Upcycling Strategies for Resilience Reconstruction Goals: A Case Study of an Italian Public Building
Abstract
1. Introduction
2. Materials and Methods
- Site analysis and organization of the construction site area;
- Knowledge of the building through surveys and BIM modeling, aimed at redesigning and studying the load-bearing structure and the envelope;
- Dismantling the design and prefiguration of the reassembly modes of the components following an upcycling process;
- Economic and financial analysis of the operation, aimed at comparing the deconstruction strategy with the conventional approach of demolition and disposal.
- The following subsections describe each of these phases in detail.
2.1. Phase I
2.2. Phase II
2.3. Phase III
- Efficiency scheme, aimed at recovering the largest possible number of simple elements to be reintroduced into the market;
- Heritage valorization scheme, aimed at preserving and recovering composite elements (e.g., facade modules) that reflect the original architectural identity.
2.4. Phase IV
2.4.1. Financial Analysis
- External walls: including cladding facade panels, curtain wall systems, perimeter walls, glazed surfaces, and reinforced concrete shear walls.
- Internal walls: including partitions and lightweight non-load-bearing walls.
- Structural joints: comprising metal connections, articulated into bolts and fasteners, short steel profiles, and connecting plates or flanges.
- Slabs: represented by selected portions of slabs suitable for reuse, elements composed of flooring and corrugated steel sheets, ground-floor pavements, and reinforced concrete slabs.
- Roofing: consisting of corrugated steel panels.
- Load-bearing structure: including the main supporting elements, namely beams and columns.
- Frames: including doors and windows.
2.4.2. Economic Analysis
Building Elements | Disposed Elements | Recovered Elements | ||
---|---|---|---|---|
[tCO2eq] | % CO2 | [tCO2eq] | % CO2 | |
External walls | −70.89 | 2.51 | 116.76 | 4.14 |
Internal walls | −125.38 | 4.44 | - | - |
Joints | - | - | 29.87 | 1.06 |
Slabs | −958.74 | 33.95 | 755.32 | 26.75 |
Roofing | - | - | 199.45 | 7.06 |
Load-bearing structure | - | - | 473.05 | 16.75 |
Frames | - | - | 94.16 | 3.33 |
Total | −1155.01 | 40.91 | 1668.61 | 59.09 |
3. Results
3.1. Phase I
3.2. Phase II
3.3. Phase III
3.4. Phase IV
3.4.1. Financial Analysis
3.4.2. Economic Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Delbeke, J.; Runge-Metzger, A.; Slingenberg, Y.; Werksman, J. The Paris Agreement. In Towards a Climate-Neutral Europe; Routledge: London, UK, 2019; pp. 24–45. ISBN 978-92-76-08256-9. [Google Scholar]
- Rees, W.E. The Built Environment and the Ecosphere: A Global Perspective. Build. Res. Inf. 1999, 27, 206–220. [Google Scholar] [CrossRef]
- Çimen, Ö. Construction and Built Environment in Circular Economy: A Comprehensive Literature Review. J. Clean. Prod. 2021, 305, 127180. [Google Scholar] [CrossRef]
- Zabalza Bribián, I.; Valero Capilla, A.; Aranda Usón, A. Life Cycle Assessment of Building Materials: Comparative Analysis of Energy and Environmental Impacts and Evaluation of the Eco-Efficiency Improvement Potential. Build. Environ. 2011, 46, 1133–1140. [Google Scholar] [CrossRef]
- Ajayabi, A.; Chen, H.-M.; Zhou, K.; Hopkinson, P.; Wang, Y.; Lam, D. REBUILD: Regenerative Buildings and Construction Systems for a Circular Economy. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 225, p. 012015. [Google Scholar] [CrossRef]
- Licciardello, D.; Spatafora, S.L.; Vizzini, L.; Martelli, C.; Martelli, C.F.V. Carbon Dioxide Balance of Wooden Structures: Circular Economy in the Ecological Building Industry. Procedia Environ. Sci. Eng. Manag. 2017, 4, 199–205. [Google Scholar]
- Liddo, F.D.; Amoruso, P.; Tajani, F.; Morano, P.; Stara, F. Urban Redevelopment and Decarbonization Challenges. An Overview from the Real Estate Market Perspective. Energy Build. 2025, 343, 115914. [Google Scholar] [CrossRef]
- Pomponi, F.; Moncaster, A. Circular Economy for the Built Environment: A Research Framework. J. Clean. Prod. 2017, 143, 710–718. [Google Scholar] [CrossRef]
- Lei, B.; Yang, W.; Yan, Y.; Zaland, S.; Tang, Z.; Dong, W. Carbon-Saving Benefits of Various End-of-Life Strategies for Different Types of Building Structures. Dev. Built Environ. 2023, 16, 100264. [Google Scholar] [CrossRef]
- Pomponi, F.; Moncaster, A. Embodied Carbon Mitigation and Reduction in the Built Environment–What Does the Evidence Say? J. Environ. Manag. 2016, 181, 687–700. [Google Scholar] [CrossRef]
- Ibn-Mohammed, T.; Greenough, R.; Taylor, S.; Ozawa-Meida, L.; Acquaye, A. Operational vs. Embodied Emissions in Buildings—A Review of Current Trends. Energy Build. 2013, 66, 232–245. [Google Scholar] [CrossRef]
- Swarnakar, V.; Khalfan, M. Circular Economy in Construction and Demolition Waste Management: An in-Depth Review and Future Perspectives in the Construction Sector. Smart Sustain. Built Environ. 2024; ahead of print. [Google Scholar] [CrossRef]
- Hoang, N.H.; Ishigaki, T.; Watari, T.; Yamada, M.; Kawamoto, K. Current State of Building Demolition and Potential for Selective Dismantling in Vietnam. Waste Manag. 2022, 149, 218–227. [Google Scholar] [CrossRef] [PubMed]
- UNI/PdR 75:2020; Decostruzione selettiva-Metodologia per la decostruzione selettiva e il recupero dei rifiuti in un’ottica di economia circolare. UNI-Ente Italiano di Normazione: Milano, Italy, 2020.
- Torre, C.M.; Morano, P.; Locurcio, M.; Anelli, D. Comparing Environmental Values and CO2 Values in Geographical Contexts. In Computational Science and Its Applications—ICCSA 2023 Workshops; Gervasi, O., Murgante, B., Rocha, A.M.A.C., Garau, C., Scorza, F., Karaca, Y., Torre, C.M., Eds.; Lecture Notes in Computer Science; Springer Nature Switzerland: Cham, Switzerland, 2023; Volume 14106, pp. 523–533. ISBN 978-3-031-37110-3. [Google Scholar]
- McDonough, W.; Braungart, M. Cradle to Cradle: Remaking the Way We Make Things; North Point Press: Berkeley, CA, USA, 2010; ISBN 1-4299-7384-6. [Google Scholar]
- Chilton, J. Designing Structures for Deconstruction. Constr. Inf. Q. 2009, 11, 121–126. [Google Scholar]
- Webster, M.; Costello, D. Designing Structural Systems for Deconstruction. In Proceedings, Greenbuild Conference; U.S. Green Building Council: Atlanta, Georgia, 2006. [Google Scholar]
- Altamura, P. Costruire a Zero Rifiuti: Strategie e Strumenti per la Prevenzione e L’upcycling dei Materiali di Scarto in Edilizia; FrancoAngeli: Milano, Italy, 2015; ISBN 978-88-917-2567-7. [Google Scholar]
- Akbarnezhad, A.; Ong, K.C.G.; Chandra, L.R. Economic and Environmental Assessment of Deconstruction Strategies Using Building Information Modeling. Autom. Constr. 2014, 37, 131–144. [Google Scholar] [CrossRef]
- Krygiel, E.; Nies, B. Green BIM: Successful Sustainable Design with Building Information Modeling; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 0-470-39046-8. [Google Scholar]
- Järvelä, H.; Lehto, A.; Pirilä, T.; Kuittinen, M. Metrics for Building Component Disassembly Potential: A Practical Framework. B&C 2025, 6, 634–653. [Google Scholar] [CrossRef]
- Ottenhaus, L.-M.; Hernández-Aldaz, M.; Davies, A.; Cabrero, J.M. Evaluating the Disassembly Potential of Timber Buildings: Development of Calculation Tool and Proof of Concept. Wood Mater. Sci. Eng. 2025, 20, 881–909. [Google Scholar] [CrossRef]
- Gaute-Alonso, A.; Garcia-Sanchez, D.; O’Connor, A. Structural Safety Assessment Criteria for Dismantling Operations of Unique Structures. San Mames Roof Arch Experience. J. Build. Eng. 2024, 84, 108617. [Google Scholar] [CrossRef]
- Sandin, Y.; Cramer, M.; Sandberg, K. How Timber Buildings Can Be Designed for Deconstruction and Reuse in Accordance With ISO 20887. In Proceedings of the World Conference on Timber Engineering (WCTE 2023), Oslo, Norway, 19–22 June 2023; pp. 3558–3567. [Google Scholar]
- Khanalizadehtaromi, S. Design for Disassembly and Reuse: Developing an Indicator System for Volumetric Timber Structures Based on Case Studies. Master’s Thesis, Luleå University of Technology, Department of Engineering Sciences and Mathematics, Wood Science and Engineering, Luleå, Sweden, 2023. [Google Scholar]
- Anastasiades, K.; Goffin, J.; Rinke, M.; Buyle, M.; Audenaert, A.; Blom, J. Standardisation: An Essential Enabler for the Circular Reuse of Construction Components? A Trajectory for a Cleaner European Construction Industry. J. Clean. Prod. 2021, 298, 126864. [Google Scholar] [CrossRef]
- Attia, S.; Al-Obaidy, M.; Mori, M.; Campain, C.; Giannasi, E.; Van Vliet, M.; Gasparri, E. Disassembly Calculation Criteria and Methods for Circular Construction. Autom. Constr. 2024, 165, 105521. [Google Scholar] [CrossRef]
- Al-Obaidy, M.; Courard, L.; Attia, S. A Parametric Approach to Optimizing Building Construction Systems and Carbon Footprint: A Case Study Inspired by Circularity Principles. Sustainability 2022, 14, 3370. [Google Scholar] [CrossRef]
- Bartsch, H. Reuse of Reclaimed Steel Components in Construction: A Systematic Review of Potential, Challenges and Future Directions. Structures 2025, 80, 110057. [Google Scholar] [CrossRef]
- Kanyilmaz, A.; Birhane, M.; Fishwick, R.; Del Castillo, C. Reuse of Steel in the Construction Industry: Challenges and Opportunities. Int. J. Steel Struct. 2023, 23, 1399–1416. [Google Scholar] [CrossRef]
- ISO 20887:2020; Sustainability in Buildings and Civil Engineering Works—Design for Disassembly and Adaptability—Principles, Requirements and Guidance. International Organization for Standardization (ISO): Geneva, Switzerland, 2020.
- Ministero per i Beni e le Attività Culturali. Italian Legislative Decree No. 42 of 22 January 2004. Code of Cultural Heritage and Landscape, in Accordance with Article 10 of the Law No. 137 of July 6, 2002; Ministero per i Beni e le Attività Culturali: Roma, Italy, 2004.
- Pimentel, R.; Brown, D.; Sansom, M. SCI P427-Structural Steel Reuse: Assessment, Testing and Design Principles; The Steel Construction Institute: Ascot, UK, 2019; ISBN 978-1-85942-243-4. [Google Scholar]
- ISO 16739-1:2024; Industry Foundation Classes (IFC) for Data Sharing in the Construction and Facility Management Industries Part 1: Data Schema. International Organization for Standardization (ISO): Geneva, Switzerland, 2024.
- Bologna, A.; Garcia-Fuentes, J.M.; Giannetti, I.; Neri, G. Upcycling Architecture in Italy—Design Workshop—Risultati/Results; Upcycling Architecture in Italy: Torino, Italy, 2024; ISBN 979-12-81583-09-2. [Google Scholar]
- DEI. Prezzi Tipologie Edilizie; DEI: Roma, Italy, 2024; ISBN 979-12-5505-137-4. [Google Scholar]
- Ellen MacArthur Foundation. Cities in the Circular Economy: An Initial Exploration; Ellen MacArthur Foundation: Isle of Wight, UK, 2017. [Google Scholar]
- Benachio, G.L.F.; Freitas, M.D.C.D.; Tavares, S.F. Circular Economy in the Construction Industry: A Systematic Literature Review. J. Clean. Prod. 2020, 260, 121046. [Google Scholar] [CrossRef]
- Guerra, B.C.; Leite, F. Circular Economy in the Construction Industry: An Overview of United States Stakeholders’ Awareness, Major Challenges, and Enablers. Resour. Conserv. Recycl. 2021, 170, 105617. [Google Scholar] [CrossRef]
- Mahpour, A. Prioritizing Barriers to Adopt Circular Economy in Construction and Demolition Waste Management. Resour. Conserv. Recycl. 2018, 134, 216–227. [Google Scholar] [CrossRef]
- Economy, C. The Circularity Gap Report 2023. Available online: https://www.circularity-gap.world/2023 (accessed on 13 August 2025).
- Kibert, C.J. Sustainable Construction: Green Building Design and Delivery; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 1-119-05517-2. [Google Scholar]
- Zaman, A.U.; Arnott, J.; Mclntyre, K.; Hannon, J. Resource Harvesting through a Systematic Deconstruction of the Residential House: A Case Study of the ‘Whole House Reuse’ Project in Christchurch, New Zealand. Sustainability 2018, 10, 3430. [Google Scholar] [CrossRef]
- Chileshe, N.; Rameezdeen, R.; Hosseini, M.R.; Martek, I.; Li, H.X.; Panjehbashi-Aghdam, P. Factors Driving the Implementation of Reverse Logistics: A Quantified Model for the Construction Industry. Waste Manag. 2018, 79, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Directive-2003/87-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/eli/dir/2003/87/oj/eng (accessed on 3 October 2025).
- World Bank Group. Available online: https://carbonpricingdashboard.worldbank.org/compliance/price (accessed on 26 August 2025).
- Shin, D.-W.; Cho, K.-M.; Lee, U.-K.; Kim, T.-H. Analysis of the Factors Influencing the Demolition Costs. J. Korea Inst. Build. Constr. 2018, 18, 499–506. [Google Scholar]
- Tatiya, A.; Zhao, D.; Syal, M.; Berghorn, G.H.; LaMore, R. Cost Prediction Model for Building Deconstruction in Urban Areas. J. Clean. Prod. 2018, 195, 1572–1580. [Google Scholar] [CrossRef]
- Hradil, P.; Talja, A.; Ungureanu, V.; Koukkari, H.; Fülöp, L. 21.03: Reusability Indicator for Steel--framed Buildings and Application for an Industrial Hall. Ce/Papers 2017, 1, 4512–4521. [Google Scholar] [CrossRef]
- Akinade, O.O. BIM-Based Software for Construction Waste Analytics Using Artificial Intelligence Hybrid Models. Ph.D. Thesis, University of the West of England, Bristol, UK, 2017. [Google Scholar]
- Mollaei, A.; Bachmann, C.; Haas, C. Estimating the Recoverable Value of In-Situ Building Materials. Sustain. Cities Soc. 2023, 91, 104455. [Google Scholar] [CrossRef]
- Mohammed, M.; Shafiq, N.; Abdallah, N.; Ayoub, M.; Haruna, A. A Review on Achieving Sustainable Construction Waste Management through Application of 3R (Reduction, Reuse, Recycling): A Lifecycle Approach; IOP Publishing: Bristol, UK, 2020; Volume 476, p. 012010. [Google Scholar]
- Tam, V.W.; Tam, C.M. Re-Use of Construction and Demolition Waste in Housing Developments; Nova: Hauppauge, NY, USA, 2008; ISBN 1-60456-362-1. [Google Scholar]
- Anelli, D.; Morano, P.; Tajani, F.; Di Liddo, F.; Locurcio, M. Environmental Impacts and Housing Deprivation: A Study of the Effects of Industrial Polluting Sites in the Italian Context. In Computational Science and Its Applications—ICCSA 2025 Workshops; Gervasi, O., Murgante, B., Garau, C., Karaca, Y., Faginas Lago, M.N., Scorza, F., Braga, A.C., Eds.; Lecture Notes in Computer Science; Springer Nature Switzerland: Cham, Switzerland, 2026; Volume 15889, pp. 381–392. ISBN 978-3-031-97602-5. [Google Scholar]
- Akbarnezhad, A.; Ong, K.C.G.; Tam, C.T.; Zhang, M.H. Effects of the Parent Concrete Properties and Crushing Procedure on the Properties of Coarse Recycled Concrete Aggregates. J. Mater. Civ. Eng. 2013, 25, 1795–1802. [Google Scholar] [CrossRef]
- Bayram, B.; Greiff, K.; Gerlich, L.; Luthin, A.; Hildebrand, L.; Traverso, M. Environmental and Economic Implications of Selective Demolition and Advanced Recycling of Construction Waste. Sustain. Prod. Consum. 2025, 57, 61–79. [Google Scholar] [CrossRef]
- Antunes, A.; Martins, R.; Silvestre, J.D.; Do Carmo, R.; Costa, H.; Júlio, E.; Pedroso, P. Environmental Impacts and Benefits of the End-of-Life of Building Materials: Database to Support Decision Making and Contribute to Circularity. Sustainability 2021, 13, 12659. [Google Scholar] [CrossRef]
- Deconstruction (Volume N° 51)|Rotor. Available online: https://rotordb.org/en/projects/deconstruction-volume-ndeg-51 (accessed on 23 September 2025).
- Addis, B. Briefing: Design for Deconstruction; Thomas Telford Ltd.: London, UK, 2008; Volume 161, pp. 9–12. [Google Scholar]
- Guy, B.; Shell, S.; Esherick, H. Design for Deconstruction and Materials Reuse. Proc. CIB Task Group 2006, 39, 189–209. [Google Scholar]
- Coelho, A.; De Brito, J. Economic Analysis of Conventional versus Selective Demolition—A Case Study. Resour. Conserv. Recycl. 2011, 55, 382–392. [Google Scholar] [CrossRef]
- Bertino, G.; Kisser, J.; Zeilinger, J.; Langergraber, G.; Fischer, T.; Österreicher, D. Fundamentals of Building Deconstruction as a Circular Economy Strategy for the Reuse of Construction Materials. Appl. Sci. 2021, 11, 939. [Google Scholar] [CrossRef]
Categories | Parameters | Definition | Score | ||
---|---|---|---|---|---|
0—Low | 1—Medium | 2—High | |||
Site | Accessibility (construction site installation) | The position of the building allows the access for the transport of the building components off-site. The parameter is measured considering the % value of accessible area/total area of the site | 0–20% | 20–60% | >60% |
Space plan | Expandability | The building features the possibility to be expanded, facilitating the addition of new spaces (ISO 20887). The parameter is measured considering the % value of direct expandable area/total area of the building floors | 0–20% | 20–60% | >60% |
Structure | Signs of fire exposure | Proven through a visual inspection. Components exposed to uncontrolled flames cannot be reused (SCI P427) | exposed | not exposed | |
Skin | Obsolescence | Express the % damage area/total area of the element, considering visible damages | >60% | 20–60% | 0–20% |
Space partitions | Reversible connection | Connections that can be disconnected or disassembled (ISO 20887) | Light welding (corner welding) | Fixed metallic connection (rivets) | Disassemble metallic connection (bolt) |
Shared heritage (authorial contribution) | Documentary heritage | Presence of documents proving links with historical and technological background (Legislative Decree No. 42 of 22 January 2004) | Authorial design proven by original drawings | Authorial design proven by original drawings, literature of the time | Authorial design proven by original drawings, literature of the time, and industrial patents |
Building Elements | Disposed Elements | Recovered Elements | ||
---|---|---|---|---|
[€] | Cost Share [%] | [€] | Cost Share [%] | |
External walls | −46,345.80 | 8.85 | 9854.26 | 1.88 |
Internal walls | −14,571.07 | 2.78 | - | - |
Joints | - | - | 2768.14 | 0.53 |
Slabs | −197,165.97 | 37.64 | 140,257.56 | 26.78 |
Roofing | - | - | 16,477.86 | 3.15 |
Load-bearing structure | - | - | 37,574.42 | 7.17 |
Frames | - | - | 58,797.89 | 11.22 |
Total | −258,082.84 | 49.27 | 265,730.12 | 50.73 |
Material | Quantity [t] |
---|---|
Concrete | 1340 |
Steel | 317 |
Siporex | 109 |
EPS-Petralit | 30 |
Glass | 23 |
PVC | 6 |
Other | 9 |
Components | Quantity [t] |
---|---|
Slabs | 2664 |
Internal walls | 230 |
Beams | 150 |
External walls | 120 |
Columns | 65 |
Windows and doors | 37 |
Joints | 11 |
Parameters | Values | |
---|---|---|
Joint | Panel | |
Ease of access | 2 | 1 |
Independence | 2 | 2 |
Reversible connection | 1 | 2 |
Standardization | 2 | 2 |
Weight | 1 | 2 |
Obsolescence | 1 | 2 |
Steelwork erected after 1970 | 0 | - |
Significant section loss due to corrosion | 2 | - |
Signs of fire exposure | 1 | - |
Evidence of plasticity observed in the steel surface or corrosion protection | 2 | - |
Steelwork objects to fatigue | 1 | - |
Safety of disassembly | 2 | 0 |
Consistency of original design principle to DfD principle: | 2 | 2 |
Disassembly index | 13 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tajani, F.; Bologna, A.; Cerullo, G.; Doko, E.; Sica, F. Upcycling Strategies for Resilience Reconstruction Goals: A Case Study of an Italian Public Building. Buildings 2025, 15, 3683. https://doi.org/10.3390/buildings15203683
Tajani F, Bologna A, Cerullo G, Doko E, Sica F. Upcycling Strategies for Resilience Reconstruction Goals: A Case Study of an Italian Public Building. Buildings. 2025; 15(20):3683. https://doi.org/10.3390/buildings15203683
Chicago/Turabian StyleTajani, Francesco, Alberto Bologna, Giuseppe Cerullo, Endriol Doko, and Francesco Sica. 2025. "Upcycling Strategies for Resilience Reconstruction Goals: A Case Study of an Italian Public Building" Buildings 15, no. 20: 3683. https://doi.org/10.3390/buildings15203683
APA StyleTajani, F., Bologna, A., Cerullo, G., Doko, E., & Sica, F. (2025). Upcycling Strategies for Resilience Reconstruction Goals: A Case Study of an Italian Public Building. Buildings, 15(20), 3683. https://doi.org/10.3390/buildings15203683