Field Evaluation of Thermal Comfort and Cooling Performance of Underfloor Air Distribution Systems in Stratified Spaces
Abstract
1. Introduction
1.1. Background
1.2. Motivation
2. Materials and Methods
2.1. Experimental Setup
2.2. Test Conditions and Variable Settings
2.3. Measurement Parameters and Data Processing
- Horizontal analysis: comparing cooling performance differences across various locations on the floor plan.
- Vertical analysis: examining cooling performance at different heights under various UFAD air-conditioning settings.
tcl = 35.7 − 0.028 × (M − W) − Icl + {3.96 × 10−8 × fcl × [(tcl + 273)4 − (tr + 273)4] + fcl × hc × (tcl − ta)}
hcl = 2.38 × |tcl − ta|0.25 for 2.38 × |tcl − ta|0.25 > 12.1 × √var, = 12.1 × √var for 2.38 × |tcl − ta|0.25 < 12.1 × √var
fcl = (1.00 + 1.290 × Icl) for Icl ≤ 0.078 m2·K/W, = (1.05 + 0.645 × Icl) for Icl > 0.078 m2·K/W
3. Results and Discussion
3.1. Cooling Effectiveness
3.2. Thermal Comfort (PMV)
3.3. Discussion
4. Conclusions
- Cooling effectiveness is primarily influenced by supply air temperature, followed by airflow rate.
- PMV model analysis indicates significant vertical thermal stratification in most UFAD settings. Heights between 120 and 180 cm can achieve a more comfortable or neutral environment, while at 60 cm and under it may be cooler.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Abbr. | Date | Time (Hr) | Outdoor | Indoor | PMV | |||||
---|---|---|---|---|---|---|---|---|---|---|
T (°C) | RH (%) | Height (cm) | Ta (°C) | RH (%) | v (m/s) | MRT | ||||
HQLT-1 | 25-09-2024 | 10:00 –12:00 | 30.6 | 73.8 | 10 | 24.22 | 63.00 | 1.11 | 25.08 | −1.50 |
60 | 24.45 | 70.70 | 0.64 | 25.12 | −1.02 | |||||
90 | 24.55 | 70.30 | 0.39 | 25.10 | −0.70 | |||||
120 | 24.72 | 70.20 | 0.24 | 25.14 | −0.38 | |||||
150 | 24.90 | 71.30 | 0.10 | 25.25 | 0.02 | |||||
180 | 25.12 | 70.50 | 0.12 | 25.45 | 0.02 | |||||
12:00 –14:00 | 30.9 | 71.5 | 10 | 23.53 | 63.00 | 1.11 | 24.39 | −1.79 | ||
60 | 23.87 | 70.50 | 0.64 | 24.54 | −1.25 | |||||
90 | 23.97 | 70.10 | 0.39 | 24.52 | −0.91 | |||||
120 | 24.18 | 70.10 | 0.24 | 24.46 | −0.58 | |||||
150 | 24.37 | 70.50 | 0.10 | 24.60 | −0.19 | |||||
180 | 24.62 | 69.70 | 0.12 | 24.95 | −0.17 | |||||
HQMT-1 | 24-09-2024 | 10:00 –12:00 | 29.6 | 82.8 | 10 | 23.78 | 64.00 | 1.11 | 25.49 | −1.61 |
60 | 23.87 | 70.20 | 0.64 | 25.21 | −1.19 | |||||
90 | 23.98 | 70.30 | 0.39 | 25.08 | −0.84 | |||||
120 | 24.20 | 70.00 | 0.24 | 25.13 | −0.49 | |||||
150 | 24.38 | 70.70 | 0.10 | 25.12 | −0.10 | |||||
180 | 24.63 | 70.00 | 0.12 | 25.31 | −0.10 | |||||
12:00 –14:00 | 30.1 | 72.7 | 10 | 24.50 | 66.00 | 1.11 | 26.20 | −1.29 | ||
60 | 24.58 | 73.20 | 0.64 | 25.92 | −0.88 | |||||
90 | 24.67 | 72.60 | 0.39 | 25.76 | −0.57 | |||||
120 | 24.80 | 75.40 | 0.24 | 25.72 | −0.24 | |||||
150 | 24.95 | 73.40 | 0.10 | 25.74 | 0.13 | |||||
180 | 25.15 | 72.70 | 0.12 | 25.98 | 0.13 | |||||
HQHT-1 | 17-09-2024 | 10:00 –12:00 | 32.2 | 68.2 | 10 | 25.52 | 56.00 | 1.11 | 22.50 | −1.36 |
60 | 25.85 | 65.60 | 0.64 | 23.49 | −0.85 | |||||
90 | 25.92 | 65.30 | 0.39 | 24.00 | −0.55 | |||||
120 | 25.98 | 65.80 | 0.24 | 23.71 | −0.35 | |||||
150 | 26.12 | 67.30 | 0.10 | 25.03 | 0.19 | |||||
180 | 26.45 | 65.90 | 0.12 | 25.07 | 0.19 | |||||
12:00 –14:00 | 32 | 67 | 10 | 24.95 | 58.00 | 1.11 | 22.79 | −1.49 | ||
60 | 25.13 | 65.30 | 0.64 | 23.44 | −1.05 | |||||
90 | 25.27 | 64.90 | 0.39 | 23.90 | −0.72 | |||||
120 | 25.43 | 65.20 | 0.24 | 23.73 | −0.47 | |||||
150 | 25.70 | 66.50 | 0.10 | 24.46 | 0.00 | |||||
180 | 26.03 | 65.00 | 0.12 | 25.06 | 0.09 | |||||
LQLT-1 | 17-10-2024 | 10:00 –12:00 | 30.9 | 67.4 | 10 | 24.90 | 56.00 | 0.94 | 24.50 | −1.29 |
60 | 25.20 | 64.00 | 0.53 | 24.89 | −0.79 | |||||
90 | 25.32 | 63.40 | 0.29 | 25.07 | −0.43 | |||||
120 | 25.45 | 63.40 | 0.15 | 25.45 | 0.03 | |||||
150 | 25.83 | 64.80 | 0.12 | 25.77 | 0.17 | |||||
180 | 25.97 | 63.70 | 0.14 | 25.45 | 0.18 | |||||
12:00 –14:00 | 30.5 | 71.2 | 10 | 24.25 | 53.00 | 0.94 | 25.04 | −1.47 | ||
60 | 24.45 | 64.50 | 0.53 | 25.07 | −0.96 | |||||
90 | 24.60 | 62.70 | 0.29 | 25.10 | −0.58 | |||||
120 | 24.85 | 66.00 | 0.15 | 25.15 | −0.10 | |||||
150 | 25.05 | 67.50 | 0.12 | 25.42 | −0.02 | |||||
180 | 25.38 | 66.80 | 0.14 | 25.61 | 0.12 | |||||
LQMT-1 | 19-09-2024 | 10:00 –12:00 | 34.2 | 67.1 | 10 | 26.30 | 57.00 | 0.94 | 23.51 | −0.97 |
60 | 26.47 | 67.10 | 0.53 | 24.30 | −0.51 | |||||
90 | 26.60 | 66.80 | 0.29 | 24.87 | −0.16 | |||||
120 | 26.75 | 66.80 | 0.15 | 24.86 | 0.22 | |||||
150 | 26.97 | 68.40 | 0.12 | 25.53 | 0.39 | |||||
180 | 27.25 | 67.60 | 0.14 | 25.80 | 0.50 | |||||
12:00 –14:00 | 33.4 | 66.1 | 10 | 25.40 | 59.00 | 0.94 | 21.37 | −1.41 | ||
60 | 25.65 | 68.20 | 0.53 | 22.52 | −0.90 | |||||
90 | 25.80 | 67.10 | 0.29 | 23.31 | −0.50 | |||||
120 | 26.03 | 66.90 | 0.15 | 24.37 | 0.01 | |||||
150 | 26.33 | 68.20 | 0.12 | 24.40 | 0.08 | |||||
180 | 26.55 | 67.40 | 0.14 | 24.51 | 0.17 | |||||
LQHT-1 | 15-10-2024 | 10:00 –12:00 | 32.8 | 63.9 | 10 | 25.87 | 73.40 | 0.94 | 25.59 | −0.75 |
60 | 25.87 | 73.40 | 0.53 | 25.65 | −0.46 | |||||
90 | 25.93 | 72.80 | 0.29 | 25.86 | −0.12 | |||||
120 | 26.00 | 72.90 | 0.15 | 26.00 | 0.31 | |||||
150 | 26.03 | 73.80 | 0.12 | 25.97 | 0.32 | |||||
180 | 26.23 | 72.70 | 0.14 | 26.17 | 0.43 | |||||
12:00 –14:00 | 32.4 | 65.8 | 10 | 25.27 | 66.40 | 0.94 | 25.39 | −1.00 | ||
60 | 25.37 | 66.40 | 0.53 | 25.15 | −0.70 | |||||
90 | 25.45 | 65.80 | 0.29 | 25.57 | −0.32 | |||||
120 | 25.62 | 65.80 | 0.15 | 25.62 | 0.11 | |||||
150 | 25.77 | 67.00 | 0.12 | 25.83 | 0.18 | |||||
180 | 26.00 | 66.80 | 0.14 | 26.00 | 0.30 | |||||
HQLT-2 | 08-10-2024 | 10:00 –12:00 | 31.5 | 71.6 | 10 | 24.07 | 61.00 | 1.11 | 21.90 | −1.81 |
60 | 24.35 | 70.00 | 0.64 | 22.65 | −1.31 | |||||
90 | 24.43 | 69.40 | 0.39 | 23.05 | −0.99 | |||||
120 | 24.55 | 68.40 | 0.24 | 23.03 | −0.72 | |||||
150 | 24.82 | 69.40 | 0.10 | 23.90 | −0.23 | |||||
180 | 25.02 | 69.20 | 0.12 | 24.06 | −0.23 | |||||
12:00 –14:00 | 31.8 | 69 | 10 | 23.50 | 62.00 | 1.11 | 19.09 | −2.23 | ||
60 | 23.75 | 69.40 | 0.64 | 20.31 | −1.73 | |||||
90 | 23.85 | 69.40 | 0.39 | 21.06 | −1.38 | |||||
120 | 24.05 | 68.60 | 0.24 | 21.58 | −1.03 | |||||
150 | 24.33 | 71.80 | 0.10 | 22.50 | −0.53 | |||||
180 | 24.70 | 71.90 | 0.12 | 22.84 | −0.47 | |||||
HQMT-2 | 30-09-2024 | 10:00 –12:00 | 33.7 | 68.5 | 10 | 25.00 | 63.00 | 1.11 | 21.97 | −1.50 |
60 | 25.07 | 67.70 | 0.64 | 22.70 | −1.13 | |||||
90 | 25.17 | 69.70 | 0.39 | 23.24 | −0.78 | |||||
120 | 25.30 | 70.10 | 0.24 | 23.67 | −0.46 | |||||
150 | 25.55 | 72.60 | 0.10 | 24.23 | −0.01 | |||||
180 | 25.87 | 72.20 | 0.12 | 24.27 | 0.00 | |||||
12:00 –14:00 | 32.3 | 73.9 | 10 | 24.18 | 65.00 | 1.11 | 22.88 | −1.66 | ||
60 | 24.27 | 71.30 | 0.64 | 23.25 | −1.25 | |||||
90 | 24.38 | 71.10 | 0.39 | 23.55 | −0.93 | |||||
120 | 24.53 | 70.70 | 0.24 | 23.53 | −0.63 | |||||
150 | 24.83 | 71.50 | 0.10 | 25.48 | 0.05 | |||||
180 | 25.22 | 71.20 | 0.12 | 25.92 | 0.12 | |||||
HQHT-2 | 10-10-2024 | 10:00 –12:00 | 29.9 | 67.6 | 10 | 26.30 | 62.00 | 1.11 | 25.88 | −0.78 |
60 | 26.35 | 67.60 | 0.64 | 26.02 | −0.46 | |||||
90 | 26.38 | 69.40 | 0.39 | 26.11 | −0.18 | |||||
120 | 26.42 | 69.50 | 0.24 | 26.14 | 0.10 | |||||
150 | 26.50 | 70.20 | 0.10 | 26.32 | 0.50 | |||||
180 | 26.60 | 69.40 | 0.12 | 26.42 | 0.47 | |||||
12:00 –14:00 | 30.6 | 63.5 | 10 | 25.88 | 52.00 | 1.11 | 25.03 | −1.07 | ||
60 | 26.07 | 61.00 | 0.64 | 25.40 | −0.64 | |||||
90 | 26.15 | 61.80 | 0.39 | 25.61 | −0.36 | |||||
120 | 26.22 | 62.20 | 0.24 | 25.71 | −0.07 | |||||
150 | 26.32 | 62.90 | 0.10 | 25.93 | 0.33 | |||||
180 | 26.47 | 62.10 | 0.12 | 26.16 | 0.33 | |||||
LQLT-2 | 07-10-2024 | 10:00 –12:00 | 30 | 70.1 | 10 | 24.48 | 54.00 | 0.94 | 22.47 | −1.62 |
60 | 24.77 | 64.70 | 0.53 | 23.21 | −1.08 | |||||
90 | 24.88 | 64.00 | 0.29 | 23.63 | −0.70 | |||||
120 | 25.10 | 64.00 | 0.15 | 23.49 | −0.34 | |||||
150 | 25.38 | 65.40 | 0.12 | 24.10 | −0.19 | |||||
180 | 25.65 | 64.70 | 0.14 | 24.39 | −0.04 | |||||
12:00 –14:00 | 29.8 | 72.9 | 10 | 23.55 | 53.00 | 0.94 | 21.53 | −2.00 | ||
60 | 23.82 | 63.20 | 0.53 | 22.25 | −1.45 | |||||
90 | 24.13 | 63.40 | 0.29 | 22.88 | −0.97 | |||||
120 | 24.35 | 63.40 | 0.15 | 23.24 | −0.52 | |||||
150 | 24.67 | 63.90 | 0.12 | 23.41 | −0.45 | |||||
180 | 24.97 | 63.20 | 0.14 | 23.66 | −0.30 | |||||
LQMT-2 | 26-09-2024 | 10:00 –12:00 | 33.2 | 68.5 | 10 | 24.53 | 60.00 | 0.94 | 20.47 | −1.74 |
60 | 24.92 | 69.80 | 0.53 | 21.78 | −1.16 | |||||
90 | 25.03 | 69.70 | 0.29 | 22.53 | −0.76 | |||||
120 | 25.20 | 70.10 | 0.15 | 22.99 | −0.34 | |||||
150 | 25.50 | 71.80 | 0.12 | 23.62 | −0.18 | |||||
180 | 25.75 | 70.80 | 0.14 | 24.29 | 0.01 | |||||
12:00 –14:00 | 33.2 | 69.6 | 10 | 23.65 | 58.00 | 0.94 | 19.56 | −2.10 | ||
60 | 24.07 | 68.60 | 0.53 | 20.91 | −1.50 | |||||
90 | 24.38 | 68.90 | 0.29 | 21.87 | −1.01 | |||||
120 | 24.62 | 68.40 | 0.15 | 22.97 | −0.47 | |||||
150 | 24.97 | 69.00 | 0.12 | 24.09 | −0.24 | |||||
180 | 25.28 | 68.60 | 0.14 | 26.28 | 0.23 | |||||
LQHT-2 | 28-09-2024 | 10:00 –12:00 | 30.6 | 67.6 | 10 | 26.07 | 66.00 | 0.94 | 25.79 | −0.74 |
60 | 26.17 | 73.20 | 0.53 | 26.26 | −0.33 | |||||
90 | 26.22 | 71.90 | 0.29 | 26.17 | −0.02 | |||||
120 | 26.28 | 74.20 | 0.15 | 26.32 | 0.43 | |||||
150 | 26.37 | 74.80 | 0.12 | 26.43 | 0.47 | |||||
180 | 26.53 | 74.50 | 0.14 | 26.47 | 0.55 | |||||
12:00 –14:00 | 30.8 | 67.4 | 10 | 26.00 | 71.00 | 0.94 | 26.00 | −0.70 | ||
60 | 26.15 | 70.80 | 0.53 | 26.00 | −0.39 | |||||
90 | 26.20 | 75.00 | 0.29 | 26.45 | 0.03 | |||||
120 | 26.50 | 76.80 | 0.15 | 26.50 | 0.53 | |||||
150 | 26.30 | 77.80 | 0.12 | 26.30 | 0.47 | |||||
180 | 26.43 | 76.80 | 0.14 | 26.37 | 0.54 |
References
- Shukla, P.; Mishra, S.; Goswami, S. A field study of investigation of indoor environmental quality status in Indian offices: Concerns and influencing building factors. J. Build. Eng. 2024, 86, 108648. [Google Scholar] [CrossRef]
- Suryo, M.S.; Ichinose, M.; Kuroda, Y.; Alkhalaf, H. An Investigation of Indoor Environment Quality on Occupants’ Thermal Responses, Health, and Productivity: A Study Based on Physiological Data in Occupied Office Space. Buildings 2024, 14, 3562. [Google Scholar] [CrossRef]
- Keene, K.; McCord, K.; Dehwah, A.H.A.; Jung, W. Meta-Analysis and Regression Modeling of the Impacts of Four Indoor Environmental Quality Metrics on Office Performance. Indoor Air 2025, 2025, 6840369. [Google Scholar] [CrossRef]
- Pan, C.-Y.; Weng, K.-T.; Hsu, H.-C. Air change per hour improvement for positive and negative pressure mechanical ventilation facilities systems. J. Build. Eng. 2024, 83, 108414. [Google Scholar] [CrossRef]
- Hsu, H.-C.; Pan, C.-Y.; Wu, I.C.; Liu, C.-C.; Zhuang, Z.-Y. Using the big data analysis and basic information from lecture Halls to predict air change rate. J. Build. Eng. 2023, 66, 105817. [Google Scholar] [CrossRef]
- Bavarsad, F.S.; Mohajerani, M.; Tywoniak, J.; Jiao, Z.; Yuan, J. Future Climate Impacts on Urban Office Buildings: Energy, Comfort, and Passive Solutions in Osaka, Japan. J. Therm. Biol. 2025, 131, 104212. [Google Scholar] [CrossRef]
- Hsu, H.-C.; Chang, C.-W.; Chen, C.-C.; Pan, C.-Y. Natural Ventilation: Optimizing Window Opening Size for CO2 Concentration Control and Thermal Comfort on Nonwindward Facades. Indoor Air 2024, 2024, 1435400. [Google Scholar] [CrossRef]
- Arumugam, P.; Ramalingam, V. Thermal comfort enhancement of office buildings located under warm and humid climate through phase change material and insulation coupled with natural ventilation. Sustain. Energy Technol. Assess. 2024, 63, 103657. [Google Scholar] [CrossRef]
- Heidari, S.; Poshtiri, A.H.; Gilvaei, Z.M. Enhancing thermal comfort and natural ventilation in residential buildings: A design and assessment of an integrated system with horizontal windcatcher and evaporative cooling channels. Energy 2024, 289, 130040. [Google Scholar] [CrossRef]
- Pan, C.Y.; Hsu, H.C.; Huang, K.W. Real-Time Control of the Air Volume in Ventilation Facilities by Limiting CO2 Concentration With Cluster Algorithms. IEEE Trans. Ind. Electron. 2023, 70, 12894–12903. [Google Scholar] [CrossRef]
- Chen, Y.; Ozaki, A.; Yang, X.; Arima, Y.; Li, Z.; Choi, Y. Adaptive model-based advanced natural ventilation control strategy for mixed-mode residential buildings in Japan. Build. Environ. 2025, 273, 112718. [Google Scholar] [CrossRef]
- Elhami, M.; Goodarzi, S.S.; Maleki, S.; Sajadi, B. Three-objective optimization of the HVAC system control strategy in an educational building to reduce energy consumption and enhance indoor environmental quality (IEQ) using machine learning techniques. J. Build. Eng. 2025, 105, 112444. [Google Scholar] [CrossRef]
- Litardo, J.; Del Pero, C.; Molinaroli, L.; Leonforte, F.; Aste, N. Sustainable active cooling strategies in hot and humid climates—A review and a practical application in Somalia. Build. Environ. 2022, 221, 109338. [Google Scholar] [CrossRef]
- Jacob Jeslu, C.; Pandit, D.; Sen, J. Case Study Exploring the Influence of Diffuser Arrangement on Air Distribution Using Field Experiments and Computational Fluid Dynamics Simulations. J. Archit. Eng. 2025, 31, 05025001. [Google Scholar] [CrossRef]
- Li, L.; Yao, C.; Liu, W.; Yin, Z.; Huang, W.; Yao, Y.; Luo, Y.; Huang, Y. Impact of displacement ventilation and underfloor air distribution systems on concentrations of indoor particle in different seasons. J. Build. Eng. 2024, 84, 108466. [Google Scholar] [CrossRef]
- Yau, Y.H.; Rodzi, M.A.M.; Nik Ghazali, N.N. Numerical simulation on supply air of high sidewall grille with retrofitted energy recovery ventilator system for thermal comfort in the tropics. J. Build. Eng. 2024, 89, 109281. [Google Scholar] [CrossRef]
- Ho, S.H.; Rosario, L.; Rahman, M.M. Comparison of underfloor and overhead air distribution systems in an office environment. Build. Environ. 2011, 46, 1415–1427. [Google Scholar] [CrossRef]
- Kanaan, M.; Amine, S.; Gazo-Hanna, E. Optimizing supply conditions and use of return air in UFAD system: Assessment of IAQ, thermal comfort and energy performance. Results Eng. 2024, 24, 103426. [Google Scholar] [CrossRef]
- Bauman, F.S. Underfloor Air Distribution (UFAD) Design Guide; American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): Peachtree Corners, GA, USA, 2003. [Google Scholar]
- Zhang, K.; Zhang, X.; Li, S.; Jin, X. Review of underfloor air distribution technology. Energy Build. 2014, 85, 180–186. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Z.; Deng, Q.; Feng, Y.; Wang, X. Optimization of underfloor air distribution systems for data centers based on orthogonal test method: A case study. Build. Environ. 2023, 232, 110071. [Google Scholar] [CrossRef]
- Kong, Q.; Yu, B. Numerical study on temperature stratification in a room with underfloor air distribution system. Energy Build. 2008, 40, 495–502. [Google Scholar] [CrossRef]
- Qin, C.; Fang, H.-Q.; Wu, S.-H.; Lu, W.-Z. Establishing multi-criteria optimization of return vent height for underfloor air distribution system. J. Build. Eng. 2022, 57, 104800. [Google Scholar] [CrossRef]
- ANSI/ASHRAE Standard 55; Thermal Environmental Conditions for Human Occupancy. ANSI/ASHRAE: Peachtree Corners, GA, USA, 2023. Available online: https://www.ashrae.org/technical-resources/bookstore/standard-55-thermal-environmental-conditions-for-human-occupancy (accessed on 15 May 2025).
- Fanger, P.O. Thermal Comfort. Analysis and Applications in Environmental Engineering; Danish Technical Press: Vanløse, Denmark, 1970. [Google Scholar]
- Li, R.; Sekhar, S.C.; Melikov, A.K. Thermal comfort and IAQ assessment of under-floor air distribution system integrated with personalized ventilation in hot and humid climate. Build. Environ. 2010, 45, 1906–1913. [Google Scholar] [CrossRef]
- Nada, S.A.; El-Batsh, H.M.; Elattar, H.F.; Ali, N.M. CFD investigation of airflow pattern, temperature distribution and thermal comfort of UFAD system for theater buildings applications. J. Build. Eng. 2016, 6, 274–300. [Google Scholar] [CrossRef]
- Cao, S.; Li, F.; Li, X. Numerical study on settlement characteristics of inhalable particles in under-floor air distribution system. J. Build. Eng. 2022, 45, 103481. [Google Scholar] [CrossRef]
- Rahmati, B.; Heidarian, A.; Jadidi, A.M. Investigation in performance of a hybrid under-floor air distribution with improved desk displacement ventilation system in a small office. Appl. Therm. Eng. 2018, 138, 861–872. [Google Scholar] [CrossRef]
- ANSI/ASHRAE Standard 55-2017; Thermal Environmental Conditions for Human Occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2017.
Instrument | Measurement Range and Accuracy |
---|---|
Anemometer (VA-5002) | Measurement range: 0.1–25.0 m/s; accuracy: ±(5% + 1 d) of reading |
Temperature and Humidity Logger (Logpro TR-32) | Temperature range: −30 to 70 °C; humidity range: 0–99.9% RH; accuracy: ±0.5 °C and ±5% RH @ 25 °C |
Mean Radiant Temperature Sensor (8778 AZ WBGT) | Temperature range: 0–80 °C; accuracy: ±1 °C within 15–40 °C range |
Power Logger (HIOKI PW3365) | Current ranges: 500.00 mA to 5.0000 kA AC; accuracy: ±0.3% rdg. ±0.1% f.s. + clamp sensor accuracy |
No. | Abbr. | OA(CMH) | T Set (°C) | Q Set (CMH) | Icon |
---|---|---|---|---|---|
1 | HQLT-1 | 880 | 22.5 | 1990 | |
2 | HQMT-1 | 880 | 24.5 | 1990 | |
3 | HQHT-1 | 880 | 26.5 | 1990 | |
4 | LQLT-1 | 880 | 22.5 | 1624 | |
5 | LQMT-1 | 880 | 24.5 | 1624 | |
6 | LQHT-1 | 880 | 26.5 | 1624 | |
7 | HQLT-2 | 586 | 22.5 | 1990 | |
8 | HQMT-2 | 586 | 24.5 | 1990 | |
9 | HQHT-2 | 586 | 26.5 | 1990 | |
10 | LQLT-2 | 586 | 22.5 | 1624 | |
11 | LQMT-2 | 586 | 24.5 | 1624 | |
12 | LQHT-2 | 586 | 26.5 | 1624 |
Abbr. | AC Energy Consumption | ERV Energy Consumption (kWh) | Total Energy Consumption (kWh) | ||
---|---|---|---|---|---|
Indoor Unit (kWh) | Outdoor Unit (kWh) | Total (kWh) | |||
HQLT-1 | 2.75 | 2.58 | 5.33 | 0.04 | 5.37 |
HQMT-1 | 2.72 | 2.31 | 5.03 | 0.04 | 5.07 |
HQHT-1 | 2.73 | 2.12 | 4.85 | 0.04 | 4.89 |
LQLT-1 | 2.21 | 2.51 | 4.72 | 0.04 | 4.76 |
LQMT-1 | 2.32 | 2.28 | 4.6 | 0.04 | 4.64 |
LQHT-1 | 2.24 | 2.09 | 4.33 | 0.04 | 4.37 |
HQLT-2 | 2.75 | 2.58 | 5.33 | 0.03 | 5.36 |
HQMT-2 | 2.72 | 2.31 | 5.03 | 0.03 | 5.06 |
HQHT-2 | 2.73 | 2.12 | 4.85 | 0.03 | 4.88 |
LQLT-2 | 2.21 | 2.51 | 4.72 | 0.03 | 4.75 |
LQMT-2 | 2.32 | 2.28 | 4.6 | 0.03 | 4.63 |
LQHT-2 | 2.24 | 2.09 | 4.33 | 0.03 | 4.36 |
Source | Sum of Squares | df | F | p-Value | |
---|---|---|---|---|---|
Main Effect | OA | 3.00×10−4 | 1 | 1.30×10−1 | 7.29×10−1 |
T_set | 3.79×10−1 | 2 | 8.18×10+1 | 1.40×10−5 | |
Q_set | 8.11×10−1 | 1 | 3.51×10+2 | 3.08×10−7 | |
Residual | 1.62×10−2 | 7 | - | - | |
Interaction | OA | 3.00×10−4 | 1 | 4.88×10+22 | 2.05×10−23 |
T_set | 3.79×10−1 | 2 | 3.08×10+25 | 3.25×10−26 | |
Q_set | 8.11×10−1 | 1 | 1.32×10+26 | 7.58×10−27 | |
OA:T_set | 3.01×10−29 | 2 | 2.45×10−3 | 9.98×10−1 | |
OA:Q_set | 1.63×10−29 | 1 | 2.65×10−3 | 9.64×10−1 | |
T_set:Q_set | 1.62×10−2 | 2 | 1.32×10+24 | 7.59×10−25 | |
Residual | 1.23×10−26 | 2 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.-C.; Hsu, H.-C.; Wang, H.-Y.; Pan, C.-Y. Field Evaluation of Thermal Comfort and Cooling Performance of Underfloor Air Distribution Systems in Stratified Spaces. Buildings 2025, 15, 3241. https://doi.org/10.3390/buildings15173241
Wu Y-C, Hsu H-C, Wang H-Y, Pan C-Y. Field Evaluation of Thermal Comfort and Cooling Performance of Underfloor Air Distribution Systems in Stratified Spaces. Buildings. 2025; 15(17):3241. https://doi.org/10.3390/buildings15173241
Chicago/Turabian StyleWu, Yen-Chin, Hsieh-Chih Hsu, Hsin-Yi Wang, and Chen-Yu Pan. 2025. "Field Evaluation of Thermal Comfort and Cooling Performance of Underfloor Air Distribution Systems in Stratified Spaces" Buildings 15, no. 17: 3241. https://doi.org/10.3390/buildings15173241
APA StyleWu, Y.-C., Hsu, H.-C., Wang, H.-Y., & Pan, C.-Y. (2025). Field Evaluation of Thermal Comfort and Cooling Performance of Underfloor Air Distribution Systems in Stratified Spaces. Buildings, 15(17), 3241. https://doi.org/10.3390/buildings15173241