Sustainable Construction Practices: Challenges of Implementation in Building Infrastructure Projects in Malawi
Abstract
1. Introduction
2. Research Methods
2.1. Research Design and Approach
2.2. Population and Sampling
2.3. Data Collection
2.4. Method of Data Analysis
3. Results and Discussion
3.1. Respondents’ Demographic Information
3.2. One-Sample Test of the Challenges Affecting the Adoption and Implementation of SCPs
3.3. Exploratory Factor Analysis of the Challenges Affecting the Adoption and Implementation of SCPs
3.3.1. Component 1: Institutional Limitations
3.3.2. Component 2: Inadequate Technical Experience
3.3.3. Component 3: Inadequate Knowledge and Information
3.3.4. Component 4: Operational
3.3.5. Component 5: Financial
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Epstein, M.J. Making Sustainability Work: Best Practices in Managing and Measuring Corporate Social, Environmental and Economic Impacts; Routledge: London, UK, 2018. [Google Scholar]
- Ainger, C.; Fenner, R. Sustainable Infrastructure: Principles into Practice; ICE publishing: Lodon, UK, 2014. [Google Scholar]
- Loizou, L.; Barati, K.; Shen, X.; Li, B. Quantifying advantages of modular construction: Waste generation. Buildings 2021, 11, 622. [Google Scholar] [CrossRef]
- Ganda, F.; Ngwakwe, C.C. Role of energy efficiency on sustainable development. Environ. Econ. 2014, 5, 86–99. [Google Scholar]
- Goh, C.S.; Ting, J.N.; Bajracharya, A. Exploring social sustainability in the built environment. Adv. Environ. Eng. Res. 2023, 4, 010. [Google Scholar] [CrossRef]
- Sihela, P.W.; Nkengbeza, D. Factors Affecting Project Success at Katima Mulilo Town Council in the Zambezi Region of Namibia: A Study of the Build Together Project. Glob. J. Hum. Resour. Manag. 2021, 9, 1–30. [Google Scholar]
- Cole, L.B.; Lindsay, G.; Akturk, A. Green building education in the green museum: Design strategies in eight case study museums. Int. J. Sci. Educ. Part B 2020, 10, 149–165. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Gao, W.; Wang, F.; Zhou, N.; Kammen, D.M.; Ying, X. A survey of the status and challenges of green building development in various countries. Sustainability 2019, 11, 5385. [Google Scholar] [CrossRef]
- Hershey, R.; Kalina, M.; Kafodya, I.; Tilley, E. A sustainable alternative to traditional building materials: Assessing stabilised soil blocks for performance and cost in Malawi. Int. J. Sustain. Eng. 2023, 16, 155–165. [Google Scholar] [CrossRef]
- Aghimien, D.O.; Aigbavboa, C.O.; Thwala, W.D. Microscoping the challenges of sustainable construction in developing countries. J. Eng. Des. Technol. 2019, 17, 1110–1128. [Google Scholar] [CrossRef]
- Khan, M.A.; Wabaidur, S.M.; Siddiqui, M.R.; Alqadami, A.A.; Khan, A.H. Silico-manganese fumes waste encapsulated cryogenic alginate beads for aqueous environment de-colorization. J. Clean. Prod. 2020, 244, 118867. [Google Scholar] [CrossRef]
- AlSanad, S. Awareness, drivers, actions, and barriers of sustainable construction in Kuwait. Procedia Eng. 2015, 118, 969–983. [Google Scholar] [CrossRef]
- Djokoto, S.D.; Dadzie, J.; Ohemeng-Ababio, E. Barriers to sustainable construction in the Ghanaian construction industry: Consultants perspectives. J. Sustain. Dev. 2014, 7, 134. [Google Scholar] [CrossRef]
- Pham, H.; Kim, S.-Y. The effects of sustainable practices and managers’ leadership competences on sustainability performance of construction firms. Sustain. Prod. Consum. 2019, 20, 1–14. [Google Scholar] [CrossRef]
- Iqbal, M.; Ma, J.; Ahmad, N.; Hussain, K.; Usmani, M.S.; Ahmad, M. Sustainable construction through energy management practices in developing economies: An analysis of barriers in the construction sector. Environ. Sci. Pollut. Res. 2021, 28, 34793–34823. [Google Scholar] [CrossRef] [PubMed]
- Tokbolat, S.; Karaca, F.; Durdyev, S.; Calay, R.K. Construction professionals’ perspectives on drivers and barriers of sustainable construction. Env. Dev. Sustain. 2020, 22, 4361–4378. [Google Scholar] [CrossRef]
- Dwaikat, L.N.; Ali, K.N. Green buildings cost premium: A review of empirical evidence. Energy Build. 2016, 110, 396–403. [Google Scholar] [CrossRef]
- Darko, A.; Zhang, C.; Chan, A.P.C. Drivers for green building: A review of empirical studies. Habitat. Int. 2017, 60, 34–49. [Google Scholar] [CrossRef]
- Ayarkwa, J.; Opoku, D.-G.J.; Antwi-Afari, P.; Li, R.Y.M. Sustainable building processes’ challenges and strategies: The relative important index approach. Clean. Eng. Technol. 2022, 7, 100455. [Google Scholar] [CrossRef]
- Davies, A.; Dodgson, M.; Gann, D. Dynamic Capabilities in Complex Projects: The Case of London Heathrow Terminal 5. Proj. Manag. J. 2016, 47, 26–46. [Google Scholar] [CrossRef]
- Mwamvani, H.D.J.; Amoah, C.; Ayesu-Koranteng, E. Causes of road projects’ delays: A case of Blantyre, Malawi. Built Environ. Proj. Asset Manag. 2022, 12, 293–308. [Google Scholar] [CrossRef]
- Opoku, A.; Ahmed, V. Embracing sustainability practices in UK construction organizations: Challenges facing intra-organizational leadership. Built Environ. Proj. Asset Manag. 2014, 4, 90–107. [Google Scholar] [CrossRef]
- Adetoro, P.E.; Kululanga, K.; Mkandawire, T.; Musonda, I. The challenges of implementing Public-Private Partnership (PPP) for infrastructure projects in low-income countries: A case study of Malawi. In Development and Investment in Infrastructure in Developing Countries: A 10-Year Reflection; CRC Press: Boca Raton, FL, USA, 2025; pp. 579–586. [Google Scholar]
- Babalola, O.; Ibem, E.O.; Ezema, I.C. Implementation of lean practices in the construction industry: A systematic review. Build. Environ. 2019, 148, 34–43. [Google Scholar] [CrossRef]
- Harzing, A.-W.; Alakangas, S. Google Scholar, Scopus and the Web of Science: A longitudinal and cross-disciplinary comparison. Scientometrics 2016, 106, 787–804. [Google Scholar] [CrossRef]
- Kleinheksel, A.J.; Rockich-Winston, N.; Tawfik, H.; Wyatt, T.R. Demystifying content analysis. Am. J. Pharm. Educ. 2020, 84, 7113. [Google Scholar] [CrossRef] [PubMed]
- Kallio, H.; Pietilä, A.; Johnson, M.; Kangasniemi, M. Systematic methodological review: Developing a framework for a qualitative semi-structured interview guide. J. Adv. Nurs. 2016, 72, 2954–2965. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Hwang, B.-G.; Lim, J. Job satisfaction of project managers in green construction projects: Constituents, barriers, and improvement strategies. J. Clean. Prod. 2020, 246, 118968. [Google Scholar] [CrossRef]
- Aung, K.T.; Razak, R.A.; Nazry, N.N.M. Establishing validity and reliability of semi-structured interview questionnaire in developing risk communication module: A pilot study. Edunesia J. Ilm. Pendidik. 2021, 2, 600–606. [Google Scholar] [CrossRef]
- Wang, N.; Yao, S.; Wu, G.; Chen, X. The role of project management in organisational sustainable growth of technology-based firms. Technol. Soc. 2017, 51, 124–132. [Google Scholar] [CrossRef]
- Franco, M.A.J.Q.; Pawar, P.; Wu, X. Green building policies in cities: A comparative assessment and analysis. Energy Build. 2021, 231, 110561. Available online: https://www.sciencedirect.com/science/article/pii/S0378778820323690 (accessed on 22 November 2023). [CrossRef]
- Robichaud, L.B.; Anantatmula, V.S. Greening project management practices for sustainable construction. J. Manag. Eng. 2011, 27, 48–57. [Google Scholar] [CrossRef]
- Hwang, B.-G.; Ng, W.J. Project management knowledge and skills for green construction: Overcoming challenges. Int. J. Proj. Manag. 2013, 31, 272–284. [Google Scholar] [CrossRef]
- Barbosa AP FP, L.; Salerno, M.S.; de Souza Nascimento, P.T.; Albala, A.; Maranzato, F.P.; Tamoschus, D. Configurations of project management practices to enhance the performance of open innovation R&D projects. Int. J. Proj. Manag. 2021, 39, 128–138. Available online: https://www.sciencedirect.com/science/article/pii/S0263786320300454 (accessed on 22 November 2023).
- Silvius, A.J.G.; de Graaf, M. Exploring the project manager’s intention to address sustainability in the project board. J. Clean. Prod. 2019, 208, 1226–1240. [Google Scholar] [CrossRef]
- Chan, A.P.C.; Darko, A.; Ameyaw, E.E. Strategies for promoting green building technologies adoption in the construction industry—An international study. Sustainability 2017, 9, 969. [Google Scholar] [CrossRef]
- Opoku, A.; Deng, J.; Elmualim, A.; Ekung, S.; Hussien, A.A.; Abdalla, S.B. Sustainable procurement in construction and the realisation of the sustainable development goal (SDG) 12. J. Clean. Prod. 2022, 376, 134294. [Google Scholar] [CrossRef]
- Kibert, C.J. Sustainable Construction: Green Building Design and Delivery; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Schöggl, J.-P.; Baumgartner, R.J.; Hofer, D. Improving sustainability performance in early phases of product design: A checklist for sustainable product development tested in the automotive industry. J. Clean. Prod. 2017, 140, 1602–1617. [Google Scholar] [CrossRef]
- Koolwijk, J.S.J.; van Oel, C.J.; Wamelink, J.W.F.; Vrijhoef, R. Collaboration and integration in project-based supply chains in the construction industry. J. Manag. Eng. 2018, 34, 04018001. [Google Scholar] [CrossRef]
- Häkkinen, T.; Belloni, K. Barriers and drivers for sustainable building. Build. Res. Inf. 2011, 39, 239–255. [Google Scholar] [CrossRef]
- Zidane, Y.J.-T.; Andersen, B. The top 10 universal delay factors in construction projects. Int. J. Manag. Proj. Bus. 2018, 11, 650–672. [Google Scholar] [CrossRef]
- Alshawi, M.; Faraj, I. Integrated construction environments: Technology and implementation. Constr. Innov. 2002, 2, 33–51. [Google Scholar] [CrossRef]
- Argyroudis, S.A.; Mitoulis, S.A.; Chatzi, E.; Baker, J.W.; Brilakis, I.; Gkoumas, K.; Vousdoukas, M.; Hynes, W.; Carluccio, S.; Keou, O.; et al. Digital technologies can enhance climate resilience of critical infrastructure. Clim. Risk Manag. 2022, 35, 100387. Available online: https://www.sciencedirect.com/science/article/pii/S2212096321001169 (accessed on 22 November 2023). [CrossRef]
- Reyes, M.R.D.; Gamboa, M.A.M.; Rivera, R.R.B. The Philippines’ National Urban Policy for achieving sustainable, resilient, greener and smarter cities. In Developing National Urban Policies: Ways Forward to Green and Smart Cities; Springer: Singapore, 2020; pp. 169–203. [Google Scholar]
- Akinradewo, O.; Aigbavboa, C.; Aghimien, D.; Oke, A.; Ogunbayo, B. Modular method of construction in developing countries: The underlying challenges. Int. J. Constr. Manag. 2023, 23, 1344–1354. [Google Scholar] [CrossRef]
- Hwang, B.-G.; Zhu, L.; Tan, J.S.H. Green business park project management: Barriers and solutions for sustainable development. J. Clean. Prod. 2017, 153, 209–219. [Google Scholar] [CrossRef]
- Ahmed, S.; El-Sayegh, S. The challenges of sustainable construction projects delivery–evidence from the UAE. Archit. Eng. Des. Manag. 2022, 18, 299–312. [Google Scholar] [CrossRef]
- Suprapto, M.; Bakker, H.L.M.; Mooi, H.G.; Hertogh, M.J.C.M. How do contract types and incentives matter to project performance? Int. J. Proj. Manag. 2016, 34, 1071–1087. [Google Scholar] [CrossRef]
- Kang, Y.; Kim, C.; Son, H.; Lee, S.; Limsawasd, C. Comparison of preproject planning for green and conventional buildings. J. Constr. Eng. Manag. 2013, 139, 04013018. [Google Scholar] [CrossRef]
- El-Sayegh, S.M.; Manjikian, S.; Ibrahim, A.; Abouelyousr, A.; Jabbour, R. Risk identification and assessment in sustainable construction projects in the UAE. Int. J. Constr. Manag. 2018, 21, 327–336. [Google Scholar] [CrossRef]
- Al-Hajj, A.; Hamani, K. Material waste in the UAE construction industry: Main causes and minimization practices. Archit. Eng. Des. Manag. 2011, 7, 221–235. [Google Scholar] [CrossRef]
- Ahmed Ezzat Othman, A.; AlNassar, N. A framework for achieving sustainability by overcoming the challenges of the construction supply chain during the design process. Organ. Technol. Manag. Constr. Int. J. 2021, 13, 2391–2415. [Google Scholar] [CrossRef]
- Tafazzoli, M.; Mousavi, E.; Kermanshachi, S. Opportunities and challenges of green-lean: An integrated system for sustainable construction. Sustainability 2020, 12, 4460. [Google Scholar] [CrossRef]
- Bohari, A.; Skitmore, M.; Xia, B.; Teo, M. Green oriented procurement for building projects: Preliminary findings from Malaysia. J. Clean. Prod. 2017, 148, 690–700. [Google Scholar] [CrossRef]
- Olawumi, T.O.; Chan, D.W.M. Key drivers for smart and sustainable practices in the built environment. Eng. Constr. Archit. Manag. 2020, 27, 1257–1281. [Google Scholar] [CrossRef]
- Singh, A.S.; Masuku, M.B. Sampling techniques & determination of sample size in applied statistics research: An overview. Int. J. Econ. Commer. Manag. 2014, 2, 1–22. [Google Scholar]
- Liu, Z.; Lu, Y.; Nath, T.; Wang, Q.; Tiong, R.L.K.; Peh, L.L.C. Critical success factors for BIM adoption during construction phase: A Singapore case study. Eng. Constr. Archit. Manag. 2022, 29, 3267–3287. [Google Scholar] [CrossRef]
- Lekan, A.; Clinton, A.; Stella, E.; Moses, E.; Biodun, O. Construction 4.0 application: Industry 4.0, internet of things and lean construction tools’ application in quality management system of residential building projects. Buildings 2022, 12, 1557. [Google Scholar] [CrossRef]
- Beavers, A.S.; Lounsbury, J.W.; Richards, J.K.; Huck, S.W.; Skolits, G.J.; Esquivel, S.L. Practical considerations for using exploratory factor analysis in educational research. Pract. Assess. Res. Eval. 2019, 18, 6. [Google Scholar]
- Ogunsanya, O.A.; Aigbavboa, C.O.; Thwala, D.W.; Edwards, D.J. Barriers to sustainable procurement in the Nigerian construction industry: An exploratory factor analysis. Int. J. Constr. Manag. 2022, 22, 861–872. [Google Scholar] [CrossRef]
- Darko, A.; Chan, A.P.C.; Yang, Y.; Shan, M.; He, B.-J.; Gou, Z. Influences of barriers, drivers, and promotion strategies on green building technologies adoption in developing countries: The Ghanaian case. J. Clean. Prod. 2018, 200, 687–703. [Google Scholar] [CrossRef]
- Watkins, M.W. Exploratory factor analysis: A guide to best practice. J. Black Psychol. 2018, 44, 219–246. [Google Scholar] [CrossRef]
- Nasiru, M.A.; Dahlan, N.H.M. Exploratory factor analysis in establishing dimensions of intervention programmes among obstetric vesicovaginal fistula victims in Northern Nigeria. J. Crit. Rev. 2020, 7, 1554–1560. [Google Scholar]
- Sürücü, L.; Maslakci, A. Validity and reliability in quantitative research. Bus. Manag. Stud. Int. J. 2020, 8, 2694–2726. [Google Scholar] [CrossRef]
- Taber, K.S. The use of Cronbach’s alpha when developing and reporting research instruments in science education. Res. Sci. Educ. 2018, 48, 1273–1296. [Google Scholar] [CrossRef]
- Olanrewaju, O.I.; Okorie, V.N. Exploring the Qualities of a Good Leader Using Principal Component Analysis. J. Eng. Proj. Prod. Manag. 2019, 9, 142–150. [Google Scholar]
- Toyin, J.O.; Mewomo, M.C. An investigation of barriers to the application of building information modelling in Nigeria. J. Eng. Des. Technol. 2023, 21, 442–468. [Google Scholar] [CrossRef]
- Okoye, P.U.; Okolie, K.C.; Odesola, I.A. Risks of implementing sustainable construction practices in the Nigerian building industry. Constr. Econ. Build. 2022, 22, 21–46. [Google Scholar] [CrossRef]
- Jaffar, N.; Affendi, N.I.N.; Ali, I.M.; Ishak, N.; Jaafar, A.S. Barriers of green building technology adoption in Malaysia: Contractors’ perspective. Int. J. Acad. Res. Bus. Soc. Sci. 2022, 12, 1552–1560. [Google Scholar] [CrossRef]
- Fathalizadeh, A.; Hosseini, M.R.; Vaezzadeh, S.S.; Edwards, D.J.; Martek, I.; Shooshtarian, S. Barriers to sustainable construction project management: The case of Iran. Smart Sustain. Built Environ. 2022, 11, 717–739. [Google Scholar] [CrossRef]
- Ngoma, I.; Kafodya, I.; Kloukinas, P.; Novelli, V.; Macdonald, J.; Goda, K. Building classification and seismic vulnerability of current housing construction in Malawi. Malawi J. Sci. Technol. 2019, 11, 57–72. [Google Scholar]
- O’Dwyer, E.; Pan, I.; Acha, S.; Shah, N. Smart energy systems for sustainable smart cities: Current developments, trends and future directions. Appl. Energy 2019, 237, 581–597. [Google Scholar] [CrossRef]
- Gunduz, M.; Abdi, E.A. Motivational factors and challenges of cooperative partnerships between contractors in the construction industry. J. Manag. Eng. 2020, 36, 04020018. [Google Scholar] [CrossRef]
- Tavakol, M.; Wetzel, A. Factor Analysis: A means for theory and instrument development in support of construct validity. Int. J. Med. Educ. 2020, 11, 245. [Google Scholar] [CrossRef]
- Hatcher, L.; O’Rourke, N. A Step-by-Step Approach to Using SAS for Factor Analysis and Structural Equation Modeling; Sas Institute: Cary, NC, USA, 2013. [Google Scholar]
- Willar, D.; Waney, E.V.Y.; Pangemanan, D.D.G.; Mait, R.E.G. Sustainable construction practices in the execution of infrastructure projects: The extent of implementation. Smart Sustain. Built Environ. 2021, 10, 106–124. [Google Scholar] [CrossRef]
- Adabre, M.A.; Chan, A.P.C.; Darko, A. Interactive effects of institutional, economic, social and environmental barriers on sustainable housing in a developing country. Build. Environ. 2022, 207, 108487. [Google Scholar] [CrossRef]
- Oke, A.E.; Oyediran, A.O.; Koriko, G.; Tang, L.M. Carbon trading practices adoption for sustainable construction: A study of the barriers in a developing country. Sustain. Dev. 2022, 32, 1120–1136. [Google Scholar] [CrossRef]
- Villar, L.M.-D.; Oliva-Lopez, E.; Luis-Pineda, O.; Benešová, A.; Tupa, J.; Garza-Reyes, J.A. Fostering economic growth, social inclusion & sustainability in Industry 4.0: A systemic approach. Procedia Manuf. 2020, 51, 1755–1762. [Google Scholar]
- Ikudayisi, A.E.; Chan, A.P.C.; Darko, A.; Adegun, O.B. Integrated design process of green building projects: A review towards assessment metrics and conceptual framework. J. Build. Eng. 2022, 50, 104180. [Google Scholar] [CrossRef]
- Agyekum, A.K.; Fugar, F.D.K.; Agyekum, K.; Akomea-Frimpong, I.; Pittri, H. Barriers to stakeholder engagement in sustainable procurement of public works. Eng. Constr. Archit. Manag. 2023, 30, 3840–3857. [Google Scholar] [CrossRef]
- Marchi, L.; Antonini, E.; Politi, S. Green building rating systems (GBRSs). Encyclopedia 2021, 1, 998–1009. [Google Scholar] [CrossRef]
- Akbari, S.; Sheikhkhoshkar, M.; Rahimian, F.P.; El Haouzi, H.B.; Najafi, M.; Talebi, S. Sustainability and building information modelling: Integration, research gaps, and future directions. Autom. Constr. 2024, 163, 105420. [Google Scholar] [CrossRef]
- Martínez-Peláez, R.; Ochoa-Brust, A.; Rivera, S.; Félix, V.G.; Ostos, R.; Brito, H.; Félix, R.A.; Mena, L.J. Role of digital transformation for achieving sustainability: Mediated role of stakeholders, key capabilities, and technology. Sustainability 2023, 15, 11221. [Google Scholar] [CrossRef]
- Malik, A.; Mbewe, P.B.K.; Kavishe, N.; Mkandawire, T.; Adetoro, P. Sustainable Construction Practices in Building Infrastructure Projects: The Extent of Implementation and Drivers in Malawi. Sustainability 2024, 16, 10825. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, L.; Osmani, M.; Demian, P. Building information management (BIM) and blockchain (BC) for sustainable building design information management framework. Electronics 2019, 8, 724. [Google Scholar] [CrossRef]
- Quang, P.T.; Thao, D.P. Analyzing the green financing and energy efficiency relationship in ASEAN. J. Risk Financ. 2022, 23, 385–402. [Google Scholar] [CrossRef]
Code | Critical Challenges | Reference |
---|---|---|
CH 1 | Higher costs of sustainable building materials | [18,30] |
CH 2 | The technicalities of the construction process | [31,32] |
CH 3 | Lengthy bureaucratic procedures for sustainable building processes | [33] |
CH 4 | Lack of knowledge about sustainable technology | [34,35,36] |
CH 5 | Lack of awareness of sustainable practices | [19,37,38] |
CH 6 | Lack of information on sustainable building products | [39,40,41] |
CH 7 | Lack of stakeholder collaboration | [42,43] |
CH 8 | Lack of long-term performance monitoring and maintenance | [44] |
CH 9 | Poor communication among stakeholders | [20] |
CH 10 | Higher costs of sustainable building processes | [17] |
CH 11 | Inadequate project planning and coordination | [21,45] |
CH 12 | Inability of stakeholders to let go of traditional construction and project management practices | [46] |
CH 13 | Poor feasibility and management of risk | [47] |
CH 14 | Lack of sustainability building codes and policies | [41] |
CH 15 | Limited experience in selecting sustainable construction procedures and techniques | [48] |
CH 16 | Absence of sustainability criteria in the bidding process | [48] |
CH 17 | Inadequate funding for sustainable projects | [48] |
CH 18 | Lack of incentives for contractors who incorporate sustainability practices in the project delivery | [49] |
CH 19 | Inability of contractors to budget for sustainable projects | [32] |
CH 20 | Poor scope definition of sustainable construction requirements | [50] |
CH 21 | Incomplete sustainability specifications for projects | [51,52] |
CH 22 | Difficulty in complying with sustainable building codes and certifications | [51,53] |
CH 23 | Clients’ unwillingness to pay extra for green buildings | [13,54] |
CH 24 | Fragmented guidelines for sustainable procurement procedures | [55] |
CH 25 | Need for special materials for sustainable projects | [56] |
Demographics of Respondents | Responses per Demographic (n = 193) | Frequency (%) |
---|---|---|
Highest Qualification | ||
Secondary/Senior High | 8 | 4 |
Diploma | 46 | 24 |
Degree | 105 | 54 |
Master’s Degree | 27 | 14 |
PhD | 7 | 4 |
Job Description | ||
Architect | 46 | 24 |
Project Manager | 43 | 22 |
Civil Engineer | 38 | 20 |
Quantity Surveyor | 32 | 17 |
Specialist Engineer | 18 | 9 |
Builder | 9 | 5 |
Procurement officer | 7 | 3 |
Work Experience | ||
1–5 years | 74 | 38 |
6–10 years | 68 | 35 |
11–15 years | 42 | 22 |
16–20 years | 7 | 4 |
21 years and above | 2 | 1 |
Kind of Firm | ||
Construction Company | 79 | 41 |
Consultant | 55 | 28 |
Real Estate Company | 31 | 16 |
Government Agency | 28 | 15 |
Test Value (µ = 3.5) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Code | Challenges | MS | SD | t-Value | Df | Sig. (2-Tailed) | MD | R | Significant (p < 0.05) |
CH1 | Higher costs of sustainable building processes | 3.84 | 0.750 | 6.286 | 192 | 0.000 | 0.339 | 1 | Yes |
CH2 | Lack of information on sustainable building products | 3.83 | 0.762 | 6.002 | 192 | 0.000 | 0.329 | 2 | Yes |
CH3 | Higher costs of sustainable building materials | 3.83 | 0.795 | 5.749 | 192 | 0.000 | 0.329 | 3 | Yes |
CH4 | Lack of knowledge about sustainable technology | 3.82 | 0.722 | 6.233 | 192 | 0.000 | 0.324 | 4 | Yes |
CH5 | Inability of stakeholders to let go of traditional construction and project management practices | 3.82 | 0.844 | 5.247 | 192 | 0.000 | 0.319 | 5 | Yes |
CH6 | Need for special materials for sustainable projects | 3.81 | 0.721 | 5.937 | 192 | 0.000 | 0.308 | 6 | Yes |
CH7 | Lack of awareness of sustainable practices | 3.81 | 0.814 | 5.349 | 192 | 0.000 | 0.313 | 7 | Yes |
CH8 | Limited experience in selecting sustainable construction procedures and techniques | 3.80 | 0.752 | 5.601 | 192 | 0.000 | 0.303 | 8 | Yes |
CH9 | Clients’ unwillingness to pay extra for green buildings | 3.79 | 0.763 | 5.332 | 192 | 0.000 | 0.293 | 9 | Yes |
CH10 | Lengthy bureaucratic procedures for sustainable building processes | 3.77 | 0.750 | 5.039 | 192 | 0.000 | 0.272 | 10 | Yes |
CH11 | Inadequate project planning and coordination | 3.77 | 0.765 | 4.843 | 192 | 0.000 | 0.267 | 11 | Yes |
CH12 | Fragmented guidelines for sustainable procurement procedures | 3.76 | 0.713 | 4.999 | 192 | 0.000 | 0.256 | 12 | Yes |
CH13 | Lack of stakeholder collaboration | 3.76 | 0.718 | 5.061 | 192 | 0.000 | 0.262 | 13 | Yes |
CH14 | Lack of long-term performance monitoring and maintenance | 3.76 | 0.762 | 4.674 | 192 | 0.000 | 0.256 | 14 | Yes |
CH15 | Inadequate funding for sustainable projects | 3.76 | 0.675 | 5.276 | 192 | 0.000 | 0.256 | 15 | Yes |
CH16 | Lack of sustainable building codes and policies | 3.76 | 0.828 | 4.305 | 192 | 0.000 | 0.256 | 16 | Yes |
CH17 | Difficulty in complying with sustainable building codes and certifications | 3.74 | 0.733 | 4.569 | 192 | 0.000 | 0.241 | 17 | Yes |
CH18 | The technicalities of the construction process | 3.74 | 0.826 | 4.051 | 192 | 0.000 | 0.241 | 18 | Yes |
CH19 | Poor feasibility and management of risk | 3.73 | 0.797 | 4.019 | 192 | 0.000 | 0.231 | 19 | Yes |
CH20 | Absence of sustainability criteria in the bidding process | 3.72 | 0.739 | 4.139 | 192 | 0.000 | 0.220 | 20 | Yes |
CH21 | Lack of incentives for contractors who incorporate sustainability practices in the project delivery | 3.72 | 0.753 | 4.062 | 192 | 0.000 | 0.220 | 21 | Yes |
CH22 | Incomplete sustainability specifications for projects | 3.66 | 0.755 | 2.908 | 192 | 0.004 | 0.158 | 22 | Yes |
CH23 | Poor communication among stakeholders | 3.66 | 0.808 | 2.716 | 192 | 0.007 | 0.158 | 23 | Yes |
CH24 | Inability of contractors to budget for sustainable projects | 3.63 | 0.826 | 2.223 | 192 | 0.027 | 0.132 | 24 | Yes |
CH25 | Poor scope definition of sustainable construction requirements | 3.62 | 0.782 | 2.163 | 192 | 0.032 | 0.122 | 25 | Yes |
Kaiser–Meyer–Olkin Measure of Sampling Adequacy. | 0.915 | |
Bartlett’s Test of Sphericity | Approx. Chi-Square | 3121.711 |
Df | 300 | |
Sig. | 0.000 | |
Cronbach’s Alpha | 0.949 |
Code | Factors | Initial | Extraction |
---|---|---|---|
CH1 | Higher costs of sustainable building processes | 1.000 | 0.552 |
CH2 | Lack of information on sustainable building products | 1.000 | 0.817 |
CH3 | Higher costs of sustainable building materials | 1.000 | 0.806 |
CH4 | Lack of knowledge about sustainable technology | 1.000 | 0.771 |
CH5 | Inability of stakeholders to let go of traditional construction and project management practices | 1.000 | 0.631 |
CH6 | Need for special materials for sustainable projects | 1.000 | 0.643 |
CH7 | Lack of awareness of sustainable practices | 1.000 | 0.802 |
CH8 | Limited experience in selecting sustainable construction procedures and techniques | 1.000 | 0.629 |
CH9 | Clients’ unwillingness to pay extra for green buildings | 1.000 | 0.600 |
CH10 | Lengthy bureaucratic procedures for sustainable building processes | 1.000 | 0.490 |
CH11 | Inadequate project planning and coordination | 1.000 | 0.647 |
CH12 | Fragmented guidelines for the sustainable procurement procedure | 1.000 | 0.662 |
CH13 | Lack of stakeholder collaboration | 1.000 | 0.687 |
CH14 | Lack of long-term performance monitoring and maintenance | 1.000 | 0.618 |
CH15 | Inadequate funding for sustainable projects | 1.000 | 0.621 |
CH16 | Lack of sustainable building codes and policies | 1.000 | 0.743 |
CH17 | Difficulty in complying with sustainable building codes and certifications | 1.000 | 0.666 |
CH18 | The technicalities of the construction process | 1.000 | 0.742 |
CH19 | Poor feasibility and management of risk | 1.000 | 0.665 |
CH20 | Absence of sustainability criteria in the bidding process | 1.000 | 0.572 |
CH21 | Lack of incentives for contractors who incorporate sustainability practices in the project delivery | 1.000 | 0.694 |
CH22 | Incomplete sustainability specifications for projects | 1.000 | 0.704 |
CH23 | Poor communication among stakeholders | 1.000 | 0.585 |
CH24 | Inability of contractors to budget for sustainable projects | 1.000 | 0.702 |
CH25 | Poor scope definition of sustainable construction requirements | 1.000 | 0.767 |
Extraction method: Principal Component Analysis. |
Component | % of Variance | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
Institutional Limitations | 45.807 | ||||||
CH16 | Lack of sustainable building codes and policies | 0.759 | |||||
CH19 | Poor feasibility and management of risk | 0.703 | |||||
CH5 | Inability of stakeholders to let go of traditional construction and project management practices | 0.684 | |||||
CH6 | Need for special materials for sustainable projects | 0.546 | |||||
CH11 | Inadequate project planning and coordination | 0.535 | |||||
CH12 | Fragmented guidelines for the sustainable procurement procedure | 0.501 | |||||
CH20 | Absence of sustainability criteria in the bidding process | 0.472 | |||||
Inadequate Technical Experience | 6.575 | ||||||
CH25 | Poor scope definition of sustainable construction requirements | 0.804 | |||||
CH24 | Inability of contractors to budget for sustainable projects | 0.764 | |||||
CH22 | Incomplete sustainability specifications for projects | 0.691 | |||||
CH17 | Difficulty in complying with sustainable building codes and certifications | 0.658 | |||||
CH8 | Limited experience in selecting sustainable construction procedures and techniques | 0.648 | |||||
CH18 | The technicalities of the construction process | 0.563 | |||||
Inadequate Knowledge and Information | 5.675 | ||||||
CH7 | Lack of awareness of sustainable practices | 0.807 | |||||
CH4 | Lack of knowledge about sustainable technology | 0.772 | |||||
CH2 | Lack of information on sustainable building products | 0.771 | |||||
Operational | 4.705 | ||||||
CH14 | Lack of long-term performance monitoring and maintenance | 0.673 | |||||
CH13 | Lack of stakeholder collaboration | 0.665 | |||||
CH10 | Lengthy bureaucratic procedures for sustainable building processes | 0.639 | |||||
CH23 | Poor communication among stakeholders | 0.580 | |||||
Financial | 4.503 | ||||||
CH9 | Clients’ unwillingness to pay extra for green buildings | 0.852 | |||||
CH1 | Higher costs of sustainable building processes | 0.841 | |||||
CH3 | Higher costs of sustainable building materials | 0.776 | |||||
CH15 | Inadequate funding for sustainable projects | 0.582 | |||||
CH21 | Lack of incentives for contractors who incorporate sustainability practices in the project delivery | 0.522 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, A.; Mbewe, P.B.K.; Kavishe, N.; Mkandawire, T. Sustainable Construction Practices: Challenges of Implementation in Building Infrastructure Projects in Malawi. Buildings 2025, 15, 554. https://doi.org/10.3390/buildings15040554
Malik A, Mbewe PBK, Kavishe N, Mkandawire T. Sustainable Construction Practices: Challenges of Implementation in Building Infrastructure Projects in Malawi. Buildings. 2025; 15(4):554. https://doi.org/10.3390/buildings15040554
Chicago/Turabian StyleMalik, Abubakari, Peter B. K. Mbewe, Neema Kavishe, and Theresa Mkandawire. 2025. "Sustainable Construction Practices: Challenges of Implementation in Building Infrastructure Projects in Malawi" Buildings 15, no. 4: 554. https://doi.org/10.3390/buildings15040554
APA StyleMalik, A., Mbewe, P. B. K., Kavishe, N., & Mkandawire, T. (2025). Sustainable Construction Practices: Challenges of Implementation in Building Infrastructure Projects in Malawi. Buildings, 15(4), 554. https://doi.org/10.3390/buildings15040554