Spatiotemporal Dynamics and Influencing Factors of Wood Consumption in China’s Construction Industry
Abstract
1. Introduction
1.1. Research Background
1.2. Literature Review
1.3. Research Gaps and Questions
2. Materials and Methods
2.1. Study Area
2.2. Research Methods
2.2.1. Boston Consulting Group Matrix (BCGM)
2.2.2. Geodetector
2.3. Indicator Selection and Data Sources
3. Results
3.1. Overall Characteristics of Wood Consumption in the Construction Industry
3.2. Spatiotemporal Evolution Pattern of Wood Consumption in the Construction Industry
3.3. Factors Influencing Wood Consumption in the Construction Industry
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sutthichaimethee, P.; Mentel, G.; Voloshyn, V.; Mishchuk, H.; Bilan, Y. Modeling the Efficiency of Resource Consumption Management in Construction Under Sustainability Policy: Enriching the DSEM-ARIMA Model. Sustainability 2024, 16, 10945. [Google Scholar] [CrossRef]
- Milaj, K.; Sinha, A.; Miller, T.H.; Tokarczyk, J.A. Environmental Utility of Wood Substitution in Commercial Buildings Using Life—Cycle Analysis. Wood Fiber Sci. 2017, 49, 338–358. [Google Scholar]
- Crafford, P.L.; Wessels, C.B.; Blumentritt, M. Sustainability and wood constructions: A review of green building rating systems and life-cycle assessment methods from a South African and developing world perspective. Adv. Build. Energy Res. 2021, 15, 67–86. [Google Scholar] [CrossRef]
- Pramreiter, M.; Nenning, T.; Malzl, L.; Konnerth, J. A plea for the efficient use of wood in construction. Nat. Rev. Mater. 2023, 8, 217–218. [Google Scholar] [CrossRef]
- Goldaraz-Salamero, N.; Sierra-Perez, J.; Negro, F.; Zanuttini, R.; Blanc, S.; Brun, F. Integrated sustainability assessment of wood building products: The case of larch and chestnut cascading systems in Northern Italy. Sci. Total. Environ. 2024, 951, 175601. [Google Scholar] [CrossRef]
- Hildebrandt, J.; Hagemann, N.; Thrän, D. The contribution of wood-based construction materials for leveraging a low carbon building sector in europe. Sustain. Cities Soc. 2017, 34, 405–418. [Google Scholar] [CrossRef]
- Nässén, J.; Hedenus, F.; Karlsson, S.; Holmberg, J. Concrete vs. wood in buildings—An energy system approach. Build. Environ. 2011, 51, 361–369. [Google Scholar] [CrossRef]
- Nguyen, T. Climate effects of post-use wood materials from the building sector in a system perspective. Waste Manag. 2023, 170, 317–328. [Google Scholar] [CrossRef]
- Kalt, G. Carbon dynamics and GHG implications of increasing wood construction: Long-term scenarios for residential buildings in Austria. Carbon Manag. 2018, 9, 265–275. [Google Scholar] [CrossRef]
- Joensuu, T.; Tuominen, E.; Vinha, J.; Saari, A. Methodological aspects in assessing the whole-life global warming potential of wood-based building materials: Comparing exterior wall structures insulated with wood shavings. Environ. Res. Infrastruct. Sustain. 2023, 3, 045002. [Google Scholar] [CrossRef]
- Cobut, A.; Blanchet, P.; Beauregard, R. The environmental footprint of interior wood doors in non-residential buildings—Part 1: Life cycle assessment. J. Clean. Prod. 2015, 109, 232–246. [Google Scholar] [CrossRef]
- Pajchrowski, G.; Noskowiak, A.; Lewandowska, A.; Strykowski, W. Wood as a building material in the light of environmental assessment of full life cycle of four buildings. Constr. Build. Mater. 2014, 52, 428–436. [Google Scholar] [CrossRef]
- Wang, L.; Toppinen, A.; Juslin, H. Use of wood in green building: A study of expert perspectives from the UK. J. Clean. Prod. 2014, 65, 350–361. [Google Scholar] [CrossRef]
- Knowles, C.; Theodoropoulos, C.; Griffin, C.; Allen, J. Oregon design professionals views on structural building products in green buildings: Implications for wood. Can. J. For. Res. 2011, 41, 390–400. [Google Scholar] [CrossRef]
- Markström, E.; Kuzman, M.K.; Bystedt, A.; Sandberg, D.; Fredriksson, M. Swedish architects view of engineered wood products in buildings. J. Clean. Prod. 2018, 181, 33–41. [Google Scholar] [CrossRef]
- Viholainen, N.; Kylkilahti, E.; Autio, M.; Toppinen, A. A home made of wood: Consumer experiences of wooden building materials. Int. J. Consum. Stud. 2020, 44, 542–551. [Google Scholar] [CrossRef]
- Pomponi, J.P.; Quesada, H.J.; Smith, R.; Loferski, J. Factors Behind Construction Companies Wood Products Purchasing Decisions: Supplier Market Impact. For. Prod. J. 2021, 71, 262–274. [Google Scholar] [CrossRef]
- Markström, E.; Kitek Kuzman, M.; Bystedt, A.; Sandberg, D. Use of wood products in multi-storey residential buildings: Views of Swedish actors and suggested measures for an increased use. Wood Mater. Sci. Eng. 2019, 14, 404–419. [Google Scholar] [CrossRef]
- Blanchet, P.; Perez, C.; Cabral, M.R. Wood Building Construction: Trends and Opportunities in Structural and Envelope Systems. Curr. For. Rep. 2023, 10, 21–38. [Google Scholar] [CrossRef]
- Cobut, A.; Beauregard, R.; Blanchet, P. Reducing the environmental footprint of interior wood doors in non-residential buildings—Part 2: Ecodesign. J. Clean. Prod. 2015, 109, 247–259. [Google Scholar] [CrossRef]
- Xu, H.; Li, J.; Wu, J.; Kang, J. Evaluation of Wood Coverage on Building Facades Towards Sustainability. Sustainability 2019, 11, 1407. [Google Scholar] [CrossRef]
- Ratnasingam, J.; Ab Latib, H.; Ng, W.C.; Cellathurai, M.; Chin, K.A.; Senin, A.L.; Lim, C.L. Preference of using wood and wood products in the construction industry in peninsular Malaysia. BioResources 2018, 13, 5289–5302. [Google Scholar] [CrossRef]
- Padilla-Rivera, A.; Amor, B.; Blanchet, P. Evaluating the Link between Low Carbon Reductions Strategies and Its Performance in the Context of Climate Change: A Carbon Footprint of a Wood-Frame Residential Building in Quebec, Canada. Sustainability 2018, 10, 2715. [Google Scholar] [CrossRef]
- Blasco, D.K.; Saukkonen, N.; Korhonen, T.; Laine, T.; Muilu-Mäkelä, R. Wood material selection in school building procurement—A multi-case analysis in Finnish municipalities. J. Clean. Prod. 2021, 327, 129474. [Google Scholar] [CrossRef]
- Aaltonen, A.; Hurmekoski, E.; Korhonen, J. What About Wood?—“Nonwood” Construction Experts’ Perceptions of Environmental Regulation, Business Environment, and Future Trends in Residential Multistory Building in Finland. For. Prod. J. 2021, 71, 342–351. [Google Scholar] [CrossRef]
- Loucanová, E.; Olsiaková, M. Identification of Customers’ Drivers for the Wood Building as An Ecological Innovation in Building Construction in Slovakia. Acta Fac. Xylologiae Zvolen 2020, 62, 177–188. [Google Scholar]
- Švajlenka, J.; Kozlovská, M. Elements of the Fourth Industrial Revolution in the Production of Wood Buildings. Teh. Glas. 2020, 14, 365–368. [Google Scholar] [CrossRef]
- Gharaibeh, L.; Matarneh, S.; Eriksson, K.; Lantz, B. Digital transformation of the wood construction supply chain through building information modelling: Current state of practice. Constr. Innov. 2023, 24, 273–291. [Google Scholar] [CrossRef]
- Calquin, D.L.; Mata, R.; Correa, C.; Nuñez, E.; Bustamante, G.; Caicedo, N.; Fernandez, D.B.; Díaz, M.; Pulgar-Rubilar, P.; Roa, L. Implementation of Building Information Modeling Technologies in Wood Construction: A Review of the State of the Art from a Multidisciplinary Approach. Buildings 2024, 14, 584. [Google Scholar] [CrossRef]
- Cordier, S.; Robichaud, F.; Blanchet, P.; Amor, B. Exploring the regional-scale potential of the use of wood products in non-residential buildings: A building permits-based quantitative approach. BioResources 2019, 15, 787–813. [Google Scholar] [CrossRef]
- Kim, M.-J.; Chun, S.; Han, Y. Prediction of raw-wood consumption based on potential wood usage in public buildings: A quantitative approach using building construction statistics. BioResources 2024, 19, 6621–6637. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, S.; Zhang, P.; Zhou, Y.; Li, K. Dynamics and Driving Mechanism of Real Estate in China’s Small Cities: A Case Study of Gansu Province. Buildings 2022, 12, 1512. [Google Scholar] [CrossRef]
- Kaya, M.C.; Persson, L. A theory of gazelle growth: Competition, venture capital finance and policy. N. Am. J. Econ. Financ. 2019, 50, 101019. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, C.; Qi, J. The Key Factors Driving the Development of New Towns by Mother Cities and Regions: Evidence from China. ISPRS Int. J. Geo-Inf. 2021, 10, 223. [Google Scholar] [CrossRef]
- Zhao, S.; Li, W.; Zhao, K.; Zhang, P. Change Characteristics and Multilevel Influencing Factors of Real Estate Inventory—Case Studies from 35 Key Cities in China. Land 2021, 10, 928. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, P.; Zhao, K.; Zhou, Y.; Zhao, S. A Dynamic Performance and Differentiation Management Policy for Urban Construction Land Use Change in Gansu, China. Land 2022, 11, 942. [Google Scholar] [CrossRef]
- Wang, J.F.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Model. Softw. 2012, 33, 114–115. [Google Scholar] [CrossRef]
- Iriarte-Goñi, I.; Ayuda, M.-I. Not only subterranean forests: Wood consumption and economic development in Britain (1850–1938). Ecol. Econ. 2012, 77, 176–184. [Google Scholar] [CrossRef]
- Kayo, C.; Oka, H.; Hashimoto, S.; Mizukami, M.; Takagi, S. Socioeconomic development and wood consumption. J. For. Res. 2015, 20, 309–320. [Google Scholar] [CrossRef]
- Guan, X.Y.; Wang, S.L.; Gao, Z.Y.; Lv, Y.; Fu, X.J. Spatio-temporal variability of soil salinity and its relationship with the depth to groundwater in salinization irrigation district. Acta Ecol. Sin. 2012, 32, 198–206. [Google Scholar]
- Miyamoto, S.; Chacon, A.; Hossain, M.; Martinez, L. Soil salinity of urban turf areas irrigated with saline water I. Spatial variability. Landsc. Urban Plan. 2005, 71, 233–241. [Google Scholar]
- Li, W.; Wang, M.; Zhao, S. The Spatio-Temporal Dynamics, Driving Mechanism, and Management Strategies for International Students in China under the Background of the Belt and Road Initiatives. ISPRS Int. J. Geo-Inf. 2023, 12, 405. [Google Scholar] [CrossRef]
- Sikkema, R.; Styles, D.; Jonsson, R.; Tobin, B.; Byrne, K. A market inventory of construction wood for residential building in Europe—In the light of the Green Deal and new circular economy ambitions. Sustain. Cities Soc. 2022, 90, 104370. [Google Scholar] [CrossRef]
- Wiegand, E.; Ramage, M. The impact of policy instruments on the first generation of Tall Wood Buildings. Build. Res. Inf. 2021, 50, 255–275. [Google Scholar] [CrossRef]
- Mergel, C.; Menrad, K.; Decker, T. Which factors influence consumers’ selection of wood as a building material for houses? Can. J. For. Res. 2024, 54, 467–478. [Google Scholar] [CrossRef]
- Head, M.; Levasseur, A.; Beauregard, R.; Margni, M. Dynamic greenhouse gas life cycle inventory and impact profiles of wood used in Canadian buildings. Build. Environ. 2020, 173, 106751. [Google Scholar] [CrossRef]
- Pramreiter, M.; Nenning, T.; Huber, C.; Müller, U.; Kromoser, B.; Mayencourt, P.; Konnerth, J. A review of the resource efficiency and mechanical performance of commercial wood-based building materials. Sustain. Mater. Technol. 2023, 38, e00728. [Google Scholar] [CrossRef]
- Kern, A.P.; Amor, L.V.; Angulo, S.C.; Montelongo, A. Factors influencing temporary wood waste generation in high-rise building construction. Waste Manag. 2018, 78, 446–455. [Google Scholar] [CrossRef]
- Piccardo, C.; Hughes, M. Design strategies to increase the reuse of wood materials in buildings: Lessons from architectural practice. J. Clean. Prod. 2022, 368, 133083. [Google Scholar] [CrossRef]
- Kiesnere, G.; Atstaja, D.; Cudecka-Purina, N.; Susniene, R. The Potential of Wood Construction Waste Circularity. Environments 2024, 11, 231. [Google Scholar] [CrossRef]
- Nyrud, A.Q.; Heltorp, K.M.A.; Roos, A.; Aguilar, F.X.; Lahtinen, K.; Viholainen, N.; Berghall, S.; Toppinen, A.; Thorsen, B.J.; Kniivila, M.; et al. Citizens’ knowledge of and perceptions of multi-storey wood buildings in seven European countries. Scand. J. For. Res. 2023, 39, 8–19. [Google Scholar] [CrossRef]
Indicator | Abbreviation | Code | Meaning |
---|---|---|---|
Wood Consumption in the Construction Industry | WCCI | Dependent Variable | |
Gross Domestic Product | GDP | Demand for High-Quality Economic and Social Development | |
Population Urbanization Rate | PUR | ||
Per Capita GDP | PCGDP | ||
Per Capita Disposable Income of Residents | PCDIR | ||
Wood Production | WP | Supply Capacity and Support System | |
Artificial Forest Area | AFA | ||
Forestry and Grassland Investment | FGI | ||
Fiscal Self-Sufficiency Rate | FSR | ||
Profit and Tax Rate on Assets in the Construction Industry | PTRACI | Efficiency and Technology in the Construction Industry | |
Per Capita Completed Area in the Construction Industry | PCCACI | ||
Power Equipment Rate in the Construction Industry | PERCI | ||
R&D Expenses in the Construction Industry | RDECI | ||
Steel Consumption in the Construction Industry | SCCI | Alternative to Wood in the Construction Industry | |
Cement Consumption in the Construction Industry | CCCI | ||
Flat Glass Consumption in the Construction Industry | FGCCI | ||
Aluminum Consumption in the Construction Industry | ACCI |
Type | 2000 | 2021 |
---|---|---|
High | Zhejiang, Guangdong, Jiangsu, Sichuan, Shandong, Hunan, Liaoning, Hubei, Fujian, Hebei | Hubei, Fujian, Zhejiang, Jiangsu, Sichuan, Anhui, Hunan, Guangdong, Henan, Jiangxi |
Medium | Guangxi, Chongqing, Beijing, Henan, Anhui, Heilongjiang, Yunnan, Shanghai, Jiangxi, Jilin, Shanxi | Shanghai, Shandong, Guangxi, Yunnan, Chongqing, Hebei, Guizhou, Beijing, Shaanxi, Liaoning, Xinjiang |
Low | Shaanxi, Inner Mongolia, Xinjiang, Gansu, Guizhou, Tianjin, Hainan, Ningxia, Qinghai, Xizang | Shanxi, Jilin, Hainan, Tianjin, Gansu, Heilongjiang, Inner Mongolia, Ningxia, Xizang, Qinghai |
No. | Province | 2000–2010 | 2011–2021 | Change | ||||
---|---|---|---|---|---|---|---|---|
RS | GR | Pattern | RS | GR | Pattern | |||
1 | Beijing | 0.18 | 15.71 | Gazelle | 0.12 | 4.56 | Dog | Degeneration |
2 | Tianjin | 0.05 | 18.85 | Gazelle | 0.05 | 4.96 | Dog | Degeneration |
3 | Hebei | 0.28 | 18.48 | Star | 0.19 | 3.96 | Dog | Degeneration |
4 | Shanxi | 0.09 | 13.80 | Dog | 0.09 | 12.15 | Gazelle | Evolution |
5 | Inner Mongolia | 0.06 | 12.35 | Dog | 0.02 | −3.37 | Dog | Unchanged |
6 | Liaoning | 0.31 | 15.82 | Star | 0.11 | −4.78 | Dog | Degeneration |
7 | Jilin | 0.10 | 14.03 | Dog | 0.05 | −1.39 | Dog | Unchanged |
8 | Heilongjiang | 0.08 | 7.49 | Dog | 0.03 | −11.15 | Dog | Unchanged |
9 | Shanghai | 0.15 | 17.16 | Gazelle | 0.37 | 19.43 | Star | Evolution |
10 | Jiangsu | 0.84 | 17.73 | Star | 0.69 | −0.82 | Cow | Degeneration |
11 | Zhejiang | 1.00 | 18.20 | Star | 0.70 | 3.37 | Cow | Degeneration |
12 | Anhui | 0.23 | 18.69 | Star | 0.58 | 19.88 | Star | Unchanged |
13 | Fujian | 0.50 | 24.04 | Star | 0.96 | 18.23 | Star | Unchanged |
14 | Jiangxi | 0.19 | 21.01 | Gazelle | 0.40 | 14.47 | Star | Evolution |
15 | Shandong | 0.37 | 14.08 | Cow | 0.36 | 7.49 | Cow | Unchanged |
16 | Henan | 0.19 | 16.01 | Gazelle | 0.41 | 16.41 | Star | Evolution |
17 | Hubei | 0.41 | 20.94 | Star | 1.00 | 16.11 | Star | Unchanged |
18 | Hunan | 0.30 | 14.45 | Cow | 0.55 | 12.84 | Star | Evolution |
19 | Guangdong | 0.47 | 9.92 | Cow | 0.45 | 9.28 | Star | Evolution |
20 | Guangxi | 0.16 | 13.01 | Dog | 0.29 | 15.69 | Gazelle | Evolution |
21 | Hainan | 0.03 | 13.85 | Dog | 0.05 | 15.28 | Gazelle | Evolution |
22 | Chongqing | 0.28 | 20.66 | Star | 0.24 | 3.24 | Dog | Degeneration |
23 | Sichuan | 0.31 | 10.14 | Cow | 0.68 | 17.21 | Star | Evolution |
24 | Guizhou | 0.15 | 31.43 | Gazelle | 0.14 | 17.81 | Gazelle | Unchanged |
25 | Yunnan | 0.07 | 7.68 | Dog | 0.27 | 23.52 | Gazelle | Evolution |
26 | Xizang | 0.00 | 1.61 | Dog | 0.01 | 18.80 | Gazelle | Evolution |
27 | Shaanxi | 0.10 | 16.61 | Gazelle | 0.12 | 8.15 | Dog | Degeneration |
28 | Gansu | 0.04 | 12.64 | Dog | 0.04 | 1.18 | Dog | Unchanged |
29 | Qinghai | 0.01 | 10.12 | Dog | 0.00 | 1.10 | Dog | Unchanged |
30 | Ningxia | 0.02 | 18.55 | Gazelle | 0.02 | 4.63 | Dog | Degeneration |
31 | Xinjiang | 0.05 | 13.02 | Dog | 0.10 | −2.40 | Dog | Unchanged |
Code | Indicator | ||
---|---|---|---|
Wood Consumption in the Construction Industry | 0.78 | 0.00 | |
Gross Domestic Product | 0.02 | 0.44 | |
Population Urbanization Rate | 0.22 | 0.02 | |
Per Capita GDP | 0.20 | 0.03 | |
Per Capita Disposable Income of Residents | 0.38 | 0.01 | |
Wood Production | 0.23 | 0.06 | |
Artificial Forest Area | 0.75 | 0.00 | |
Forestry and Grassland Investment | 0.42 | 0.01 | |
Fiscal Self-Sufficiency Rate | 0.57 | 0.00 | |
Profit and Tax Rate on Assets in the Construction Industry | 0.16 | 0.04 | |
Per Capita Completed Area in the Construction Industry | 0.44 | 0.04 | |
Power Equipment Rate in the Construction Industry | 0.45 | 0.01 | |
R&D Expenses in the Construction Industry | 0.71 | 0.00 | |
Steel Consumption in the Construction Industry | 0.79 | 0.00 | |
Cement Consumption in the Construction Industry | 0.89 | 0.00 | |
Flat Glass Consumption in the Construction Industry | 0.88 | 0.00 |
0.78 | ||||||||||||||||
0.84 | 0.02 | |||||||||||||||
0.80 | 0.27 | 0.22 | ||||||||||||||
0.80 | 0.25 | 0.28 | 0.20 | |||||||||||||
0.88 | 0.51 | 0.55 | 0.52 | 0.38 | ||||||||||||
0.84 | 0.30 | 0.53 | 0.54 | 0.50 | 0.23 | |||||||||||
0.92 | 0.84 | 0.80 | 0.79 | 0.80 | 0.79 | 0.75 | ||||||||||
0.84 | 0.57 | 0.49 | 0.49 | 0.69 | 0.69 | 0.85 | 0.42 | |||||||||
0.91 | 0.70 | 0.73 | 0.67 | 0.71 | 0.76 | 0.82 | 0.92 | 0.57 | ||||||||
0.84 | 0.24 | 0.33 | 0.28 | 0.51 | 0.40 | 0.88 | 0.51 | 0.73 | 0.16 | |||||||
0.90 | 0.52 | 0.56 | 0.62 | 0.82 | 0.57 | 0.92 | 0.87 | 0.89 | 0.83 | 0.44 | ||||||
0.83 | 0.48 | 0.53 | 0.59 | 0.80 | 0.63 | 0.91 | 0.63 | 0.88 | 0.52 | 0.91 | 0.45 | |||||
0.98 | 0.76 | 0.73 | 0.77 | 0.96 | 0.90 | 0.94 | 0.78 | 0.92 | 0.79 | 0.97 | 0.77 | 0.71 | ||||
0.95 | 0.85 | 0.82 | 0.82 | 0.88 | 0.85 | 0.89 | 0.89 | 0.94 | 0.85 | 0.96 | 0.84 | 0.90 | 0.79 | |||
0.95 | 0.92 | 0.90 | 0.91 | 0.90 | 0.90 | 0.91 | 0.93 | 0.91 | 0.92 | 0.96 | 0.93 | 0.95 | 0.92 | 0.89 | ||
0.93 | 0.91 | 0.91 | 0.91 | 0.91 | 0.89 | 0.93 | 0.92 | 0.93 | 0.92 | 0.96 | 0.92 | 0.94 | 0.94 | 0.96 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Xu, J.; Zhao, S. Spatiotemporal Dynamics and Influencing Factors of Wood Consumption in China’s Construction Industry. Buildings 2025, 15, 917. https://doi.org/10.3390/buildings15060917
Yang X, Xu J, Zhao S. Spatiotemporal Dynamics and Influencing Factors of Wood Consumption in China’s Construction Industry. Buildings. 2025; 15(6):917. https://doi.org/10.3390/buildings15060917
Chicago/Turabian StyleYang, Xiaojuan, Jie Xu, and Sidong Zhao. 2025. "Spatiotemporal Dynamics and Influencing Factors of Wood Consumption in China’s Construction Industry" Buildings 15, no. 6: 917. https://doi.org/10.3390/buildings15060917
APA StyleYang, X., Xu, J., & Zhao, S. (2025). Spatiotemporal Dynamics and Influencing Factors of Wood Consumption in China’s Construction Industry. Buildings, 15(6), 917. https://doi.org/10.3390/buildings15060917