Biophilic Design and Children’s Well-Being in Kindergartens in Henan, China: A PLS-SEM Study
Abstract
:1. Introduction
1.1. Optimising Biophilic Elements in Kindergarten Design
1.2. Assessment of Children’s Health and Well-Being
2. Research Methodology
2.1. Model Parameters and Accuracy Assessment
2.2. Target Respondents and Sample Size
2.3. Data Collection Instrument
2.4. Biophilic Elements Assessment
2.5. Data Analysis
3. Results
3.1. Data Normality and Comparative Analysis
3.2. Assessment of Hypothesised Path Relationships
3.3. Evaluation of Structural Model
3.3.1. Impact and Predictive Accuracy of BD on Children’s Health and Well-Being
3.3.2. Fitting the Model to Real-World Data
3.3.3. Evaluating the Impact of Elements on Child Development
4. Discussion
5. Conclusions
Limitations and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ajibade, F.O.; Adelodun, B.; Lasisi, K.H.; Fadare, O.O.; Ajibade, T.F.; Nwogwu, N.A.; Sulaymon, I.D.; Ugya, A.Y.; Wang, H.C.; Wang, A. Environmental Pollution and Their Socioeconomic Impacts. In Microbe Mediated Remediation of Environmental Contaminants; Elsevier: Amsterdam, The Netherlands, 2021; pp. 321–354. [Google Scholar]
- Lederbogen, F.; Kirsch, P.; Haddad, L.; Streit, F.; Tost, H.; Schuch, P.; Wüst, S.; Pruessner, J.C.; Rietschel, M.; Deuschle, M. City Living and Urban Upbringing Affect Neural Social Stress Processing in Humans. Nature 2011, 474, 498–501. [Google Scholar] [CrossRef]
- Peen, J.; Schoevers, R.A.; Beekman, A.T.; Dekker, J. The Current Status of Urban-Rural Differences in Psychiatric Disorders. Acta Psychiatr. Scand. 2010, 121, 84–93. [Google Scholar] [CrossRef]
- Van Os, J.; Kenis, G.; Rutten, B.P. The Environment and Schizophrenia. Nature 2010, 468, 203–212. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, L.E.; Winterbottom, K.E.; Mehta, S.S.; Roberts, J.R. Using nature and outdoor activity to improve children’s health. Curr. Probl. Pediatr. Adolesc. Health Care 2010, 40, 102–117. [Google Scholar] [CrossRef]
- Kabisch, N.; van den Bosch, M.; Lafortezza, R. The Health Benefits of Nature-Based Solutions to Urbanization Challenges for Children and the Elderly: A Systematic Review. Environ. Res. 2017, 159, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Thompson Coon, J.; Boddy, K.; Stein, K.; Whear, R.; Barton, J.; Depledge, M.H. Does Participating in Physical Activity in Outdoor Natural Environments Have a Greater Effect on Physical and Mental Wellbeing Than Physical Activity Indoors? A Systematic Review. Environ. Sci. Technol. 2011, 45, 1761–1772. [Google Scholar] [CrossRef] [PubMed]
- Lubans, D.; Richards, J.; Hillman, C.; Faulkner, G.; Beauchamp, M.; Nilsson, M.; Kelly, P.; Smith, J.; Raine, L.; Biddle, S. Physical Activity for Cognitive and Mental Health in Youth: A Systematic Review of Mechanisms. Pediatrics 2016, 138, e20161642. [Google Scholar] [CrossRef]
- Ryan, C.O.; Browning, W.D.; Clancy, J.O.; Andrews, S.L.; Kallianpurkar, N.B. Biophilic Design Patterns: Emerging Nature-Based Parameters for Health and Well-Being in the Built Environment. ArchNet-IJAR Int. J. Archit. Res. 2014, 8, 62–76. [Google Scholar] [CrossRef]
- Kellert, S.R. Dimensions, Elements, and Attributes of Biophilic Design. In Biophilic Design: The Theory, Science, and Practice of Bringing Buildings to Life; Wiley: Hoboken, NJ, USA, 2008; pp. 3–19. [Google Scholar]
- Kellert, S. Biophilic Urbanism: The Potential to Transform. Smart Sustain. Built Environ. 2016, 5, 4–8. [Google Scholar] [CrossRef]
- Beatley, T. Biophilic Cities: Integrating Nature into Urban Design and Planning; Island Press: Washington, DC, USA, 2011. [Google Scholar]
- Wilson, E.O. Biophilia; Harvard University Press: Cambridge, MA, USA, 1984. [Google Scholar]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Germany, B. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 3rd ed.; SAGE Publications Inc.: Thousand Oaks, CA, USA, 2022. [Google Scholar]
- Gillis, K.; Gatersleben, B. A Review of Psychological Literature on the Health and Wellbeing Benefits of Biophilic Design. Buildings 2015, 5, 948–963. [Google Scholar] [CrossRef]
- Ramzy, N.S. Biophilic Qualities of Historical Architecture: In Quest of the Timeless Terminologies of ‘Life’ in Architectural Expression. Sustain. Cities Soc. 2015, 15, 42–56. [Google Scholar] [CrossRef]
- Xue, F.; Lau, S.S.; Gou, Z.; Song, Y.; Jiang, B. Incorporating Biophilia Into Green Building Rating Tools for Promoting Health and Wellbeing. Environ. Impact Assess. Rev. 2019, 76, 98–112. [Google Scholar] [CrossRef]
- Boyd, F. Between the Library and Lectures: How Can Nature be Integrated into University Infrastructure to Improve Students’ Mental Health. Front. Psychol. 2022, 13, 865422. [Google Scholar] [CrossRef]
- Chiumento, A.; Mukherjee, I.; Chandna, J.; Dutton, C.; Rahman, A.; Bristow, K. A Haven of Green Space: Learning from a Pilot Pre-Post Evaluation of a School-Based Social and Therapeutic Horticulture Intervention with Children. BMC Public Health 2018, 18, 836. [Google Scholar] [CrossRef]
- Choi, B.J.; Jeong, Y.J.; Kim, M.J.; Yun, S.Y. Analysis of Horticultural Activities in the Teacher’s Guidebooks of Nuri Curriculum for 5-Year-Olds. J. People Plants Environ. 2020, 23, 211–220. [Google Scholar] [CrossRef]
- Zhong, W.; Schröder, T.; Bekkering, J. Biophilic Design in Architecture and Its Contributions to Health, Well-Being, and Sustainability: A Critical Review. Front. Archit. Res. 2021, 11, 114–141. [Google Scholar] [CrossRef]
- Heerwagen, J.; Hase, B. Building Biophilia: Connecting People to Nature in Building Design. Environ. Des. Constr. 2001, 3, 30–36. [Google Scholar]
- Kellert, S.R.; Heerwagen, J.; Mador, M. Biophilic Design: The theory, Science and Practice of Bringing Buildings to Life; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Cramer, J.S.; Browning, W.D. Transforming Building Practices through Biophilic Design. In Biophilic Design; Wiley: Hoboken, NJ, USA, 2008; Volume 335, p. 346. [Google Scholar]
- Browning, W.D.; Ryan, C.O.; Clancy, J.O. 14 Patterns of Biophilic Design; Terrapin Bright Green LLC: New York, NY, USA, 2014. [Google Scholar]
- Kellert, S.; Calabrese, E. The Practice of Biophilic Design; Terrapin Bright LLC: London, UK, 2015. [Google Scholar]
- Browning, W.D.; Ryan, C.O. Nature Inside: A Biophilic Design Guide; Routledge: Oxfordshire, UK, 2020. [Google Scholar]
- Kellert, S.R. Nature by Design: The Practice of Biophilic Design; Yale University Press: New Haven, CT, USA, 2018. [Google Scholar]
- Stephen, K.; Judith, H.; Martin, M. The Theory, Science, and Practice of Bringing Buildings to Life; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Benfield, J.A.; Rainbolt, G.N.; Bell, P.A.; Donovan, G.H. Classrooms with Nature Views: Evidence of Differing Student Perceptions and Behaviors. Environ. Behav. 2015, 47, 140–157. [Google Scholar] [CrossRef]
- Wijesooriya, N.; Brambilla, A. Bridging Biophilic Design and Environmentally Sustainable Design: A Critical Review. J. Clean. Prod. 2021, 283, 124591. [Google Scholar] [CrossRef]
- Kahn, P.H., Jr.; Friedman, B.; Gill, B.; Hagman, J.; Severson, R.L.; Freier, N.G.; Feldman, E.N.; Carrère, S.; Stolyar, A. A Plasma Display Window?—The Shifting Baseline Problem in a Technologically Mediated Natural World. J. Environ. Psychol. 2008, 28, 192–199. [Google Scholar] [CrossRef]
- Biederman, I.; Vessel, E.A. Perceptual Pleasure and the Brain: A Novel Theory Explains Why the Brain Craves Information and Seeks it Through the Senses. Am. Sci. 2006, 94, 247–253. [Google Scholar] [CrossRef]
- Ulker, R. Turkish Children’s Drawing of Nature in a Certain Way: Range of Mountains in the Back, the Sun, Couple of Clouds, a River Rising from the Mountains. Educ. Sci. Theory Pract. 2012, 12, 3173–3180. [Google Scholar]
- Brechet, C. Children’s Recognition of Emotional Facial Expressions Through Photographs and Drawings. J. Genet. Psychol. 2017, 178, 139–146. [Google Scholar] [CrossRef]
- Olivos-Jara, P.; Segura-Fernández, R.; Rubio-Pérez, C.; Felipe-García, B. Biophilia and Biophobia as Emotional Attribution to Nature in Children of 5 Years Old. Front. Psychol. 2020, 11, 511. [Google Scholar] [CrossRef]
- Huizi, D.; Sulaiman, R.; Ismail, M.A. Enhancing Children’s Health and Well-Being Through Biophilic Design in Chinese Kindergartens: A Systematic Literature Review. Soc. Sci. Humanit. Open 2024, 10, 100939. [Google Scholar] [CrossRef]
- Taylor, R.P. Reduction of physiological stress using fractal art and architecture. Leonardo 2006, 39, 245–251. [Google Scholar] [CrossRef]
- Lavdas, A.A.; Sussman, A. Applications of Biometrics in Architectural and Environmental Design. In Environmental Neuroscience; Springer: Berlin/Heidelberg, Germany, 2024; pp. 227–254. [Google Scholar]
- Mehaffy, M.W. The Impacts of symmetry in architecture and urbanism: Toward a new research agenda. Buildings 2020, 10, 249. [Google Scholar] [CrossRef]
- Breslin, G.; Hillyard, M.; Brick, N.; Shannon, S.; McKay-Redmond, B.; McConnell, B. A Systematic Review of the Effect of The Daily Mile™ on Children’s Physical Activity, Physical Health, Mental Health, Wellbeing, Academic Performance, and Cognitive Function. PLoS ONE 2023, 18, e0277375. [Google Scholar] [CrossRef]
- Donaldson, C.; Moore, G.; Hawkins, J. A Systematic Review of School Transition Interventions to Improve Mental Health and Wellbeing Outcomes in Children and Young People. Sch. Ment. Health 2023, 15, 19–35. [Google Scholar] [CrossRef]
- Moula, Z.; Palmer, K.; Walshe, N. A Systematic Review of Arts-Based Interventions Delivered to Children and Young People in Nature or Outdoor Spaces: Impact on Nature Connectedness, Health, and Wellbeing. Front. Psychol. 2022, 13, 858781. [Google Scholar] [CrossRef]
- Saulle, R.; De Sario, M.; Bena, A.; Capra, P.; Culasso, M.; Davoli, M.; De Lorenzo, A.; Lattke, L.S.; Marra, M.; Mitrova, Z. School Closures and Mental Health, Wellbeing, and Health Behaviours Among Children and Adolescents During the Second COVID-19 Wave: A Systematic Review of the Literature. Epidemiol. Prev. 2022, 46, 1–20. [Google Scholar]
- Siddiqi, A.; Irwin, L.G.; Hertzman, C. Total Environment Assessment Model for Early Child Development; Organización Mundial de la Salud: Vancouver, BC, Canada, 2007. [Google Scholar]
- Derr, V.; Lance, K. Biophilic Boulder: Children’s Environments That Foster Connections to Nature. Child. Youth Environ. 2012, 22, 112–143. [Google Scholar] [CrossRef]
- Pretty, J.; Angus, C.; Bain, M.; Barton, J.; Gladwell, V.; Hine, R.; Pilgrim, S.; Cock, S.; Sellens, M. Nature, Childhood, Health and Life Pathways; Interdisciplinary Centre for Environment and Society Occasional Paper 2009-02; University of Essex: Colchester, UK, 2009. [Google Scholar]
- Abdelaal, M.S. Biophilic Campus: An Emerging Planning Approach for a Sustainable, Innovation-Conducive University. J. Clean. Prod. 2019, 215, 1445–1456. [Google Scholar] [CrossRef]
- Korpela, K.; De Bloom, J.; Sianoja, M.; Pasanen, T.; Kinnunen, U. Nature at Home and at Work: Naturally Good? Links Between Window Views, Indoor Plants, Outdoor Activities, and Employee Well-Being Over One Year. Landsc. Urban Plan. 2017, 160, 38–47. [Google Scholar] [CrossRef]
- MacKerron, G.; Mourato, S. Happiness is Greater in Natural Environments. Glob. Environ. Change 2013, 23, 992–1000. [Google Scholar] [CrossRef]
- Bringslimark, T.; Hartig, T.; Patil, G.G. Psychological Benefits of Indoor Plants in Workplaces: Putting Experimental Results into Context. HortScience 2007, 42, 581–587. (In English) [Google Scholar] [CrossRef]
- Greenleaf, A.T.; Bryant, R.M.; Pollock, J.B. Nature-based counseling: Integrating the healing benefits of nature into practice. Int. J. Adv. Couns. 2014, 36, 162–174. [Google Scholar] [CrossRef]
- Han, K.-T. An Exploration of Relationships Among the Responses to Natural Scenes:Scenic Beauty, Preference, and Restoration. Environ. Behav. 2010, 42, 243–270. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Yeon, P.S.; Shin, W.S. The Influence of Indirect Nature Experience on Human System. For. Sci. Technol. 2018, 14, 29–32. [Google Scholar] [CrossRef]
- Yin, J.; Zhu, S.; MacNaughton, P.; Allen, J.G.; Spengler, J.D. Physiological and Cognitive Performance of Exposure to Biophilic Indoor Environment. Build. Environ. 2018, 132, 255–262. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results, and Higher Acceptance. Long Range Plan. 2013, 46, 1–12. [Google Scholar] [CrossRef]
- Do Valle, P.O.; Assaker, G. Using Partial Least Squares Structural Equation Modeling in Tourism Research: A Review of Past Research and Recommendations for Future Applications. J. Travel Res. 2016, 55, 695–708. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Danks, N.P.; Ray, S. Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook; Springer Nature: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Ferine, K.F.; Aditia, R.; Rahmadana, M.F. An Empirical Study of Leadership, Organizational Culture, Conflict, and Work Ethic in Determining Work Performance in Indonesia’s Education Authority. Heliyon 2021, 7, e07698. [Google Scholar] [CrossRef] [PubMed]
- Kock, N. Minimum sample size estimation in PLS-SEM: An application in tourism and hospitality research. In Applying Partial Least Squares in Tourism and Hospitality Research; Emerald Publishing Limited: Bingley, UK, 2018; pp. 1–16. [Google Scholar]
- Kock, N.; Hadaya, P. Minimum sample size estimation in PLS-SEM: The Inverse Square Root and Gamma-Exponential Methods. Inf. Syst. J. 2018, 28, 227–261. [Google Scholar] [CrossRef]
- Cochran, W.G. Sampling Techniques; John Wiley & Sons: Hoboken, NJ, USA, 1977. [Google Scholar]
- National Education Commission. Planning and Construction Department China. Educational Statistics Yearbook of China; China Statistics Press Co., Ltd.: Beijing, China, 2021. [Google Scholar]
- Adam, A. Sample Size Determination in Survey Research. J. Sci. Res. Rep. 2020, 26, 90–97. [Google Scholar] [CrossRef]
- Sayal, K.; Goodman, R.; Ford, T. Barriers to the Identification of Children with Attention Deficit/Hyperactivity Disorder. J. Child Psychol. Psychiatry 2006, 47, 744–750. [Google Scholar] [CrossRef]
- Read, J.C.; MacFarlane, S. Using the Fun Toolkit and Other Survey Methods to Gather Opinions in Child Computer Interaction. In Proceedings of the 2006 Conference on Interaction Design and Children, Tampere, Finland, 7–9 June 2006; pp. 81–88. [Google Scholar]
- Harter, S.; Pike, R. The pictorial scale of perceived competence and social acceptance for young children. Child Dev. 1984, 55, 1969–1982. [Google Scholar] [CrossRef]
- Hulland, J.; Baumgartner, H.; Smith, K.M. Marketing Survey Research Best Practices: Evidence and Recommendations From a Review. J. Acad. Mark. Sci. 2018, 46, 92–108. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Matthews, L.M.; Matthews, R.L.; Sarstedt, M. PLS-SEM or CB-SEM: Updated Guidelines on Which Method to Use. Int. J. Multivar. Data Anal. 2017, 1, 107–123. [Google Scholar] [CrossRef]
- Dash, G.; Paul, J. CB-SEM vs. PLS-SEM Methods for Research in Social Sciences and Technology Forecasting. Technol. Forecast. Soc. Change 2021, 173, 121092. [Google Scholar] [CrossRef]
- Chua, Y.P. A Step-by-Step Guide PLS-SEM Data Analysis Using SmartPLS 4; Thomson Learning: Selangor, Malaysia, 2022. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to Use and How to Report the Results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Chin, W.W. The partial least squares approach to structural equation modeling. Mod. Methods Bus. Res. 1998, 295, 295–336. [Google Scholar]
- Cohen, J. Statistical Power Analysis for The Behavioral Sciences; Routledge: Oxfordshire, UK, 2013. [Google Scholar]
- Tenenhaus, M.; Vinzi, V.E.; Chatelin, Y.-M.; Lauro, C. PLS Path Modeling. Comput. Stat. Data Anal. 2005, 48, 159–205. [Google Scholar] [CrossRef]
- Markevych, I.; Schoierer, J.; Hartig, T.; Chudnovsky, A.; Hystad, P.; Dzhambov, A.M.; De Vries, S.; Triguero-Mas, M.; Brauer, M.; Nieuwenhuijsen, M.J. Exploring Pathways Linking reenspace to Health: Theoretical and Methodological Guidance. Environ. Res. 2017, 158, 301–317. [Google Scholar] [CrossRef]
- Hawkins, R.D.; Williams, J.M.; Scottish Society for the Prevention of Cruelty to Animals (Scottish SPCA). Childhood Attachment to Pets: Associations Between Pet Attachment, Attitudes to Animals, Compassion, and Humane Behaviour. Int. J. Environ. Res. Public Health 2017, 14, 490. [Google Scholar] [CrossRef]
- Milliken, S.; Kotzen, B.; Walimbe, S.; Coutts, C.; Beatley, T. Biophilic Cities and Health; Taylor & Francis: Oxfordshire, UK, 2023; Volume 7, pp. 175–188. [Google Scholar]
- Beery, T.; Jönsson, K.I.; Elmberg, J. From Environmental Connectedness to Sustainable Futures: Topophilia and Human Affiliation with Nature. Sustainability 2015, 7, 8837–8854. [Google Scholar] [CrossRef]
- Aggour, M.M. Transformation of Building Practices for Nurseries Through Biophilic Design. J. Eng. Appl. Sci. 2020, 67, 31–53. [Google Scholar]
- Jenkins, T. Chinese traditional thought and practice: Lessons for an ecological economics worldview. Ecol. Econ. 2002, 40, 39–52. [Google Scholar] [CrossRef]
- Ibrahim, I.A.; Al-Chaderchi, B.M. Contribution of the Biophilic Design Approach to the UN Sustainable Development Goals. Eco-Archit. IX Harmon. Between Archit. Nat. 2022, 210, 115. [Google Scholar]
- Kong, P.-R.; Han, K.-T. Psychological and Physiological Effects of Soundscapes: A Systematic Review. Sci. Total Environ. 2024, 172197. [Google Scholar] [CrossRef] [PubMed]
- Latini, A.; Torresin, S.; Oberman, T.; Di Giuseppe, E.; Aletta, F.; Kang, J.; D'Orazio, M. Effects of Biophilic Design Interventions on University Students' Cognitive Performance: An Audio-visual Experimental Study in an Immersive Virtual Office Environment. Build. Environ. 2024, 250, 111196. [Google Scholar] [CrossRef]
- Barton, J.; Pretty, J. What is the best dose of nature and green exercise for improving mental health? A multi-study analysis. Environ. Sci. Technol. 2010, 44, 3947–3955. [Google Scholar] [CrossRef]
- Nieuwenhuis, M.; Knight, C.; Postmes, T.; Haslam, S.A. The Relative Benefits of Green Versus Lean Office Space: Three Field Experiments. J. Exp. Psychol. Appl. 2014, 20, 199. [Google Scholar] [CrossRef]
- Qin, J.; Sun, C.; Zhou, X.; Leng, H.; Lian, Z. The Effect of Indoor Plants on Human Comfort. Indoor Built Environ. 2014, 23, 709–723. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Chen, P.-K. Human Response to Window Views and Indoor Plants in the Workplace. HortScience 2005, 40, 1354–1359. [Google Scholar] [CrossRef]
- Bjerke, T.; Kaltenborn, B.P.; Ødegårdstuen, T.S. Animal-Related Activities and Appreciation of Animals Among Children and Adolescents. Anthrozoös 2001, 14, 86–94. [Google Scholar] [CrossRef]
- Lee, J.C.-K.; Ma, W.H.T. Early Childhood Environmental Education: A Hong Kong Example. Appl. Environ. Educ. Commun. 2006, 5, 83–94. [Google Scholar] [CrossRef]
- Born, P. Regarding Animals: A Perspective on the Importance of Animals in Early Childhood Environmental Education. Int. J. Early Child. Environ. Educ. 2018, 5, 46–57. [Google Scholar]
- Uttley, C.M. Toddlers Through Grade 3: Animal Attraction: Including Animals in Early Childhood Classrooms. YC Young Child. 2013, 68, 16–21. [Google Scholar]
- Acar, I.; Torquati, J. The Power of Nature: Developing Prosocial Behavior Toward Nature and Peers Through Nature-Based Activities. Young Child. 2015, 70, 62–71. [Google Scholar]
- Bailie, P.E. From the One-Hour Field Trip to a Nature Preschool: Partnering with Environmental Organizations. YC Young Child. 2010, 65, 76. [Google Scholar]
- Burke, C.; Grosvenor, I. The School I'd Like: Children and Young People's Reflections on an Education for the 21st Century. Psychol. Press 2003.
- Ghaziani, R.; Lemon, M.; Atmodiwirjo, P. Biophilic Design Patterns for Primary Schools. Sustainability 2021, 13, 12207. [Google Scholar] [CrossRef]
- Ghaziani, R. Children's Voices: RaisedIissues for School Design. Co-Design 2008, 4, 225–236. [Google Scholar] [CrossRef]
- Lehmann, S. Growing Biodiverse Urban Futures: Renaturalization and Rewilding as Strategies to Strengthen Urban Resilience. Sustainability 2021, 13, 2932. [Google Scholar] [CrossRef]
- Li, H.; Browning, M.H.; Cao, Y.; Zhang, G. From Childhood Residential Green Space to Adult Mental Wellbeing: A Pathway Analysis among Chinese Adults. Behav. Sci. 2022, 12, 84. [Google Scholar] [CrossRef]
- Masters, J.; Grogan, L. A Comparative Analysis of Nature Kindergarten Programmes in Australia and New Zealand. Int. J. Early Years Educ. 2018, 26, 233–248. [Google Scholar] [CrossRef]
- Meek, M.B.; De Brouwere, K.; Szigeti, T.; Zastenskaya, I. A User-Friendly Tool to Assess Combined Exposures to Indoor Air Pollutants in Public Spaces of Children. Food Chem. Toxicol. 2022, 165, 113141. [Google Scholar] [CrossRef]
- Walimbe, A.S.; Chitgopkar, A.S. Nurturing Children’s Biophilia Through Nature Connectedness in School Buildings for a Sustainable Future. Int. J. Civ. Eng. Technol. 2018, 9, 187–192. [Google Scholar]
- Kendal, D.; Egerer, M.; Byrne, J.A.; Jones, P.J.; Marsh, P.; Threlfall, C.G.; Allegretto, G.; Kaplan, H.; Nguyen, H.K.D.; Pearson, S.; et al. City-Size Bias in Knowledge on the Effects of Urban Nature on People and Biodiversity. Environ. Res. Lett. 2020, 15, 124035. [Google Scholar] [CrossRef]
- Ortiz, M.A.; Kurvers, S.R.; Bluyssen, P.M. A Review of Comfort, Health, and Energy Use: Understanding Daily Energy Use and Wellbeing for the Development of a New Approach to Study Comfort. Energy Build. 2017, 152, 323–335. [Google Scholar] [CrossRef]
- Roslund, M.I.; Puhakka, R.; Grönroos, M.; Nurminen, N.; Oikarinen, S.; Gazali, A.M.; Cinek, O.; Kramná, L.; Siter, N.; Vari, H.K.; et al. Biodiversity Intervention Enhances Immune Regulation and Health-Associated Commensal Microbiota Among Daycare Children. Sci. Adv. 2020, 6, eaba2578. [Google Scholar] [CrossRef]
- Johnstone, A.; McCrorie, P.; Cordovil, R.; Fjørtoft, I.; Iivonen, S.; Jidovtseff, B.; Lopes, F.; Reilly, J.J.; Thomson, H.; Wells, V.; et al. Nature-Based Early Childhood Education and Children’s Physical Activity, Sedentary Behavior, Motor Competence, and Other Physical Health Outcomes: A Mixed-Methods Systematic Review. J. Phys. Act. Health 2022, 19, 456–472. [Google Scholar] [CrossRef]
- Sharma-Brymer, V.; Bland, D. Bringing Nature to Schools to Promote Children’s Physical Activity. Sports Med. 2016, 46, 955–962. [Google Scholar] [CrossRef]
- Puhakka, R.; Rantala, O.; Roslund, M.I.; Rajaniemi, J.; Laitinen, O.H.; Sinkkonen, A.; the ADELE Research Group. Greening of Daycare Yards with Biodiverse Materials Affords Well-Being, Play, and Environmental Relationships. Int. J. Environ. Res. Public Health 2019, 16, 2948. [Google Scholar] [CrossRef]
- Phillips, S.P.; Jiang, M.; Lakkadghatwala, R.; Wang, S. Assessing Wellness in the Well-Child Check: What About Social and Emotional Development? Can. Fam. Physician 2019, 65, e113–e120. [Google Scholar]
- Specht, I.O.; Larsen, S.C.; Rohde, J.F.; Østergaard, J.N.; Heitmann, B.L. Comparison of Motor Difficulties Measured in the First Year of School among Children Who Attended Rural Outdoor or Urban Conventional Kindergartens. Int. J. Environ. Res. Public Health 2022, 19, 14158. [Google Scholar] [CrossRef]
- Lysklett, O.B.; Berg, A.; Moe, B. Motor Competence and Physical Fitness Among Children Attending Nature Preschools and Traditional Preschools. Int. J. Play 2019, 8, 53–64. [Google Scholar] [CrossRef]
- Fathirezaie, Z.; Abbaspour, K.; Badicu, G.; Zamani Sani, S.H.; Nobari, H. The Effect of Environmental Contexts on Motor Proficiency and Social Maturity of Children: An Ecological Perspective. Children 2021, 8, 157. [Google Scholar] [CrossRef] [PubMed]
- Kelley, C.; Mack, D.E.; Wilson, P.M. Does Physical Activity in Natural Outdoor Environments Improve Wellbeing? A Meta-Analysis. Sports 2022, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Scoditti, S.; Clavica, F.; Caroli, M. Review of Architecture and Interior Designs in Italian Kindergartens and Their Relationship With Motor Development. Int. J. Pediatr. Obes. 2011, 6, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Karimi Azeri, A.R.; Hosseini, S.B.; Saleh Sedghpour, B.; Hosseini, A.S. Design Principles of Residential Space to Enhance Children’s (3–7 Years Old) Creativity in Iran (Case Study: Tehran District 4). Mon. Sci. J. Bagh-E Nazar 2016, 13, 19–34. [Google Scholar]
- Myers, Z. Wildness and Wellbeing: Nature, Neuroscience, and Urban Design; Springer: Singapore, 2020. [Google Scholar]
- Laurens, K.R.; Tzoumakis, S.; Dean, K.; Brinkman, S.A.; Bore, M.; Lenroot, R.K.; Smith, M.; Holbrook, A.; Robinson, K.M.; Stevens, R.; et al. The 2015 Middle Childhood Survey (MCS) of mental health and well-being at age 11 years in an Australian population cohort. BMJ Open 2017, 7, e016244. [Google Scholar] [CrossRef]
- Nitu, M.A.; Gocer, O.; Wijesooriya, N.; Vijapur, D.; Candido, C. A Biophilic Design Approach for Improved Energy Performance in Retrofitting Residential Projects. Sustainability 2022, 14, 3776. [Google Scholar] [CrossRef]
- Peters, T.; D’Penna, K. Biophilic Design for Restorative University Learning Environments: A Critical Review of Literature and Design Recommendations. Sustainability 2020, 12, 7064. [Google Scholar] [CrossRef]
- Souter-Brown, G.; Hinckson, E.; Duncan, S. Effects of a Sensory Garden on Workplace Wellbeing: A Randomised Control trial. Landsc. Urban Plan. 2021, 207, 103997. [Google Scholar] [CrossRef]
- St-Jean, P.; Clark, O.G.; Jemtrud, M. A Review of the Effects of Architectural Stimuli on Human Psychology and Physiology. Build. Environ. 2022, 109182. [Google Scholar] [CrossRef]
- Ünal, N.; Özen, E.S. Biophilic Approach to Design for Children. ICONARP Int. J. Archit. Plan. 2021, 9, 943–965. [Google Scholar] [CrossRef]
- Vujcic, M.; Tomicevic-Dubljevic, J.; Grbic, M.; Lecic-Tosevski, D.; Vukovic, O.; Toskovic, O. Nature-Based Solution for Improving Mental Health and Well-Being in Urban Areas. Environ. Res. 2017, 158, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.M.; Sixsmith, J.; Barry, M.M. Evaluating the Implementation of an Emotional Wellbeing Programme for Primary School Children Using Participatory Approaches. Health Educ. J. 2015, 74, 578–593. [Google Scholar] [CrossRef]
- Faber Taylor, A.; Butts-Wilmsmeyer, C.; Jordan, C. Nature-Based Instruction for Science Learning–A Good Fit for All: A Controlled Comparison of Classroom Versus Nature. Environ. Educ. Res. 2022, 28, 1527–1546. [Google Scholar] [CrossRef]
- Mirrahimi, S.; Tawil, N.; Abdullah, N.; Surat, M.; Usman, I. Developing Conducive Sustainable Outdoor Learning: The Impact of Natural Environment on Learning, Social, and Emotional Intelligence. Procedia Eng. 2011, 20, 389–396. [Google Scholar] [CrossRef]
- Anđić, D.; Vorkapić, S.T. Relating the Education for Sustainable Development to Contemporary Transition Models: Could Biophilia Be Perceived as a Positive Factor of Transition to Kindergarten or School? In Proceedings of the INTED2019 Conference, Valencia, Spain, 11–13 March 2019; pp. 946–954. [Google Scholar]
- Jakubec, S.L.; Hoed, D.C.D.; Ray, H. ‘I Can Reinvent Myself Out Here’: Experiences of Nature Inclusion and Mental Well-Being, Research in Social Science and Disability. Res. Soc. Sci. Disabil. 2014, 8, 213–229. [Google Scholar] [CrossRef]
- McEwan, K.; Potter, V.; Kotera, Y.; Jackson, J.E.; Greaves, S. ‘This Is What the Colour Green Smells Like!’: Urban Forest Bathing Improved Adolescent Nature Connection and Wellbeing. Int. J. Environ. Res. Public Health 2022, 19, 15594. [Google Scholar] [CrossRef]
Browning’s 14 Patterns | Kellert’s 24 Attributes | |
Example of Visual Connection with Nature | Direct Experience of Nature | |
Naturally Occurring | Simulated or Constructed | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||
| ||
|
Elements | Variables |
---|---|
Water | A. Classroom aquarium |
B. Three-dimensional miniature fountain | |
C. Outdoor ground-level fountain installation | |
D. Water puddle (for play) | |
Plants | A. Installing flower pots in the classroom |
B. Installing a green wall (bio wall) in the classroom | |
C. Setting up biodiversity landscapes around the campus | |
D. Having a view of plant landscapes from windows | |
E. Incorporating greenery in platforms or aerial balconies within the teaching building | |
F. Integrating outdoor greenery with the semi-enclosed corridors of the school | |
G. Installing real plant specimens in the classroom | |
H. Greening the kindergarten roof | |
Animals | A. Real non-threatening animals |
B. Animal specimens | |
C. Setting up feeding and breeding spaces in kindergartens | |
D. Decorating classrooms with shells, beehives, and synthetic animal fur | |
Natural Landscapes & Ecosystems | A. Spaces for planting different plants or crops |
B. Placing obstacles, such as rocks, along paths frequently used by children | |
C. Maximising the quantity of soil, rocks, water bodies, and plants within constrained spaces | |
D. Integrating authentic natural elements into children’s indoor and outdoor activity areas |
Domain | Findings/Variables |
---|---|
Physical Health | 1. Plants regulate and purify indoor air quality, enhancing children’s comfort. |
2. Improve allergies and immunity. | |
3. Promote physical activity and reduce sedentary behaviour. | |
4. Reduce obesity. | |
5. Green facilities encourage children to participate in climbing and jumping activities. | |
6. Biodiverse spaces captivate children’s interest, encouraging participation and increasing the frequency of activities | |
Mental Health | 1. Enhance imagination. |
2. Boost creativity. | |
3. Improve cognitive abilities. | |
4. Increase attention span. | |
5. Enhance resilience. | |
6. Improve emotional regulation. | |
7. Promote a state of relaxation. | |
Social Adaptation and Moral Health | 1. Enhance social skills. |
2. Increase adaptability. | |
3. Improve exploratory abilities. | |
4. Enhance cooperation. | |
5. Foster independence. | |
6. Reduce excessive daydreaming. |
Water | Plant | Animals | Ecosystem | |
---|---|---|---|---|
Mann–Whitney U | 62,667.500 | 61,771.000 | 61,838.000 | 61,515.000 |
Z | −0.163 | −0.491 | −0.468 | −0.586 |
Asymp. Sig. (2-tailed) | 0.871 | 0.624 | 0.640 | 0.558 |
Predictor | Dependent Variable | Effect Size (f2) | Effect Category |
---|---|---|---|
Animals | Mental | 0.385 | Large |
Animals | Physical | 0.449 | Large |
Animals | Social | 0.287 | Medium |
Ecosystem | Mental | 0.278 | Medium |
Ecosystem | Physical | 0.278 | Medium |
Ecosystem | Social | 0.303 | Medium |
Plants | Mental | 0.311 | Medium |
Plants | Physical | 0.219 | Medium |
Plants | Social | 0.379 | Large |
Water | Mental | 0.288 | Medium |
Water | Physical | 0.458 | Large |
Water | Social | 0.351 | Large |
Q2Predict | PLS-SEM_RMSE | LM_RMSE | ||
---|---|---|---|---|
Mental | 0.534 | ME1 | 0.932 | 0.958 |
ME2 | 0.834 | 0.861 | ||
ME3 | 0.86 | 0.875 | ||
ME4 | 0.81 | 0.836 | ||
ME5 | 0.791 | 0.807 | ||
ME6 | 0.791 | 0.816 | ||
ME7 | 0.816 | 0.841 | ||
Physical | 0.553 | PH1 | 0.976 | 1.003 |
PH2 | 0.844 | 0.866 | ||
PH3 | 0.831 | 0.862 | ||
PH4 | 0.771 | 0.798 | ||
PH5 | 0.817 | 0.84 | ||
PH6 | 0.824 | 0.848 | ||
Social Adaptation | 0.534 | SO1 | 0.943 | 0.964 |
SO2 | 0.786 | 0.806 | ||
SO3 | 0.806 | 0.826 | ||
SO4 | 0.821 | 0.841 | ||
SO5 | 0.79 | 0.814 |
Saturated Model | Estimated Model | |
---|---|---|
SRMR | 0.031 | 0.056 |
d_ULS | 0.655 | 2.233 |
d_G | 0.429 | 0.532 |
NFI | 0.921 | 0.905 |
For Mental | |||||
---|---|---|---|---|---|
Construct | Construct Total Effects for Mental | Construct Performance | Indicator | Indicator Total Effects for Mental | Indicator Performance |
Animals | 0.346 | 43.595 | AN1 | 0.135 | 49.185 |
AN2 | 0.129 | 41.916 | |||
AN3 | 0.131 | 40.693 | |||
Ecosystems | 0.309 | 38.794 | EC1 | 0.099 | 41.508 |
EC2 | 0.090 | 40.761 | |||
EC3 | 0.086 | 37.228 | |||
EC4 | 0.086 | 35.87 | |||
Plants | 0.325 | 37.146 | PL1 | 0.054 | 41.916 |
PL2 | 0.047 | 39.878 | |||
PL3 | 0.055 | 33.696 | |||
PL4 | 0.047 | 36.141 | |||
PL5 | 0.046 | 34.511 | |||
PL6 | 0.049 | 35.938 | |||
PL7 | 0.051 | 37.296 | |||
PL8 | 0.047 | 38.383 | |||
Water | 0.311 | 41.643 | WA1 | 0.082 | 41.848 |
WA2 | 0.091 | 39.334 | |||
WA3 | 0.085 | 41.508 | |||
WA4 | 0.097 | 43.886 | |||
For Physical | |||||
Construct | Construct Total Effects for Mental | Construct Performance | Indicator | Indicator Total Effects for Physical | Indicator Performance |
Animals | 0.360 | 43.595 | AN1 | 0.141 | 49.185 |
AN2 | 0.134 | 41.916 | |||
AN3 | 0.136 | 40.693 | |||
Ecosystems | 0.300 | 38.794 | EC1 | 0.096 | 41.508 |
EC2 | 0.087 | 40.761 | |||
EC3 | 0.083 | 37.228 | |||
EC4 | 0.083 | 35.87 | |||
Plants | 0.266 | 37.146 | PL1 | 0.044 | 41.916 |
PL2 | 0.039 | 39.878 | |||
PL3 | 0.045 | 33.696 | |||
PL4 | 0.038 | 36.141 | |||
PL5 | 0.038 | 34.511 | |||
PL6 | 0.040 | 35.938 | |||
PL7 | 0.042 | 37.296 | |||
PL8 | 0.038 | 38.383 | |||
Water | 0.376 | 41.643 | WA1 | 0.099 | 41.848 |
WA2 | 0.110 | 39.334 | |||
WA3 | 0.103 | 41.508 | |||
WA4 | 0.118 | 43.886 | |||
For Social | |||||
Construct | Construct Total Effects for Mental | Construct Performance | Indicator | Indicator Total Effects for Social Adaptation | Indicator Performance |
Animals | 0.293 | 43.595 | AN1 | 0.115 | 49.185 |
AN2 | 0.109 | 41.916 | |||
AN3 | 0.111 | 40.693 | |||
Ecosystems | 0.313 | 38.794 | EC1 | 0.100 | 41.508 |
EC2 | 0.091 | 40.761 | |||
EC3 | 0.087 | 37.228 | |||
EC4 | 0.087 | 35.87 | |||
Plants | 0.350 | 37.146 | PL1 | 0.058 | 41.916 |
PL2 | 0.051 | 39.878 | |||
PL3 | 0.059 | 33.696 | |||
PL4 | 0.050 | 36.141 | |||
PL5 | 0.050 | 34.511 | |||
PL6 | 0.052 | 35.938 | |||
PL7 | 0.055 | 37.296 | |||
PL8 | 0.050 | 38.383 | |||
Water | 0.333 | 41.643 | WA1 | 0.088 | 41.848 |
WA2 | 0.097 | 39.334 | |||
WA3 | 0.092 | 41.508 | |||
WA4 | 0.104 | 43.886 |
Indicator | Description | Physical Rank | Mental Rank | Social Adaptation Rank | |
---|---|---|---|---|---|
H1 | WA1 | Aquarium | 4 | 4 | 4 |
WA2 | Miniature fountain | 2 | 2 | 2 | |
WA3 | Outdoor ground-level fountain | 3 | 3 | 3 | |
WA4 | Water puddle (for play) | 1 | 1 | 1 | |
H2 | PL1 | Flower pots in the classroom | 2 | 2 | 2 |
PL2 | Biowall in the classroom | 5 | 5 | 5 | |
PL3 | Biodiversity landscapes around the kindergarten | 1 | 1 | 1 | |
PL4 | A view of landscapes from windows | 6 | 6 | 6 | |
PL5 | Planting greenery in platforms | 7 | 8 | 7 | |
PL6 | Greenery into semi-enclosed school corridors. | 4 | 4 | 4 | |
PL7 | Real plant specimens | 3 | 3 | 3 | |
PL8 | Greening roof | 8 | 7 | 8 | |
H3 | AN1 | Live, harmless animals | 1 | 1 | 1 |
AN2 | Animal specimens | 3 | 3 | 3 | |
AN3 | Feeding and breeding areas | 2 | 2 | 2 | |
H4 | EC1 | Planting plants or crops | 1 | 1 | 1 |
EC2 | Path obstacles children pass through | 2 | 2 | 2 | |
EC3 | Increasing soil, rocks, etc., in limited spaces | 3 | 3 | 3 | |
EC4 | Natural elements in activity areas. | 3 | 4 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, H.; Sulaiman, R.; Ismail, M.A. Biophilic Design and Children’s Well-Being in Kindergartens in Henan, China: A PLS-SEM Study. Buildings 2025, 15, 1548. https://doi.org/10.3390/buildings15091548
Deng H, Sulaiman R, Ismail MA. Biophilic Design and Children’s Well-Being in Kindergartens in Henan, China: A PLS-SEM Study. Buildings. 2025; 15(9):1548. https://doi.org/10.3390/buildings15091548
Chicago/Turabian StyleDeng, Huizi, Raha Sulaiman, and Muhammad Azzam Ismail. 2025. "Biophilic Design and Children’s Well-Being in Kindergartens in Henan, China: A PLS-SEM Study" Buildings 15, no. 9: 1548. https://doi.org/10.3390/buildings15091548
APA StyleDeng, H., Sulaiman, R., & Ismail, M. A. (2025). Biophilic Design and Children’s Well-Being in Kindergartens in Henan, China: A PLS-SEM Study. Buildings, 15(9), 1548. https://doi.org/10.3390/buildings15091548