Procedures for Indoor Radon Measurement in Recent Years: A Scoping Review
Abstract
1. Introduction
- Indoor environments in different countries;
- Measurement methodologies, sampling durations, and types of devices employed.
2. Materials and Methods
3. Results and Discussions
3.1. Selected Articles
3.1.1. Mapping
3.1.2. Geological and Geomorphological Influence
3.1.3. Environmental and Meteorological Influence
3.1.4. Fluctuation
3.1.5. School and Work Environments
3.1.6. Building Influence
3.1.7. Health Risk
3.1.8. Mitigation Techniques
3.1.9. Additional Influencing Factors
3.1.10. New Measurement and Forecasting Approaches
3.2. Data Synthesis
3.2.1. The Purpose of the Papers
3.2.2. Radon Survey Design
3.2.3. Relationship Between Study Purpose and Measurement Methodology
3.2.4. Sampling Duration
3.2.5. Type of Device
3.2.6. Detector Grade
3.2.7. Reference Value
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ANSI | American National Standards Institute |
| IEA | Indoor Environments Association |
| IAEA | International Atomic Energy Agency |
| IARC | International Agency for Research on Cancer |
| ICRP | International Commission on Radiological Protection |
| IRC | Indoor Radon Concentration |
| JRC | Joint Research Centre |
| NRL | National Reference Level |
| SSNTD | Solid-State Nuclear Track Detector |
| UNSCEAR | United Nations Scientific Committee on the Effects of Atomic Radiation |
| USEPA | United States Environmental Protection Agency |
| WHO | World Health Organization |
References
- IARC Monographs on the Identification of Carcinogenic Hazards to Humans. Available online: https://monographs.iarc.who.int/ (accessed on 10 May 2025).
- WHO. Handbook on Indoor Radon: A Public Health Perspective; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- WHO. National Radon Reference Levels, Data by Country. Available online: https://apps.who.int/gho/data/view.main.RADON03v (accessed on 15 May 2025).
- EU-BSS. Council directive 2013/59/Euratom, laying down basic safety standards for protection against the dangers arising from exposure to ionizing radiation and repealing directives 89/618, 90/641, 96/29, 97/43 and 2003/122/Euroatom. Off. J. Eur. Union 2014, L13. Available online: http://data.europa.eu/eli/dir/2013/59/oj (accessed on 12 October 2025).
- Pantelić, G.; Čeliković, I.; Živanović, M.; Vukanac, I.; Nikolić, J.K.; Cinelli, G.; Gruber, V. Literature Review of Indoor Radon Surveys in Europe; Publications Office of the European Union: Luxembourg, 2018; p. JRC114370. [Google Scholar] [CrossRef]
- Pantelić, G.; Čeliković, I.; Živanović, M.; Vukanac, I.; Nikolić, J.K.; Cinelli, G.; Gruber, V. Qualitative Overview of Indoor Radon Surveys in Europe. J. Environ. Radioact. 2019, 204, 163–174. [Google Scholar] [CrossRef]
- Tsapalov, A.; Kovler, K. Studying temporal variations of indoor radon as a vital step towards rational and harmonized international regulation. Environ. Chall. 2021, 4, 100204. [Google Scholar] [CrossRef]
- Tsapalov, A.; Kovler, K.; Kiselev, S.; Yarmoshenko, I.; Bobkier, R.; Miklyaev, P. IAEA Safety Guides vs. Actual Challenges for Design and Conduct of Indoor Radon Surveys. Atmosphere 2025, 16, 253. [Google Scholar] [CrossRef]
- ISO 11665-1:2019; Measurement of Radioactivity in the Environment—Air: Radon-222—Part 1: Origins of Radon and Its Short-lived Decay Products and Associated Measurement Methods. International Organization for Standardization: Geneva, Switzerland, 2019.
- ANSI/AARST MAH, Protocol for Conducting Measurements of Radon and Radon Decay Products in Homes. Available online: www.radonstandards.us (accessed on 18 May 2025).
- Canada.ca, Guide for Radon Measurements in Residential Dwellings (Homes). Available online: https://www.canada.ca/en/health-canada/services/publications/health-risks-safety/guide-radon-measurements-residential-dwellings.html (accessed on 15 May 2025).
- GB/T 18883-2022; Indoor Air Quality Standard. Standardization Administration of China (SAC): Beijing, China, 2022.
- Smetanová, I.; Csicsay, K.; Marko, F. Indoor Radon Monitoring in Zázrivá. Contrib. Geophys. Geod. 2024, 54, 213–224. [Google Scholar] [CrossRef]
- Hasan, M.M.; Janik, M.; Pervin, S.; Iimoto, T. Preliminary Population Exposure to Indoor Radon and Thoron in Dhaka City, Bangladesh. Atmosphere 2023, 14, 1067. [Google Scholar] [CrossRef]
- Hansen, V.; Sabo, A.; Korn, J.; MacLean, D.; Rigét, F.F.; Clausen, D.S.; Cubley, J. Indoor Radon Survey in Whitehorse, Canada, and Dose Assessment. J. Radiol. Prot. 2023, 43, 011515. [Google Scholar] [CrossRef]
- Elewee, A.A.; Aswood, M.S. Estimation of Indoor Radon Concentration in Some Houses in Al-Shatra District, Dhi-Qar Governorate, Iraq. Nat. Environ. Pollut. Technol. 2022, 21, 1747–1752. [Google Scholar] [CrossRef]
- Loffredo, F.; Opoku-Ntim, I.; Kitson-Mills, D.; Quarto, M. Gini Method Application: Indoor Radon Survey in Kpong, Ghana. Atmosphere 2022, 13, 1179. [Google Scholar] [CrossRef]
- Manić, V.; Manić, G.; Stojanović, M.; Radojković, B.; Krstic, D.; Nikezić, D. A Preliminary Survey of Natural Radionuclides in Soil and Indoor Radon in the Town of Niš, Serbia. J. Radioanal. Nucl. Chem. 2021, 329, 671–677. [Google Scholar] [CrossRef]
- Bem, H.; Janiak, S.; Przybył, B. Survey of indoor radon (Rn-222) entry and concentrations in different types of building in Kalisz, Poland. J. Radioanal. Nucl. Chem. 2020, 326, 1299–1306. [Google Scholar] [CrossRef]
- Briones, C.; Jubera, J.; Alonso, H.; Olaiz, J.; Santana, J.T.; Rodríguez-Brito, N.; Arriola-Velásquez, A.C.; Miquel, N.; Tejera, A.; Martel, P.; et al. Indoor Radon Risk Mapping of the Canary Islands Using a Methodology for Volcanic Islands Combining Geological Information and Terrestrial Gamma Radiation Data. Sci. Total Environ. 2024, 922, 171212. [Google Scholar] [CrossRef] [PubMed]
- Briones, C.; Jubera, J.; Alonso, H.; Olaiz, J.; Santana, J.T.; Rodríguez-Brito, N.; Arriola-Velásquez, A.C.; Miquel, N.; Tejera Cruz, A.; Martel, P. Multiparametric Analysis for the Determination of Radon Potential Areas in Buildings on Different Soils of Volcanic Origin. Sci. Total Environ. 2023, 885, 163761. [Google Scholar] [CrossRef] [PubMed]
- Mbida Mbembe, S.; Akamba Mbembe, B.; Manga, A.; Ele Abiama, P.; Saidou; Ondo Meye, P.; Owono Ateba, P.; Ben–Bolie, G.H. Indoor Radon, External Dose Rate and Assessment of Lung Cancer Risk in Dwellings: The Case of Ebolowa Town, Southern Cameroon. Intern. J. Environ. Anal. Chem. 2023, 103, 5957–5973. [Google Scholar] [CrossRef]
- Coreţchi, L.; Ene, A.; Ababii, A. Control of the Health Risk of Radon Exposure in the Republic of Moldova. Atmosphere 2021, 12, 1302. [Google Scholar] [CrossRef]
- Adelikhah, M.; Shahrokhi, A.; Imani, M.; Chałupnik, S.; Kovács, T. Radiological Assessment of Indoor Radon and Thoron Concentrations and Indoor Radon Map of Dwellings in Mashhad, Iran. Int. J. Environ. Res. Public Health 2021, 18, 141. [Google Scholar] [CrossRef]
- Miao, X.; Su, Y.; Hou, C.; Song, Y.; Ding, B.; Cui, H.; Wu, Y.; Sun, Q. Indoor radon survey in 31 provincial capital cities and estimation of lung cancer risk in urban areas of China. Biomed. Environ. Sci. 2024, 37, 1294–1302. [Google Scholar] [CrossRef]
- Reste, J.; Rīmere, N.; Romans, A.; Martinsone, Ž.; Mārtiņsone, I.; Vanadziņš, I.; Pavlovska, I. Assessment of Indoor Radon Gas Concentration in Latvian Households. Atmosphere 2024, 15, 611. [Google Scholar] [CrossRef]
- Gruber, V.; Baumann, S.; Wurm, G.; Ringer, W.; Alber, O. The New Austrian Indoor Radon Survey (ÖNRAP 2, 2013–2019): Design, Implementation, Results. J. Environ. Radioact. 2021, 233, 106618. [Google Scholar] [CrossRef]
- Savković, M.E.; Udovičić, V.; Maletić, D.; Pantelić, G.; Ujić, P.; Čeliković, I.; Forkapić, S.; Marković, V.; Arsić, V.; Ilić, J.; et al. Results of the First National Indoor Radon Survey Performed in Serbia. J. Radiol. Prot. 2020, 40, N22–N30. [Google Scholar] [CrossRef]
- Tsapalov, A.; Kovler, K.; Shpak, M.; Shafir, E.; Golumbic, Y.; Peri, A.; Ben-Zvi, D.; Baram-Tsabari, A.; Maslov, T.; Schrire, O. Involving Schoolchildren in Radon Surveys by Means of the “RadonTest” Online System. J. Environ. Radioact. 2020, 217, 106215. [Google Scholar] [CrossRef]
- Aswood, M.S.; Alhous, S.F.; Abdulridha, S.A. Life Time Cancer Risk Evaluation Due to Inhalation of Radon Gas in Dwellings of Al-Diwaniyah Governorate, Iraq. Nat. Environ. Pollut. Technol. 2022, 21, 331–337. [Google Scholar] [CrossRef]
- Al-Shboul, K.F.; Al-Ajlony, A.-M.B.A.; Al-Malkawi, G.H.; Yaseen, Q.M.B. Radiation Hazards and Lifetime Risk Assessment Related to Indoor and Outdoor Air Inhalation Using a Passive Detection Technique. Air Qual. Atmos. Health 2021, 14, 1877–1887. [Google Scholar] [CrossRef]
- Yalım, H.A.; Gümüş, A.; Açil, D.; Ünal, R.; Yıldız, A. Indoor Radon Activity Concentrations and Effective Dose Rates at Houses in the Afyonkarahisar Province of Turkey. Arab. J. Geosci. 2020, 13, 91. [Google Scholar] [CrossRef]
- Akuo-ko, E.O.; Adelikhah, M.; Amponsem, E.; Csordás, A.; Kovács, T. Investigations of Indoor Radon Levels and Its Mapping in the Greater Accra Region, Ghana. J. Radioanal. Nucl. Chem. 2024, 333, 2975–2986. [Google Scholar] [CrossRef]
- Ptiček Siročić, A.; Stanko, D.; Sakač, N.; Dogančić, D.; Trojko, T. Short-Term Measurement of Indoor Radon Concentration in Northern Croatia. Appl. Sci. 2020, 10, 2341. [Google Scholar] [CrossRef]
- Zeybek, M.; Alkan, T. Geological and Geostatistical Modeling of Indoor Radon Concentration in Buildings of İzmir Province (Western Turkey). J. Environ. Radioact. 2024, 280, 107571. [Google Scholar] [CrossRef] [PubMed]
- Voltattorni, N.; Giammanco, S.; Galli, G.; Gasparini, A.; Neri, M. Indoor Radon Monitoring and Associated Diffuse Radon Emissions in the Flanks of Mt. Etna (Italy). Atmosphere 2024, 15, 1359. [Google Scholar] [CrossRef]
- Le Roux, R.; Bezuidenhout, J. Assessment of Radon and Naturally Occurring Radionuclides in the Vredefort Meteorite Crater in South Africa. Atmosphere 2023, 14, 1826. [Google Scholar] [CrossRef]
- Spasić, D.; Gulan, L. High Indoor Radon Case Study: Influence of Meteorological Parameters and Indication of Radon Prone Area. Atmosphere 2022, 13, 2120. [Google Scholar] [CrossRef]
- Otoo, F.; Darko, E.O.; Garavaglia, M. Correlation Analysis of Natural Radionuclides, Radon Exposure, Soil Particles, and Moisture from Quarry Towns in Greater Accra Region, Ghana. Water Air Soil Pollut. 2022, 233, 338. [Google Scholar] [CrossRef]
- Curado, A.; Lopes, S.I.; Antão, A. On the relation of geology, natural ventilation and indoor radon concentration: The northern Portugal case study. Comun. Geológicas 2021, 107, 31–41. [Google Scholar] [CrossRef]
- Leshukov, T.; Larionov, A.; Legoshchin, K.; Lesin, Y.; Yakovleva, S. The Assessment of Radon Emissions as Results of the Soil Technogenic Disturbance. Int. J. Environ. Res. Public Health 2020, 17, 9268. [Google Scholar] [CrossRef]
- Kashkinbayev, Y.; Bakhtin, M.; Kazymbet, P.; Lesbek, A.; Kazhiyakhmetova, B.; Hoshi, M.; Altaeva, N.; Omori, Y.; Tokonami, S.; Sato, H.; et al. Influence of Meteorological Parameters on Indoor Radon Concentration Levels in the Aksu School. Atmosphere 2024, 15, 1067. [Google Scholar] [CrossRef]
- Elek, N.İ.; Çam, N.F.; Canbaz Öztürk, B.C. Evaluation of Radon-Induced Radiation Risk in Indoor Environments. Clean Soil Air Water 2023, 51, 2300124. [Google Scholar] [CrossRef]
- Goudarzi, G.; Zeynab, Z.; Fatahiasl, J.; Tahmasebi, Y.; Ghaedrahmat, Z.; Masiri, G.; Goudarzi, M.; Bashirian, N. On the Concentration of Radon in a Polluted City of the Middle East: An Insight into Its Association with PM Levels, Air Properties, and Risk Assessment. Process Saf. Environ. Prot. 2023, 180, 181–191. [Google Scholar] [CrossRef]
- Oni, O.M.; Aremu, A.A.; Oladapo, O.O.; Agboluaje, B.A.; Fajemiroye, J.A. Artificial Neural Network Modeling of Meteorological and Geological Influences on Indoor Radon Concentration in Selected Tertiary Institutions in Southwestern Nigeria. J. Environ. Radioact. 2022, 251–252, 106933. [Google Scholar] [CrossRef] [PubMed]
- Soldati, G.; Galli, G.; Piersanti, A.; Cannelli, V. Multi-Level Continuous Monitoring of Indoor Radon Activity. J. Environ. Radioact. 2022, 250, 106919. [Google Scholar] [CrossRef]
- Rey, J.F.; Goyette, S.; Gandolla, M.; Palacios, M.; Barazza, F.; Goyette-Pernot, J.G. Long-Term Impacts of Weather Conditions on Indoor Radon Concentration Measurements in Switzerland. Atmosphere 2022, 13, 92. [Google Scholar] [CrossRef]
- Yarmoshenko, I.; Malinovsky, G.; Vasilyev, A.; Onishchenko, A. Seasonal Variation of Radon Concentrations in Russian Residential High-Rise Buildings. Atmosphere 2021, 12, 930. [Google Scholar] [CrossRef]
- E Silva, C.R.; Smoak, J.M.; Da Silva-Filho, E.V. Residential Radon Exposure and Seasonal Variation in the Countryside of Southeastern Brazil. Environ. Monit. Assess. 2020, 192, 544. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, W.; Shan, H.; Wang, F. Radon Survey in Office Room and Effective Dose Estimation for Staff. J. Radioanal. Nucl. Chem. 2020, 324, 561–568. [Google Scholar] [CrossRef]
- Kubiak, J.A.; Basińska, M. Analysis of the Radon Concentration in Selected Rooms of Buildings in Poznan County. Atmosphere 2022, 13, 1664. [Google Scholar] [CrossRef]
- Hu, J.; Wu, Y.; Saputra, M.A.; Song, Y.; Yang, G.; Tokonami, S. Radiation Exposure Due to 222Rn, 220Rn and Their Progenies in Three Metropolises in China and Japan with Different Air Quality Levels. J. Environ. Radioact. 2022, 244–245, 106830. [Google Scholar] [CrossRef]
- Soldati, G.; Ciaccio, M.G.; Cannelli, V.; Piersanti, A.; Galli, G. Assessment of Indoor Radon Levels at Multiple Floors of an Apartment Building in the Historic Center of Rome (Italy): A Comprehensive Study. Environ. Sci. Pollut. Res. 2024, 31, 61660–61676. [Google Scholar] [CrossRef]
- Abdo, M.A.S.; Arhouni, F.E.; Zaimi, M.; Boukhair, A.; Fahad, M. Activity Concentration of Indoor Radon and Its Short-Lived Progeny (218Po, 214Pb, and 214Po) and Their Effect on Atmospheric Ionization Rate in Sana’a, Yemen. Environ. Pollut. 2024, 358, 124518. [Google Scholar] [CrossRef]
- Elmehdi, H.M.; Ramachandran, K.; Gaidi, M.; Daoudi, K. Diurnal and Seasonal Influence on the Indoor Radon Levels in Dwellings of Sharjah Emirate as Well Its Estimation of Annual Effective Dose. Case Stud. Chem. Environ. Eng. 2024, 9, 100663. [Google Scholar] [CrossRef]
- Di Carlo, C.; Ampollini, M.; Antignani, S.; Caprio, M.; Carpentieri, C.; Caccia, B.; Bochicchio, F. Extreme Reverse Seasonal Variations of Indoor Radon Concentration and Possible Implications on Some Measurement Protocols and Remedial Strategies. Environ. Pollut. 2023, 327, 121480. [Google Scholar] [CrossRef]
- Taşköprü, C.; İçhedef, M.; Saç, M.M. Diurnal, Monthly, and Seasonal Variations of Indoor Radon Concentrations Concerning Meteorological Parameters. Environ. Monit. Assess. 2023, 195, 25. [Google Scholar] [CrossRef]
- Kamalakar, D.V.; Vinutha, P.R.; Kaliprasad, C.S.; Narayana, Y. Seasonal Variation of Indoor Radon, Thoron and Their Progeny in Belagavi District of Karnataka, India. Environ. Monit. Assess. 2022, 194, 310. [Google Scholar] [CrossRef]
- Yarmoshenko, I.; Zhukovsky, M.; Onishchenko, A.; Vasilyev, A.; Malinovsky, G. Factors Influencing Temporal Variations of Radon Concentration in High-Rise Buildings. J. Environ. Radioact. 2021, 232, 106575. [Google Scholar] [CrossRef]
- Antignani, S.; Venoso, G.; Ampollini, M.; Caprio, M.; Carpentieri, C.; Di Carlo, C.; Caccia, B.; Hunter, N.; Bochicchio, F. A 10-Year Follow-up Study of Yearly Indoor Radon Measurements in Homes, Review of Other Studies and Implications on Lung Cancer Risk Estimates. Sci. Total Environ. 2021, 762, 144150. [Google Scholar] [CrossRef]
- Ivanova, K.; Stojanovska, Z.; Djunakova, D.; Djounova, J. Analysis of the Spatial Distribution of the Indoor Radon Concentration in School’s Buildings in Plovdiv Province, Bulgaria. Build. Environ. 2021, 204, 108122. [Google Scholar] [CrossRef]
- Romero-Mujalli, G.; Roisenberg, A.; Córdova-González, A.; Stefano, P.H.P. Indoor Radon Concentration and a Diffusion Model in Dwellings Situated in a Subalkaline Granitoid Area, Southern Brazil. Environ. Earth Sci. 2021, 80, 555. [Google Scholar] [CrossRef]
- Chobanova, N.; Kunovska, B.; Djunakova, D.; Djounova, J.; Stojanovska, Z.; Angelova, A.; Ivanova, K. Indoor Radon Concentrations in Kindergartens in Three Bulgarian Districts. Radiat. Environ. Biophys. 2023, 62, 441–448. [Google Scholar] [CrossRef]
- Zaripova, Y.; Dyachkov, V.; Bigeldiyeva, M.; Gladkikh, T.; Yushkov, A. Preliminary Survey of Exposure to Indoor Radon in Al-Farabi Kazakh National University, Kazakhstan. Atmosphere 2023, 14, 1584. [Google Scholar] [CrossRef]
- Branco, P.T.B.S.; Martín-Gisbert, L.; Sá, J.P.; Ruano-Ravina, A.; Barros-Dios, J.; Varela-Lema, L.; Sousa, S.I.V. Quantifying Indoor Radon Levels and Determinants in Schools: A Case Study in the Radon-Prone Area Galicia–Norte de Portugal Euroregion. Sci. Total Environ. 2023, 882, 163566. [Google Scholar] [CrossRef]
- Kashkinbayev, Y.; Kazymbet, P.; Bakhtin, M.; Khazipova, A.; Hoshi, M.; Sakaguchi, A.; Ibrayeva, D. Indoor Radon Survey in Aksu School and Kindergarten Located near Radioactive Waste Storage Facilities and Gold Mines in Northern Kazakhstan (Akmola Region). Atmosphere 2023, 14, 1133. [Google Scholar] [CrossRef]
- Alhamdi, W.A.H. Indoor Radon Monitoring in Various Ventilation Degree in Some Schools of Duhok City, Iraq. Nucl. Technol. Radiat. Prot. 2023, 38, 64–69. [Google Scholar] [CrossRef]
- Coreţchi, L.; Ene, A.; Vîrlan, S.; Gîncu, M.; Ababii, A.; Capatina, A.; Overcenco, A.; Sargu, V. Children’s Exposure to Radon in Schools and Kindergartens in the Republic of Moldova. Atmosphere 2023, 14, 11. [Google Scholar] [CrossRef]
- Ivanova, K.; Chobanova, N.; Kunovska, B.; Djounova, J.; Stojanovska, Z. Exposure Due to Indoor Radon in Bulgarian Schools. Aerosol Air Qual. Res. 2022, 22, 220279. [Google Scholar] [CrossRef]
- López-Pérez, M.; Hernández, F.; Diaz, J.P.; Salazar, P.A. Determination of the Indoor Radon Concentration in Schools of Tenerife (Canary Islands): A Comparative Study. Air Qual. Atmos. Health 2022, 15, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Loffredo, F.; Opoku-Ntim, I.; Meo, G.; Quarto, M. Indoor Radon Monitoring in Kindergarten and Primary Schools in South Italy. Atmosphere 2022, 13, 478. [Google Scholar] [CrossRef]
- Sá, J.P.; Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V. Radon in Indoor Air: Towards Continuous Monitoring. Sustainability 2022, 14, 1529. [Google Scholar] [CrossRef]
- Davis, E.A.; Ou, J.Y.; Chausow, C.; Verdeja, M.A.; Divver, E.; Johnston, J.D.; Beard, J.D. Associations Between School Characteristics and Classroom Radon Concentrations in Utah’s Public Schools: A Project Completed by University Environmental Health Students. Int. J. Environ. Res. Public Health 2020, 17, 5839. [Google Scholar] [CrossRef]
- Erdogan, M.; Abaka, M.; Manisa, K.; Bircan, H.; Kus, C.; Zedef, V. Indoor Radon Activity Concentration and Effective Dose Rates at Schools and Thermal Spas of Ilgin. Nucl. Technol. Radiat. Prot. 2020, 35, 339–346. [Google Scholar] [CrossRef]
- Lin, C.-C.; Lin, S.-J.; Li, P.-Y.; Lee, M.-S.; Ting, C.-Y. Radon Levels and Dose Assessment at the Basement Workplaces of Hospitals in Different Regions of Taiwan. Radiat. Phys. Chem. 2024, 218, 111530. [Google Scholar] [CrossRef]
- Gulan, L.; Stajić, J.M.; Spasić, D.; Forkapić, S. Radon Levels and Indoor Air Quality after Application of Thermal Retrofit Measures—A Case Study. Air Qual. Atmos. Health 2023, 16, 363–373. [Google Scholar] [CrossRef]
- Elzain, A.-E.A. Assessment of Environmental Health Risks Due to Indoor Radon Levels inside Workplaces in Sudan. Intern. J. Environ. Anal. Chem. 2023, 103, 1394–1410. [Google Scholar] [CrossRef]
- Ivanova, K.; Dzhunakova, D.; Stojanovska, Z.; Djounova, J.; Kunovska, B.; Chobanova, N. Analysis of Exposure to Radon in Bulgarian Rehabilitation Hospitals. Environ. Sci. Pollut. Res. 2022, 29, 19098–19108. [Google Scholar] [CrossRef]
- Dhoqina, P.; Xhixha, M.K.; Tushe, K.; Bërdufi, I.; Bylyku, E.; Daci, B.; Prifti, D.; Nafezi, G.; Xhixha, G. Occupational Radiation Dose for Medical Workers at the University Hospital Center “Mother Theresa” in Tirana. J. Radioanal. Nucl. Chem. 2021, 328, 1109–1114. [Google Scholar] [CrossRef]
- Calvente, I.; Núñez, M.I.; Chahboun, R.C.; Villalba-Moreno, J. Survey of Radon Concentrations in the University of Granada in Southern Spain. Int. J. Environ. Res. Public Health 2021, 18, 2885. [Google Scholar] [CrossRef]
- E Silva, C.R.; Silva-Filho, E.V. Radon Concentration and Radiation Exposure Levels in Workplace Buildings of Downtown Rio de Janeiro City, SE, Brazil. J. Radioanal. Nucl. Chem. 2020, 326, 1709–1717. [Google Scholar] [CrossRef]
- Gaskin, J.; Zhou, L.G.; Stainforth, R.; Gutcher, C.; Mekarski, P.; Kassie, R.; Li, K.; Vuong, N.; Whyte, J.; Gauthier, M.; et al. Indoor Radon Trends with Building Code Change in Two Canadian Cities. J. Environ. Radioact. 2024, 280, 107570. [Google Scholar] [CrossRef]
- Mc Carron, B.; Meng, X.; Colclough, S. An Investigation into Indoor Radon Concentrations in Certified Passive House Homes. Int. J. Environ. Res. Public Health 2020, 17, 4149. [Google Scholar] [CrossRef]
- Yarmoshenko, I.V.; Malinovsky, G.P.; Zhukovsky, M.V.; Izgagin, V.S.; Onishchenko, A.D.; Vasilyev, A.V. Ra-226 in Building Materials as a Source of Indoor Radon in High-Rise Residential Buildings in Russian Cities. Sci. Total Environ. 2024, 935, 173492. [Google Scholar] [CrossRef]
- Yarmoshenko, I.V.; Malinovsky, G.P.; Zhukovsky, M.V.; Izgagin, V.S.; Onishchenko, A.D.; Vasilyev, A.V. Relationship between Ra-226 Activity Concentration in Building Materials and Indoor Radon Concentration: An Example of Russian High-Rise Residential Buildings. J. Environ. Radioact. 2024, 272, 107345. [Google Scholar] [CrossRef]
- Wang, N.; Yang, J.; Wang, H.; Jia, B.; Peng, A. Characteristics of Indoor and Soil Gas Radon, and Discussion on High Radon Potential in Urumqi, Xinjiang, NW China. Atmosphere 2023, 14, 1548. [Google Scholar] [CrossRef]
- Voltattorni, N.; Gasparini, A.; Galli, G. The Analysis of 222Rn and 220Rn Natural Radioactivity for Local Hazard Estimation: The Case Study of Cerveteri (Central Italy). Int. J. Environ. Res. Public Health 2023, 20, 6420. [Google Scholar] [CrossRef]
- Hansen, V.; Petersen, D.; Sogaard-Hansen, J.; Rigét, F.F.; Mosbech, A.; Clausen, D.S.; Mulvad, G.; Rönnqvist, T. Indoor Radon Survey in Greenland and Dose Assessment. J. Environ. Radioact. 2023, 257, 107080. [Google Scholar] [CrossRef]
- Cojocaru, C.; Cojocaru, P.; Barbu, R.M.; Pinzariu, F.; Cojocaru, E. Health Risks in Association with Indoor Radon Exposure in Northeastern Romania. Int. J. Environ. Sci. Technol. 2023, 20, 5937–5944. [Google Scholar] [CrossRef]
- Shurgashti, S.; Rahmani, A.; Dehdashti, A.; Moeinian, K. Determination of Airborne Radon and Its Relationship with the Type of Residential Buildings in Damghan, Iran. Int. J. Environ. Sci. Technol. 2022, 19, 9601–9608. [Google Scholar] [CrossRef]
- Ndjana Nkoulou, J.E.; Manga, A.; German, O.; Sainz Fernández, C.; Kwato Njock, M.G. Natural Radioactivity in Building Materials, Indoor Radon Measurements, and Assessment of the Associated Risk Indicators in Some Localities of the Centre Region, Cameroon. Environ. Sci. Pollut. Res. 2022, 29, 54842–54854. [Google Scholar] [CrossRef]
- Dieu Souffit, G.; Jacob Valdes, M.; Bobbo Modibo, O.; Flore, T.S.Y.; Ateba Jean Félix, B.; Tokonami, S. Radon Risk Assessment and Correlation Study of Indoor Radon, Radium-226, and Radon in Soil at the Cobalt–Nickel Bearing Area of Lomié, Eastern Cameroon. Water Air Soil Pollut. 2022, 233, 196. [Google Scholar] [CrossRef]
- Reddy, B.L.; Reddy, G.S.; Vinay Kumar Reddy, K.V.K.; Sreenivasa Reddy, B.S. Inhalation Dose Due to Residential Radon and Thoron Exposure in Rural Areas: A Case Study at Erravalli and Narasannapet Model Villages of Telangana State, India. Radiat. Environ. Biophys. 2021, 60, 437–445. [Google Scholar] [CrossRef]
- Aladeniyi, K.; Arogunjo, A.M.; Pereira, A.J.S.C.; Ajayi, O.S.; Fuwape, I.A. Radiometric Evaluation of Indoor Radon Levels with Influence of Building Characteristics in Residential Homes from Southwestern Nigeria. Environ. Monit. Assess. 2020, 192, 764. [Google Scholar] [CrossRef]
- Abaszadeh Fathabadi, Z.; Ehrampoush, M.H.; Mirzaei, M.; Mokhtari, M.; Nadi Sakhvidi, M.; Rahimdel, A.; Dehghani Tafti, A.; Fallah Yakhdani, M.; Atefi, A.; Eslami, H.; et al. The Relationship of Indoor Radon Gas Concentration with Multiple Sclerosis: A Case-Control Study. Environ. Sci. Pollut. Res. 2020, 27, 16350–16361. [Google Scholar] [CrossRef] [PubMed]
- Zaripova, Y.; Yushkov, A.; Amangeldiyeva, N.; Dyussebayeva, K.; Shaidollina, A. Monitoring the Distribution of Radon Isotopes and Their Decay Products in Almaty. Phys. Sci. Technol. 2024, 11, 4–13. [Google Scholar] [CrossRef]
- Tiomene, D.F.; Bongue, D.; Ebongue, A.N.; Haman, F.; Penabei, S.; Shouop, C.J.G.; Nkoulou, J.E.N.; Moyo, M.N.; Saïdou; Njock, M.G.K. Radionuclides Distribution in Soils and Radon Level Assessment in Dwellings of Mungo and Nkam Divisions, Cameroon. Environ. Monit. Assess. 2024, 196, 1038. [Google Scholar] [CrossRef]
- Erzin, S.; Yaprak, G. The Correlation between Indoor and Soil Gas Radon Concentrations in Kiraz District, İzmir. Environ. Monit. Assess. 2024, 196, 845. [Google Scholar] [CrossRef] [PubMed]
- Bachirou, S.; Kranrod, C.; Ndjana Nkoulou, J.E.N.; Bongue, D.; Yerima Abba, H.Y.; Hosoda, M.; Kwato Njock, M.G.K.; Tokonami, S. Thoron exposure in the radon-thoron prone area of the Adamawa Region, Cameroon. Appl. Radiat. Isot. 2024, 213, 111498. [Google Scholar] [CrossRef]
- Djeufack, L.B.; Hamadou, I.; Kranrod, C.; Mishra, R.; Hosoda, M.; Sapra, B.K.; Saïdou; Tokonami, S. Effective Dose Assessment Due to Inhalation of 222Rn, 220Rn, and Their Progeny: Highlighting the Major Contribution of Thoron in a Thoron-Prone Area in Cameroon. Radiat. Environ. Biophys. 2024, 63, 357–369. [Google Scholar] [CrossRef]
- Loffredo, F.; Capussela, T.; De Martino, F.; Quarto, M. Indoor Radon Measurement in Buildings of A.O.R.N Cardarelli, the Largest Hospital of National Relevance in Southern Italy. Atmosphere 2024, 15, 815. [Google Scholar] [CrossRef]
- Spasić, D.; Gulan, L.; Vučković, B. Indoor Radon Testing, Effective Dose and Mitigation Measures in a Residential House of a Mining Area. Atmosphere 2024, 15, 745. [Google Scholar] [CrossRef]
- Tan, W.; Nie, Y. Radon Concentration in Air and Evaluation of the Radiation Dose in Villages near Shizhuyuan, Southern Hunan, China. Atmosphere 2024, 15, 786. [Google Scholar] [CrossRef]
- Kasić, A.; Sakić, Z.; Kasumović, A. Measurement of Indoor Radon Concentrations and Doses Assessment in the Area of Tuzla Canton, Bosnia and Herzegovina. J. Radioanal. Nucl. Chem. 2024, 333, 2621–2628. [Google Scholar] [CrossRef]
- Thakur, V.; Singh, K.P.; Joshi, A.; Sharma, S.; Bourai, A.A.; Ramola, R.C. Comparative Study of the Radon and Thoron Concentrations in the Indoor Environment of the Budhakedar Region of the Garhwal Himalaya, India. J. Radioanal. Nucl. Chem. 2024, 333, 3239–3248. [Google Scholar] [CrossRef]
- Hood, C.O.; Miyittah, M.K.; Odame-Ankrah, C.A.; Abaidoo, K.; Tulasi, D.; Ampontuah, R.S.; Adotey, D.K.; Opoku-Ntim, I. Indoor Radon Monitoring in Building Types of a Periurban Area in Cape Coast Metropolis, Southern Ghana. Indoor Air 2024, 2024, 8966193. [Google Scholar] [CrossRef]
- Serge, A.B.M.; Didier, T.S.S.; Samuel, B.G.; Kranrod, C.; Omori, Y.; Hosoda, M.; Tokonami, S. Assessment of Radiological Risks Due to Indoor Radon, Thoron and Progeny, and Soil Gas Radon in Thorium-Bearing Areas of the Centre and South Regions of Cameroon. Atmosphere 2023, 14, 1708. [Google Scholar] [CrossRef]
- Tokonami, S.; Kranrod, C.; Kazymbet, P.; Omori, Y.; Bakhtin, M.; Poltabtim, W.; Musikawan, S.; Pradana, R.; Kashkinbayev, Y.; Zhumadilov, K. Residential Radon Exposure in Astana and Aqsu, Kazakhstan. J. Radiol. Prot. 2023, 43, 023501. [Google Scholar] [CrossRef] [PubMed]
- Narsha, L.; Ramanand, V.P.; Achari, S.; Kavasara, M.; Narayana, N. Evaluation of Indoor 222Rn and 220Rn Concentrations in Dakshina Kannada, Karnataka, India. Environ. Monit. Assess. 2023, 195, 592. [Google Scholar] [CrossRef]
- Lawal, K.M.; Inyang, E.P.; Ibanga, E.A.; Ayedun, F. Assessment of Indoor Radon Gas Concentration in National Open University of Nigeria: A Case Study of Calabar Study Centre. East Eur. J. Phys. 2023, 4, 371–375. [Google Scholar] [CrossRef]
- Gogoi, P.P.; Barooah, D. Radiological Risk Estimation from Indoor Radon, Thoron, and Their Progeny Concentrations Using Nuclear Track Detectors. Environ. Monit. Assess. 2022, 194, 900. [Google Scholar] [CrossRef]
- Silva, A.S.; Dinis, M.L. Assessment of Indoor Radon Concentration and Time-Series Analysis of Gamma Dose Rate in Three Thermal Spas from Portugal. Environ. Monit. Assess. 2022, 194, 611. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Shikha, D.; Kaushal, A.; Gupta, R.; Singh, S.P.; Chauhan, R.P.; Mehta, V. Measurement of Indoor 222Rn, 220Rn and Decay Products along with Naturally Occurring Radionuclides in Some Monuments and Museums of Punjab, India. J. Radioanal. Nucl. Chem. 2021, 330, 1357–1364. [Google Scholar] [CrossRef]
- Shikha, D.; Kaur, R.; Gupta, R.; Kaur, J.; Sapra, B.K.; Singh, S.P.; Mehta, V. Estimation of Indoor Radon and Thoron Levels along with Their Progeny in Dwellings of Roopnagar District of Punjab, India. J. Radioanal. Nucl. Chem. 2021, 330, 1365–1381. [Google Scholar] [CrossRef]
- OlaoOlaoye, M.A.; Ademola, A.K.; Jegede, O.A.; Khalaf, H.N.B.; Mostafa, M.Y.A. Estimation of Radon Excess Lung Cancer near Some Dumpsites in, Lagos, Nigeria. Appl. Radiat. Isot. 2021, 176, 109867. [Google Scholar] [CrossRef]
- Ndubisi, O.A.; Apaemi, B.-K.M.; Barikpe, S.F.; Tamunobereton-Ari, I. Analysis of Indoor Radon Level and Its Health Risks Parameters in Three Selected Towns in Port Harcourt, Rivers State, Nigeria. J. Nig. Soc. Phys. Sci. 2021, 3, 181–188. [Google Scholar] [CrossRef]
- Khan, M.S. Measurements of Lung Doses from Radon and Thoron in the Dwellings of Al-Zulfi, Saudi Arabia, for the Assessment of Health Risk Due to Ionizing Radiation. Arab. J. Geosci. 2021, 14, 1101. [Google Scholar] [CrossRef]
- Abood, H.N.; Mohamed, A.A. Indoor Radon and Thoron Concentration and the Associated Effective Dose Rate Determination in Dwellings of Suq Alshouk, Thiqar (Iraq). NeuroQuantology 2021, 19, 06–10. [Google Scholar] [CrossRef]
- Abdo, M.A.S.; Boukhair, A.; Fahad, M.; Ouakkas, S.; Benjellοun, M. Radon Exposure Assessment and Its Decay Products Aerosols in Some Houses of the Province of El Jadida, Morocco. Air Qual. Atmos. Health 2021, 14, 129–137. [Google Scholar] [CrossRef]
- Vasidov, A.; Vasidova, S. CR-39 Track Detectors for Measurements of Radon Volume Activity and Exhalation Rates of the New Houses of the Tashkent City. J. Radioanal. Nucl. Chem. 2020, 325, 391–396. [Google Scholar] [CrossRef]
- Aladeniyi, K. Health Risk Evaluation of Radon Progeny Exposure in Nigerian Traditional Mud Houses. J. Nig. Soc. Phys. Sci. 2024, 6, 2128. [Google Scholar] [CrossRef]
- Sicilia, I.; Aparicio, S.; González Hernández, M.; Anaya Velayos, J.J.; Frutos, B. Radon Transport, Accumulation Patterns, and Mitigation Techniques Applied to Closed Spaces. Atmosphere 2022, 13, 1692. [Google Scholar] [CrossRef]
- Choi, J.; Hong, H.; Lee, J.; Kim, S.; Kim, G.; Park, B.; Cho, E.-M.; Lee, C. Comparison of Indoor Radon Reduction Effects Based on Apartment Housing Ventilation Methods. Atmosphere 2022, 13, 204. [Google Scholar] [CrossRef]
- Altendorf, D.; Grünewald, H.; Liu, T.-L.; Dehnert, J.; Trabitzsch, R.; Weiss, H. Decentralised Ventilation Efficiency for Indoor Radon Reduction Considering Different Environmental Parameters. Isot. Environ. Health Stud. 2022, 58, 195–213. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Bing, S.; Hongxing, C.; Wu, W. Study on the Effect of Air Purifier for Reducing Indoor Radon Exposure. Appl. Radiat. Isot. 2021, 173, 109706. [Google Scholar] [CrossRef]
- Zhou, L.G.; Berquist, J.; Li, Y.E.; Whyte, J.; Gaskin, J.; Vuotari, M.; Nong, G. Passive Soil Depressurization in Canadian Homes for Radon Control. Build. Environ. 2021, 188, 107487. [Google Scholar] [CrossRef]
- Jeong, J.; Cho, K. Experimental Study on CO2 and Radon Mitigations in an Apartment Using a Mechanical Ventilation System. Buildings 2023, 13, 1439. [Google Scholar] [CrossRef]
- Omirou, M.; Clouvas, A.; Leontaris, F.; Kaissas, I. In-Depth Study of Radon in Water in a Greek Village with Enhanced Radon Concentrations. J. Environ. Radioact. 2023, 264, 107210. [Google Scholar] [CrossRef]
- Daraktchieva, Z.; Wasikiewicz, J.M.; Howarth, C.B.; Miller, C.A. Study of Baseline Radon Levels in the Context of a Shale Gas Development. Sci. Total Environ. 2021, 753, 141952. [Google Scholar] [CrossRef]
- Autsavapromporn, N.; Krandrod, C.; Klunklin, P.; Kritsananuwat, R.; Jaikang, C.; Kittidachanan, K.; Chitapanarux, I.; Fugkeaw, S.; Hosoda, M.; Tokonami, S. Health Effects of Natural Environmental Radiation during Burning Season in Chiang Mai, Thailand. Life 2022, 12, 853. [Google Scholar] [CrossRef]
- Mphaga, K.V.; Utembe, W.; Shezi, B.; Mbonane, T.P.; Rathebe, P.C. Unintended Consequences of Urban Expansion and Gold Mining: Elevated Indoor Radon Levels in Gauteng Communities’ Neighboring Gold Mine Tailings. Atmosphere 2024, 15, 881. [Google Scholar] [CrossRef]
- Gulan, L.; Forkapić, S.; Spasić, D.; Živković Radovanović, J.; Hansman, J.; Lakatoš, R.; Samardzic, S. Identification of High Radon Dwellings, Risk of Exposure, and Geogenic Potential in the Mining Area of the “TREPČA” Complex. Indoor Air 2022, 32, e13077. [Google Scholar] [CrossRef] [PubMed]
- Gulan, L. Analysis of Long-Term Monitoring of Radon Levels in a Low-Ventilated, Semi-Underground Laboratory—Dose Estimation and Exploration of Potential Earthquake Precursors. Atmosphere 2024, 15, 1534. [Google Scholar] [CrossRef]
- Vimercati, L.; Cavone, D.; Delfino, M.C.; De Maria, L.; Caputi, A.; Sponselli, S.; Corrado, V.; Bruno, V.; Spalluto, G.; Eranio, G. Relationships among Indoor Radon, Earthquake Magnitude Data and Lung Cancer Risks in a Residential Building of an Apulian Town (Southern Italy). Atmosphere 2021, 12, 1342. [Google Scholar] [CrossRef]
- Szczepanik-Scislo, N.; Grządziel, D.; Mazur, J.; Kozak, K.; Schnotale, J. Influence of Human Activity on Radon Concentration, Indoor Air Quality, and Thermal Comfort in Small Office Spaces. Sensors 2024, 24, 4949. [Google Scholar] [CrossRef]
- Chung, L.K.; Mata, L.A.; Carmona, M.A.; Shubayr, N.A.M.; Zhou, Q.; Ye, Y.; Kearfott, K.J. Radon Kinetics in a Natural Indoor Radon Chamber. Sci. Total Environ. 2020, 734, 139167. [Google Scholar] [CrossRef]
- Portaro, M.; Rocchetti, I.; Tuccimei, P.; Galli, G.; Soligo, M.; Ciotoli, G.; Longoni, C.; Vasquez, D.; Sola, F. Indoor Radon Surveying and Mitigation in the Case-Study of Celleno Town (Central Italy) Located in a Medium Geogenic Radon Potential Area. Atmosphere 2024, 15, 425. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Curado, A. Long-Term vs. Short-Term Measurements in Indoor Rn Concentration Monitoring: Establishing a Procedure for Assessing Exposure Potential (RnEP). Results Eng. 2023, 17, 100966. [Google Scholar] [CrossRef]
- Maheso, A.M.; Bezuidenhout, J.; Newman, R.T. Indoor Radon Levels in Homes and Schools in the Western Cape, South Africa—Results from a Schools Science Outreach Initiative and Corresponding Model Predictions. Int. J. Environ. Res. Public Health 2023, 20, 1350. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P.; Dowdall, A.; Long, S.; Curtin, B.; Fenton, D. Estimating Population Lung Cancer Risk from Radon Using a Resource Efficient Stratified Population Weighted Sample Survey Protocol—Lessons and Results from Ireland. J. Environ. Radioact. 2021, 233, 106582. [Google Scholar] [CrossRef] [PubMed]
- IAEA, International Atomic Energy Agency. National and Regional Surveys of Radon Concentration in Dwellings: Review of Methodology and Measurement Techniques; IAEA Analytical Quality in Nuclear Applications Series No. 33; IAEA: Vienna, Austria, 2013. [Google Scholar]
- Rey, J.F.; Meisser, N.; Licina, D.; Goyette Pernot, J. Performance Evaluation of Radon Active Sensors and Passive Dosimeters at Low and High Radon Concentrations. Build. Environ. 2024, 250, 111154. [Google Scholar] [CrossRef]
- Warkentin, P.; Curry, E.; Michael, O.; Bjorndal, B. A comparison of consumer-grade electronic radon monitors. J. Radiol. Prot. 2020, 40, 1258–1272. [Google Scholar] [CrossRef]





| Subdivision of Articles According to Their Main Purpose | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Radiation Health Impacts | Study in School Environments | Study in Working Environments | IRC and Geological/ Geomorphological Characteristics | IRC and Environmental Parameters/ Meteorological Conditions | IRC and Building Materials/ Characteristics | IRC and Ventilation System | Potential Impact Factor | Temporal Variation | Spatial Diffusion/ Distribution | |
| n° | [15,18,19,20,22,23,24,25,30,31,32,33,41,44,49,50,52,54,55,58,60,61,64,66,67,68,69,74,75,77,78,79,81,88,89,91,92,93,94,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,130,133,134,140] | [42,61,63,65,66,67,68,69,70,71,72,73,74] | [50,75,76,77,78,79,80,81] | [20,35,36,37,38,39,40,41,45,64,75,86,87,88] | [7,38,42,43,44,45,46,47,48,49,50] | [48,63,65,76,82,83,84,85,86,87,88,89,90,91,92,93,94,95] | [40,63,95,123,124,127] | [7,14,19,24,26,27,34,51,53,54,59,60,61,62,66,67,68,73,80,81,89,90,94,100,106,109,119,126,131,136,137,139] | [48,51,53,54,55,56,57,58,59,60] | [36,46,53,61,62] |
| tot | 66 | 13 | 8 | 14 | 11 | 18 | 6 | 32 | 10 | 5 |
| Subdivision of Articles According to Sampling Duration and Device Used | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| LT-P | LT-A | LT-A/P | ST-P | ST-A | ST-A/P | LT/ST-P | LT/ST-A | LT/ST-P/A | |
| n° | [13,15,17,20,21,22,24,25,26,27,28,30,31,32,33,39,41,52,54,58,60,61,62,63,69,70,71,77,78,82,83,84,85,88,89,90,91,93,94,95,97,98,99,101,106,107,108,109,111,112,113,114,115,117,118,119,121,129,130,134,140] | [7,23,38,42,43,44,46,47,49,50,51,53,57,59,64,81,89,96,102,103,124,126,128,133,136,137,138] | [48,56] | [16,19,29,35,37,45,79,87,92,100,116,120,139] | [18,34,40,55,67,68,72,74,75,80,104,105,110,122,123,125,127,131] | [73,76,132,135] | [14] | [66] | [36,65,86] |
| tot | 60 | 27 | 2 | 13 | 18 | 4 | 1 | 1 | 3 |
| Article Counts by Purpose Category and Measurement Approach | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| LT-P | LT-A | LT-A/P | ST-P | ST-A | ST-A/P | LT/ST-P | LT/ST-A | LT/ST-P/A | |
| Radiation health impacts | 41 | 9 | 6 | 9 | 1 | ||||
| Study in school environments | 5 | 1 | 4 | 1 | 1 | 1 | |||
| Study in working environments | 2 | 2 | 1 | 2 | 1 | ||||
| IRC and geological/ geomorphological characteristics | 4 | 2 | 4 | 2 | 2 | ||||
| IRC and environmental parameters/meteorological conditions | 9 | 1 | 1 | ||||||
| IRC and building materials/ characteristics | 12 | 1 | 2 | 1 | 2 | ||||
| IRC and ventilation system | 2 | 1 | 3 | ||||||
| Potential impact factor | 13 | 8 | 3 | 5 | 1 | 1 | 1 | ||
| Temporal variation | 3 | 4 | 2 | 1 | |||||
| Spatial diffusion/distribution | 2 | 2 | 1 | ||||||
| Subdivision of Articles According to Threshold Values Considered | |||||||
|---|---|---|---|---|---|---|---|
| WHO | ICRP | IAEA | UNSCEAR | Directive 2013/59/ EURATOM | USEPA | National Reference Level | |
| n° | [15,17,22,24,25,31,32,33,36,37,38,39,44,45,49,51,54,55,64,65,67,71,72,73,74,76,77,80,81,83,85,88,90,91,92,94,98,100,101,105,106,107,108,110,111,114,121,127,130,131,139] | [22,24,32,33,43,49,58,61,67,77,91,92,94,97,98,100,107,108,111,113,114,115,116,118,130] | [31,62,100] | [39,98,99,100,103,107,109,115,119] | [15,23,26,34,35,36,38,43,55,57,60,63,64,65,68,70,76,77,87,88,101,102,104,115,132,134,139] | [16,24,30,31,33,44,55,73,75,77,94,103,114,135] | [18,23,26,27,28,32,35,40,41,46,57,60,64,65,69,70,71,72,74,78,79,82,83,86,88,100,101,103,109,112,119,120,122,123,124,126,127,129,134,139] |
| tot | 51 | 25 | 3 | 9 | 27 | 14 | 39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamborino, S.; Congedo, P.M.; Baglivo, C. Procedures for Indoor Radon Measurement in Recent Years: A Scoping Review. Buildings 2025, 15, 3725. https://doi.org/10.3390/buildings15203725
Tamborino S, Congedo PM, Baglivo C. Procedures for Indoor Radon Measurement in Recent Years: A Scoping Review. Buildings. 2025; 15(20):3725. https://doi.org/10.3390/buildings15203725
Chicago/Turabian StyleTamborino, Silvia, Paolo Maria Congedo, and Cristina Baglivo. 2025. "Procedures for Indoor Radon Measurement in Recent Years: A Scoping Review" Buildings 15, no. 20: 3725. https://doi.org/10.3390/buildings15203725
APA StyleTamborino, S., Congedo, P. M., & Baglivo, C. (2025). Procedures for Indoor Radon Measurement in Recent Years: A Scoping Review. Buildings, 15(20), 3725. https://doi.org/10.3390/buildings15203725
