [CrossRef]
- Elliot, A.J.; Maier, M.A. Color Psychology: Effects of Perceiving Color on Psychological Functioning in Humans. Annu. Rev. Psychol. 2014, 65, 95–120. [Google Scholar] [CrossRef]
- D’andrade, R.; Egan, M. The Colors of Emotion. Am. Ethnol. 1974, 1, 49–63. [Google Scholar] [CrossRef]
- Kotradyova, V.; Vavrinsky, E.; Kalinakova, B.; Petro, D.; Jansakova, K.; Boles, M.; Svobodova, H. Wood and Its Impact on Humans and Environment Quality in Health Care Facilities. Int. J. Environ. Res. Public Health 2019, 16, 3496. [Google Scholar] [CrossRef]
- Franz, G.; von der Heyde, M.; Bülthoff, H.H. An Empirical Approach to the Experience of Architectural Space in Virtual Reality—Exploring Relations between Features and Affective Appraisals of Rectangular Indoor Spaces. Autom. Constr. 2005, 14, 165–172. [Google Scholar] [CrossRef]
- Hejazi, M. Geometry in Nature and Persian Architecture. Build. Environ. 2005, 40, 1413–1427. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, S. Relationships between Physical Environments and Creativity: A Scoping Review. Think. Ski. Creat. 2023, 48, 101276. [Google Scholar] [CrossRef]
- Salingaros, N.A. Environments That Boost Creativity: AI-Generated Living Geometry. Multimodal Technol. Interact. 2025, 9, 38. [Google Scholar] [CrossRef]
- Labib, Z.; Nabil, K.; Amin, K. A Spatial Design Guideline for Supporting Creativity at Architectural Firms. HBRC J. 2023, 19, 63–85. [Google Scholar] [CrossRef]
- Medel-Vera, C.; Britton, S.; Gates, W.F. An Exploration of the Role of Generative AI in Fostering Creativity in Architectural Learning Environments. Comput. Educ. Artif. Intell. 2025, 9, 100501. [Google Scholar] [CrossRef]
- Makeig, S.; Jung, T.-P. Tonic, Phasic, and Transient EEG Correlates of Auditory Awareness in Drowsiness. Cogn. Brain Res. 1996, 4, 15–25. [Google Scholar] [CrossRef]
- Broyd, S.J.; Demanuele, C.; Debener, S.; Helps, S.K.; James, C.J.; Sonuga-Barke, E.J.S. Default-Mode Brain Dysfunction in Mental Disorders: A Systematic Review. Neurosci. Biobehav. Rev. 2009, 33, 279–296. [Google Scholar] [CrossRef]
- Vecchiato, G.; Astolfi, L.; De Vico Fallani, F.; Cincotti, F.; Mattia, D.; Salinari, S.; Soranzo, R.; Babiloni, F. Changes in Brain Activity During the Observation of TV Commercials by Using EEG, GSR and HR Measurements. Brain Topogr. 2010, 23, 165–179. [Google Scholar] [CrossRef]
- Zhang, Z.; Fort, J.M.; Giménez Mateu, L. Decoding Emotional Responses to AI-Generated Architectural Imagery. Front. Psychol. 2024, 15, 1348083. [Google Scholar] [CrossRef]
- Ji, S.-Y.; Kim, M.-K.; Jun, H.-J. Emotion Analysis AI Model for Sensing Architecture Using EEG. Appl. Sci. 2025, 15, 2742. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Fang, L.; Zhang, J.; Whang, M. The Development of the Two-Dimensional Model of Emotion Based on Both Architectural Emotion Words and Design Elements in China. Buildings 2024, 14, 4000. [Google Scholar] [CrossRef]
- Dang, S.; He, Y.; Ling, L.; Qian, Z.; Zhao, N.; Cao, N. EmotiCrafter: Text-to-Emotional-Image Generation based on Valence-Arousal Model. arXiv 2025, arXiv:2501.05710. [Google Scholar]
- Higuera-Trujillo, J.L.; Llinares, C.; Macagno, E. The Cognitive-Emotional Design and Study of Architectural Space: A Scoping Review of Neuroarchitecture and Its Precursor Approaches. Sensors 2021, 21, 2193. [Google Scholar] [CrossRef] [PubMed]
- Peráček, T.; Kaššaj, M. Legal Easements as Enablers of Sustainable Land Use and Infrastructure Development in Smart Cities. Land 2025, 14, 681. [Google Scholar] [CrossRef]
- Hu, M.; Simon, M.; Fix, S.; Vivino, A.A.; Bernat, E. Exploring a Sustainable Building’s Impact on Occupant Mental Health and Cognitive Function in a Virtual Environment. Sci. Rep. 2021, 11, 5644. [Google Scholar] [CrossRef] [PubMed]
- OHCHR; UN-Habitat. The Right to Adequate Housing: Fact Sheet No. 21 (Rev.1); United Nations Human Rights Office United Nations Human Settlements Programme; UN-Habitat: Nairobi, Kenya, 2009. [Google Scholar]
- Pessina, S. The Link Between Environmental Rights and the Rights of Nature: The Virtues of a Complexity-Based Approach 1. Jurid. Trib.-Rev. Comp. Int. Law 2025, 15, 406–422. Available online: https://www.tribunajuridica.eu/arhiva/y15v2/9.pdf (accessed on 18 December 2025).
- Li, Z.; Huang, X.; White, M. Effects of the Visual Character of Transitional Spaces on Human Stress Recovery in a Virtual Reality Environment. Int. J. Environ. Res. Public Health 2022, 19, 13143. [Google Scholar] [CrossRef]
- Kim, S. Cognitive Efficiency in VR Simulated Natural Indoor Environments Examined through EEG and Affective Responses. Sci. Rep. 2025, 15, 33398. [Google Scholar] [CrossRef] [PubMed]
- Bower, I.S.; Clark, G.M.; Tucker, R.; Hill, A.T.; Lum, J.A.G.; Mortimer, M.A.; Enticott, P.G. Built Environment Color Modulates Autonomic and EEG Indices of Emotional Response. Psychophysiology 2022, 59, e14121. [Google Scholar] [CrossRef]
- Seiz, A.; Kweon, B.-S.; Ellis, C.D.; Oh, H.; Pietro, K. Exploring the Psychophysiological Effects of Viewing Urban Nature through Virtual Reality Using Electroencephalography and Perceived Restorativeness Scale Measures. Sustainability 2023, 15, 13090. [Google Scholar] [CrossRef]
- Bai, Z.; Zhang, S. Effects of Different Natural Soundscapes on Human Psychophysiology in National Forest Park. Sci. Rep. 2024, 14, 17462. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Jeon, J.Y. Relationship between Soundscape Perception and Psychophysiological Responses to Virtual Environmental Events. Virtual Real. 2024, 29, 11. [Google Scholar] [CrossRef]
- LeDoux, J.E. The Emotional Brain: The Mysterious Underpinnings of Emotional Life; Simon and Schuster: New York, NY, USA, 1996; ISBN 978-0-684-83659-1. [Google Scholar]
- Stanovich, K.E.; West, R.F. Individual Differences in Reasoning: Implications for the Rationality Debate? Behav. Brain Sci. 2000, 23, 645–665; discussion 665–726. [Google Scholar] [CrossRef]
- Kahneman, D. Thinking, Fast and Slow; Farrar, Straus and Giroux: New York, NY, USA, 2011; p. 499. ISBN 978-0-374-27563-1. [Google Scholar]
- Chen, T.; Wang, L.; Huang, B.; Yu, J.; Wu, Y. Pursued Spatial Perception Benefit Considering Attractiveness and Cognitive Load: Appropriate Visual Complexity of Indoor Commercial Space. J. Build. Eng. 2024, 98, 111144. [Google Scholar] [CrossRef]
- Lavie, N.; Hirst, A.; de Fockert, J.W.; Viding, E. Load Theory of Selective Attention and Cognitive Control. J. Exp. Psychol. Gen. 2004, 133, 339–354. [Google Scholar] [CrossRef]
- Vartanian, O.; Navarrete, G.; Chatterjee, A.; Fich, L.B.; Leder, H.; Modroño, C.; Nadal, M.; Rostrup, N.; Skov, M. Impact of Contour on Aesthetic Judgments and Approach-Avoidance Decisions in Architecture. Proc. Natl. Acad. Sci. USA 2013, 110, 10446–10453. [Google Scholar] [CrossRef]
- Kopec, D. Environmental Psychology for Design; Bloomsbury Publishing: New York, NY, USA, 2018. [Google Scholar]
- Gibson, J.J. The Ecological Approach to Visual Perception; Houghton, Mifflin and Company: Boston, MA, USA, 1979; ISBN 978-0-395-27049-3. [Google Scholar]
- Chatterjee, A.; Vartanian, O. Neuroaesthetics. Trends Cogn. Sci. 2014, 18, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-Resolution Image Synthesis with Latent Diffusion Models. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 10684–10695. [Google Scholar]
- Jin, F.; Liu, Y.; Tan, Y. Derivative-Free Optimization for Low-Rank Adaptation in Large Language Models. IEEE/ACM Trans. Audio Speech Lang. Process. 2024, 32, 4607–4616. [Google Scholar] [CrossRef]
- Lee, J.-K.; Jeong, H.; Kim, Y.; Cha, S.H. Creating Spatial Visualizations Using Fine-Tuned Interior Design Style Models Informed by User Preferences. Adv. Eng. Inform. 2024, 62, 102686. [Google Scholar] [CrossRef]
- Yang, W.; Wang, C.; Liu, L.; Dong, S.; Zhao, Y. Advancing Interior Design with AI: Controllable Stable Diffusion for Panoramic Image Generation. Buildings 2025, 15, 1391. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, C.; Zhao, C.; Zhang, H.; Wang, W.; Zou, N. A Study of the Effects of Different Indoor Lighting Environments on Computer Work Fatigue. Int. J. Environ. Res. Public Health 2022, 19, 6866. [Google Scholar] [CrossRef] [PubMed]
- Branco, D.; Gonçalves, Ó.F.; Badia, S.B.i. A Systematic Review of International Affective Picture System (IAPS) around the World. Sensors 2023, 23, 3866. [Google Scholar] [CrossRef]
- Carroll, J.B. Review of The Measurement of Meaning. Language 1959, 35, 58–77. [Google Scholar] [CrossRef]
- Norman, G. Likert Scales, Levels of Measurement and the “Laws” of Statistics. Adv. Health Sci. Educ. 2010, 15, 625–632. [Google Scholar] [CrossRef]
- Sugimoto, K.; Kurashiki, H.; Xu, Y.; Takemi, M.; Amano, K. Electroencephalographic Biomarkers of Relaxation: A Systematic Review and Meta-Analysis. J. Cogn. Neurosci. 2025, 1–31. [Google Scholar] [CrossRef]
- Ren, H.; Wang, Y.; Zhang, J.; Zheng, Z.; Wang, Q. Evaluation of the Impact of VR Rural Streetscape Enhancement on Relaxation–Arousal Responses Based on EEG. Appl. Sci. 2024, 14, 2996. [Google Scholar] [CrossRef]
- Kim, S.; Park, H.; Choo, S. Effects of Changes to Architectural Elements on Human Relaxation-Arousal Responses: Based on VR and EEG. Int. J. Environ. Res. Public Health 2021, 18, 4305. [Google Scholar] [CrossRef]
- Barr, D.J.; Levy, R.; Scheepers, C.; Tily, H.J. Random Effects Structure for Confirmatory Hypothesis Testing: Keep It Maximal. J. Mem. Lang. 2013, 68, 255–278. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Benedek, M.; Schickel, R.J.; Jauk, E.; Fink, A.; Neubauer, A.C. Alpha Power Increases in Right Parietal Cortex Reflects Focused Internal Attention. Neuropsychologia 2014, 56, 393–400. [Google Scholar] [CrossRef]
- Gaekwad, J.S.; Sal Moslehian, A.; Roös, P.B. A Meta-Analysis of Physiological Stress Responses to Natural Environments: Biophilia and Stress Recovery Theory Perspectives. J. Environ. Psychol. 2023, 90, 102085. [Google Scholar] [CrossRef]
- Gallotto, S.; Duecker, F.; ten Oever, S.; Schuhmann, T.; de Graaf, T.A.; Sack, A.T. Relating Alpha Power Modulations to Competing Visuospatial Attention Theories. NeuroImage 2020, 207, 116429. [Google Scholar] [CrossRef]
- Kurdi, B.; Lozano, S.; Banaji, M.R. Introducing the Open Affective Standardized Image Set (OASIS). Behav. Res. Methods 2017, 49, 457–470. [Google Scholar] [CrossRef]
- Coburn, A.; Vartanian, O.; Chatterjee, A. Buildings, Beauty, and the Brain: A Neuroscience of Architectural Experience. J. Cogn. Neurosci. 2017, 29, 1521–1531. [Google Scholar] [CrossRef]
- Attaianese, E.; Barilà, M.; Perillo, M. Exploring Neuroscientific Approaches to Architecture: Design Strategies of the Built Environment for Improving Human Performance. Buildings 2025, 15, 3524. [Google Scholar] [CrossRef]
- Jelić, A.; Tieri, G.; De Matteis, F.; Babiloni, F.; Vecchiato, G. The Enactive Approach to Architectural Experience: A Neurophysiological Perspective on Embodiment, Motivation, and Affordances. Front. Psychol. 2016, 7, 481. [Google Scholar] [CrossRef] [PubMed]
- Evers, C.; Hopp, H.; Gross, J.J.; Fischer, A.H.; Manstead, A.S.R.; Mauss, I.B. Emotion Response Coherence: A Dual-Process Perspective. Biol. Psychol. 2014, 98, 43–49. [Google Scholar] [CrossRef]
- Liu, L.; Gan, X.; Ren, Z.; Hang, J.; Zhang, X.; Ji, Y. Mapping Approach for Emotional Response to Urban Visual Environments Based on Street View Images and EEG Signals. Build. Simul. 2025, 18, 2697–2721. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Park, S.-J. AI-Driven Biophilic Façade Design for Senior Multi-Family Housing Using LoRA and Stable Diffusion. Buildings 2025, 15, 1546. [Google Scholar] [CrossRef]
- Eom, T.-H. Electroencephalography Source Localization. Clin. Exp. Pediatr. 2022, 66, 201–209. [Google Scholar] [CrossRef]
- Sun, H.; Wang, H.; Wang, R.; Gao, Y. Emotion Recognition Based on EEG Source Signals and Dynamic Brain Function Network. J. Neurosci. Methods 2025, 415, 110358. [Google Scholar] [CrossRef]
- Roshanaei, M.; Norouzi, H.; Onton, J.; Makeig, S.; Mohammadi, A. EEG-Based Functional and Effective Connectivity Patterns during Emotional Episodes Using Graph Theoretical Analysis. Sci. Rep. 2025, 15, 2174. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Cruz-Garza, J.G.; Kalantari, S. Brain–Computer Interfaces as an Architectural Design Tool: Feasibility and Usability Study. Autom. Constr. 2023, 154, 105011. [Google Scholar] [CrossRef]





| Feature | Scene | ΔMean | ΔSD | t | dz | p |
|---|---|---|---|---|---|---|
| HSV_S_mean | S2 | 0.219 | 0.067 | 7.97 | 3.254 | 0.000 *** |
| GLCM_homogeneity_mean | S3 | −0.043 | 0.035 | −3.023 | −1.234 | 0.029 * |
| curve_ratio | S4 | 0.133 | 0.081 | 4.029 | 1.644 | 0.010 * |
| Group | Element | ΔMean | dz | p |
|---|---|---|---|---|
| ALL | S2–S1 | 0.031 | 0.020 | 0.918 |
| S3–S1 | 0.605 | 0.662 | 0.002 ** | |
| S4–S1 | 1.198 | 0.917 | 0.000 *** | |
| Group1 | S2–S1 | 0.852 | 0.326 | 0.102 |
| S3–S1 | 1.148 | 0.482 | 0.019 * | |
| S4–S1 | 1.704 | 0.663 | 0.002 ** | |
| Group2 | S2–S1 | 0.852 | 0.315 | 0.114 |
| S3–S1 | 1.222 | 0.537 | 0.010 ** | |
| S4–S1 | 1.630 | 0.682 | 0.002 ** | |
| Group3 | S2–S1 | −0.111 | −0.037 | 0.698 |
| S3–S1 | 0.296 | 0.214 | 0.255 | |
| S4–S1 | 1.222 | 0.647 | 0.002 ** | |
| Group4 | S2–S1 | 0.667 | 0.258 | 0.698 |
| S3–S1 | 1.074 | 0.481 | 0.019 ** | |
| S4–S1 | 1.407 | 0.665 | 0.003 ** | |
| Group5 | S2–S1 | −0.852 | −0.305 | 0.126 |
| S3–S1 | 0.481 | 0.301 | 0.168 | |
| S4–S1 | 0.926 | 0.516 | 0.013 * | |
| Group6 | S2–S1 | −1.185 | −0.478 | 0.033 * |
| S3–S1 | −0.593 | −0.318 | 0.111 | |
| S4–S1 | 0.296 | 0.199 | 0.383 |
| Effect Type | Parameter | Estimate (γ/Var) | S.E. | 95% CI |
|---|---|---|---|---|
| Fixed Effects | Intercept (γ0) | 0.0908 | 0.079 | [−0.063, 0.245] |
| ΔSEva (γ1) | 0.0039 | 0.075 | [−0.143, 0.151] | |
| Random Effects | Residual (εit) | 0.0002 | 0.0001 | [0.0001, 0.0004] |
| Intercept variance (u0) | 0.0003 | 0.0001 | [0.0001, 0.0005] | |
| ΔSEva slope variance (u1) | 0.0001 | 0.00005 | [0.00002, 0.0002] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, Y.; Ji, S.; Whang, M. Emotion-Driven Architectural Image Generation and EEG-Based Evaluation: Divergent Subjective and Physiological Responses to AI-Modified Design Elements. Buildings 2026, 16, 36. https://doi.org/10.3390/buildings16010036
Liu Y, Ji S, Whang M. Emotion-Driven Architectural Image Generation and EEG-Based Evaluation: Divergent Subjective and Physiological Responses to AI-Modified Design Elements. Buildings. 2026; 16(1):36. https://doi.org/10.3390/buildings16010036
Chicago/Turabian StyleLiu, Yuchen, Shihu Ji, and Mincheol Whang. 2026. "Emotion-Driven Architectural Image Generation and EEG-Based Evaluation: Divergent Subjective and Physiological Responses to AI-Modified Design Elements" Buildings 16, no. 1: 36. https://doi.org/10.3390/buildings16010036
APA StyleLiu, Y., Ji, S., & Whang, M. (2026). Emotion-Driven Architectural Image Generation and EEG-Based Evaluation: Divergent Subjective and Physiological Responses to AI-Modified Design Elements. Buildings, 16(1), 36. https://doi.org/10.3390/buildings16010036

