Opportunities for Supplementary Cementitious Materials from Natural Sources and Industrial Byproducts: Literature Insights and Supply Assessment
Abstract
1. Introduction
1.1. Environmental Impacts of Cement Production
1.2. Implications of Traditional SCM Shortages for Concrete Supply Resilience
1.3. Paper Scope and Methodology
- Description and acting mechanism in concrete.
- Supplies, supply chain, and the National Aeronautics and Space Administration (NASA’s) technology readiness level (TRL).
- The performance of concrete is based on literature with a focus on three aspects: its impact on fresh properties, strength, and durability.
- Cost and environmental impacts considerations.
1.4. Literature Review Methodology
2. Potential Supplementary Cementitious Materials
2.1. Wood Ash from Biomass Combustion for Energy Generation
2.1.1. Description and Acting Mechanism in Concrete
2.1.2. Supplies, Supply Chain, and Technology Readiness Level
2.1.3. Performance in Concrete Based on Literature
Impact on Fresh Properties
Impact on Strength
Impact on Durability
2.1.4. Environmental and Cost Considerations
2.2. Natural Pozzolans with Volcanic Origin
2.2.1. Description and Acting Mechanism in Concrete
2.2.2. Supplies, Supply Chain, and Technology Readiness Level
2.2.3. Performance in Concrete Based on the Literature
Impact on Fresh Properties
Impact on Strength
Impact on Durability
2.2.4. Environmental and Cost Considerations
2.3. Sedimentary Natural Pozzolans: Clays and Diatomaceous Earth
2.3.1. Description and Acting Mechanism in Concrete
2.3.2. Supplies, Supply Chain, and Technology Readiness Level
2.3.3. Performance in Concrete Based on Literature
Impact on Fresh Properties
Impact on Strength
Impact on Durability
2.3.4. Environmental and Cost Considerations
2.4. Fine Portion of Recycled Concrete and Crushed Concrete Aggregate from Construction and Demolition Waste
2.4.1. Description and Acting Mechanism in Concrete
2.4.2. Supplies, Supply Chain, and Technology Readiness Level
2.4.3. Performance in Concrete Based on Literature
Impact on Fresh Properties
Impact on Strength
Impact on Durability
2.4.4. Environmental and Cost Considerations
2.5. Rock Dust
2.5.1. Description and Acting Mechanism in Concrete
2.5.2. Supplies, Supply Chain, and Technology Readiness Level
2.5.3. Performance in Concrete Based on Literature
Impact on Fresh Properties
Impact on Strength
Impact on Durability
2.5.4. Environmental and Cost Considerations
2.6. Municipal Solid Waste Ash (MSWA) from Post-Consumer Waste
2.6.1. Description and Acting Mechanism in Concrete
2.6.2. Supplies, Supply Chain, and Technology Readiness Level
2.6.3. Performance in Concrete Based on Literature
Impact on Fresh Properties
Impact on Strength
Impact on Durability
2.6.4. Environmental and Cost Considerations
Leachate of Heavy Metals
2.7. Municipal Wastewater Sewage Sludge Ash (SSA)
2.7.1. Description and Acting Mechanism in Concrete
2.7.2. Supplies, Supply Chain, and Technology Readiness Level
2.7.3. Performance in Concrete Based on Literature
Impact on Fresh Properties
Impact on Strength
Impact on Durability
2.7.4. Environmental and Cost Considerations
3. Nanomaterial Admixtures
3.1. Cellulose Nanocrystals and Nanofibers
3.1.1. Product Description and Acting Mechanism in Concrete
3.1.2. Supplies, Supply Chain, and Technology Readiness Level
3.1.3. Performance in Concrete Based on Literature
Impact on Fresh Properties
Impact on Strength
Impact on Durability
3.1.4. Environmental and Cost Considerations
3.2. Chitin Nanomaterials
3.2.1. Product Description and Acting Mechanism in Concrete
3.2.2. Supplies, Supply Chain, and Technology Readiness Level
3.2.3. Performance in Concrete Based on Literature
Impact on Fresh Properties
Impact on Strength and Durability
3.2.4. Environmental Considerations
3.3. Calcium–Silicate–Hydrate (C-S-H) Seeding: Description and Acting Mechanism in Concrete
3.3.1. Description and Acting Mechanism
3.3.2. Performance in Concrete Based on Literature
Impact on Hydration and Strength Development
Long-Term Strength and Microstructural Development
Suitability in Blended and Alternative Cement Systems
Comparison to Traditional Accelerators
3.3.3. Environmental and Cost Considerations
4. Discussion and Future Directions
5. Conclusions
- Most studied materials have physicochemical properties (high in silica, alumina, or calcium) and are suitable for acting as pozzolanic or hydraulic SCMs and replacing cement in concrete. Some of the studied materials, such as RCA fines or rock dust, may have low pozzolanic reactivity but are still viable as mineral fillers, which can reduce resource use in concrete while offering packing and densifying properties that enhance concrete performance.
- Most SCMs identified here, apart from natural pozzolans like pumice, perlite, zeolite, volcanic ash, and calcined clay, are primarily waste products. For example, biomass energy plant ash (380,151 tonnes annually) and municipal solid waste ash (215,229 tonnes annually) are landfilled or used in limited, low-value applications. Developing supply chains to reuse these waste products as value-added SCMs to replace OPC in concrete mixes can offer significant environmental and societal benefits. The reuse of waste materials has the potential to reduce the consumption of natural resources required to produce OPC, help preserve landfill space, and reduce methane and other emissions (to air, water, and land) in landfills. Local availability may help reduce transportation distances, local landfill use, and pollution from unregulated processing and may also help create local employment opportunities. These waste products usually have zero environmental allocation of impacts in LCA if used without additional processing and minimal transportation of construction materials. However, some may require further processing, such as washing, drying, crushing, grinding, long transportation distances, and other steps that significantly diminish their environmental benefits or even make them worse than current practice.
- Most of the materials studied were at TRL 3 or 4, meaning initial research was conducted to prove feasibility. Examples include diatomaceous earth (TRL 3), recycled concrete fines (TRL 4), and cellulose nanomaterials (TRL 4). Further laboratory testing at the concrete scale is necessary to advance these materials toward industrial-scale implementation. While materials like metakaolin (TRL 8) and natural pozzolans (TRL 8) are closer to market readiness, more demonstration and pilot projects, training, and education campaigns are needed to make their use mainstream.
- California has an abundant supply of feedstock for many of the studied materials, such as recycled concrete fines (367 million tonnes annually) and rock dust (19 million tonnes annually), which exceed the current annual demand for coal fly ash as an SCM in concrete. However, most of these materials need centralized producers for processing, treatment, testing, and certification and require distributors to make their implementation possible.
- Though admixture science and technology have shown feasibility in the research phase from nanomaterials, their mainstream production and application are behind and need more effort.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Energy Agency Cement. Available online: https://iea.org/energy-system/industry/cement (accessed on 10 August 2021).
- Miller, S.A.; Habert, G.; Myers, R.J.; Harvey, J.T. Achieving Net Zero Greenhouse Gas Emissions in the Cement Industry Via Value Chain Mitigation Strategies. One Earth 2021, 4, 1398–1411. [Google Scholar] [CrossRef]
- Imarc North America Limestone Market Size and Forecast to 2033. Available online: https://www.imarcgroup.com/north-america-limestone-market (accessed on 11 June 2025).
- State of California SB-596 Greenhouse Gases: Cement Sector: Net-Zero Emissions Strategy. Available online: https://openstates.org/ca/bills/20212022/SB596/ (accessed on 24 August 2022).
- World Business Council for Sustainable Development. Vision 2050 Energy Pathway: We Can Power a Net-Zero World; World Business Council for Sustainable Development: Geneva, Switzerland, 2021. [Google Scholar]
- International Energy Agency and World Business Council for Sustainable Development Technology Roadmap: Low-Carbon Transition in the Cement Industry-Paris, France and Geneva, Switzerland: International Energy Agency and World Business Council for Sustainable Development. Available online: https://iea.org/reports/technology-roadmap-low-carbon-transition-in-the-cement-industry (accessed on 1 December 2022).
- Portland-Limestone Cement: An Important Step Toward Zero Carbon Concrete. Available online: https://urmca.org/portland-limestone-cement-an-important-step-toward-zero-carbon-concrete/ (accessed on 13 July 2022).
- Chen, J.; Liao, Y.; Ma, F.; Tang, S. Effect of Ground Granulated Blast Furnace Slag on Hydration Characteristics of Ferrite-Rich Calcium Sulfoaluminate Cement in Seawater. J. Cent. South Univ. 2025, 32, 189–204. [Google Scholar] [CrossRef]
- Feng, W.; Li, Z.; Long, Q.; Tang, S.; Zhao, Y. Study on the Properties of Autoclaved Aerated Concrete with High Content Concrete Slurry Waste. Dev. Built Environ. 2024, 17, 100338. [Google Scholar] [CrossRef]
- Liao, Y.; Cai, Z.; Deng, F.; Ye, J.; Wang, K.; Tang, S. Hydration Behavior and Thermodynamic Modelling of Ferroaluminate Cement Blended with Steel Slag. J. Build. Eng. 2024, 97, 110833. [Google Scholar] [CrossRef]
- Sutter, L.L. Supplementary Cementitious Materials Best Practices for Concrete Pavements; Federal Highway Administration: Washington, DC, USA, 2016. [Google Scholar]
- Wong, C.L.; Mo, K.H.; Yap, S.P.; Alengaram, U.J.; Ling, T.-C. Potential Use of Brick Waste as Alternate Concrete-Making Materials: A Review. J. Clean. Prod. 2018, 195, 226–239. [Google Scholar] [CrossRef]
- Damineli, B.L.; Pileggi, R.G.; Lagerblad, B.; John, V.M. Effects of Filler Mineralogy on the Compressive Strength of Cementitious Mortars. Constr. Build. Mater. 2021, 299, 124363. [Google Scholar] [CrossRef]
- ASTM C595/C595M-20; Standard Specification for Blended Hydraulic Cements. ASTM: West Conshohocken, PA, USA, 2020.
- Davis, R.E.; Carlson, R.W.; Kelly, J.W.; Davis, H.E. Properties of Cements and Concretes Containing Fly Ash. J. Proc. 1937, 33, 577–612. [Google Scholar] [CrossRef]
- ACI Committee 232. ACI PRC-232.2-18: Report on the Use of Fly Ash in Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2018. [Google Scholar]
- American Coal Ash Association. The U.S. Fly Ash Market: Production & Utilization Forecast, 2020 ed.; American Coal Ash Association: Sandy, UT, USA, 2020. [Google Scholar]
- Sadati, S.; Moore, J. Supplementary Cementitious Materials Supply Look Ahead; California Department of Transportation: Sacramento, CA, USA, 2021. [Google Scholar]
- Callaghan, R.M. Mineral Commodity Summaries Iron and Steel Slag. 2024. Available online: https://www.sciencebase.gov/catalog/item/65a6e45fd34e5af967a46749 (accessed on 15 July 2025).
- US Energy Information Administration Annual Energy Outlook. 2022. Available online: https://eia.gov/outlooks/aeo/pdf/AEO2022_Narrative.pdf (accessed on 4 January 2023).
- Federal Buy Clean Initiative|Office of the Federal Chief Sustainability Officer. Available online: https://www.sustainability.gov/buyclean/ (accessed on 19 November 2024).
- U.S. Environmental Protection Agency. Label Program for Low Embodied Carbon Construction Materials. Available online: https://www.epa.gov/greenerproducts/label-program-low-embodied-carbon-construction-materials (accessed on 19 November 2024).
- Advancing Buy Clean Policy in Canada. Available online: https://www.globalefficiencyintel.com/advancing-buy-clean-policy-in-canada (accessed on 19 November 2024).
- Shah, I.H.; Miller, S.A.; Jiang, D.; Myers, R.J. Cement Substitution with Secondary Materials Can Reduce Annual Global CO2 Emissions by up to 1.3 Gigatons. Nat. Commun. 2022, 13, 5758. [Google Scholar] [CrossRef]
- Nassiri, S.; Butt, A.; Mateos, A.; Roy, S.; Filani, I.; Zarei, A.; Pandit, G.; Haider, M.M.; Harvey, J. Identification of Likely Alternative Supplementary Cementitious Materials in California: A Review of Supplies, Technical Performance in Concrete, Economic, and Climatic Considerations; UCPRC: Davis, CA, USA, 2023. [Google Scholar]
- Zhai, J.; Burke, I.T.; Stewart, D.I. Beneficial Management of Biomass Combustion Ashes. Renew. Sustain. Energy Rev. 2021, 151, 111555. [Google Scholar] [CrossRef]
- Munawar, M.A.; Khoja, A.H.; Naqvi, S.R.; Mehran, M.T.; Hassan, M.; Liaquat, R.; Dawood, U.F. Challenges and Opportunities in Biomass Ash Management and Its Utilization in Novel Applications. Renew. Sustain. Energy Rev. 2021, 150, 111451. [Google Scholar] [CrossRef]
- Girón, R.P.; Ruiz, B.; Fuente, E.; Gil, R.R.; Suárez-Ruiz, I. Properties of Fly Ash from Forest Biomass Combustion. Fuel 2013, 114, 71–77. [Google Scholar] [CrossRef]
- Paris, J.M.; Roessler, J.G.; Ferraro, C.C.; DeFord, H.D.; Townsend, T.G. A Review of Waste Products Utilized as Supplements to Portland Cement in Concrete. J. Clean. Prod. 2016, 121, 1–18. [Google Scholar] [CrossRef]
- Tamanna, K.; Raman, S.N.; Jamil, M.; Hamid, R. Utilization of Wood Waste Ash in Construction Technology: A Review. Constr. Build. Mater. 2020, 237, 117654. [Google Scholar] [CrossRef]
- Ukrainczyk, N.; Vrbos, N.; Koenders, E.A.B. Reuse of Woody Biomass Ash Waste in Cementitious Materials. Chem. Biochem. Eng. Q. 2016, 30, 137–148. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Matias, J.C.O.; Catalão, J.P.S. Biomass Combustion Systems: A Review on the Physical and Chemical Properties of the Ashes. Renew. Sustain. Energy Rev. 2016, 53, 235–242. [Google Scholar] [CrossRef]
- ASTM C618-23e1; Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2023. [CrossRef]
- Iskhakov, T.; Timothy, J.J.; Meschke, G. Expansion and Deterioration of Concrete Due to ASR: Micromechanical Modeling and Analysis. Cem. Concr. Res. 2019, 115, 507–518. [Google Scholar] [CrossRef]
- Mavlar, L.J. Alkali-Silica Reaction Mitigation State-of-the-Art; Naval Facilities Engineering Service Center: Port Hueneme, CA, USA, 2001. [Google Scholar]
- Folliard, K.; Thomas, M.D.A.; Kurtis, K. Guidelines for the Use of Lithium to Mitigate or Prevent ASR; Federal Highway Administration: McLean, VA, USA, 2003. [Google Scholar]
- Nixon, P.J.; Sims, I. (Eds.) RILEM Recommendations for the Prevention of Damage by Alkali-Aggregate Reactions in New Concrete Structures: State-of-the-Art Report of the RILEM Technical Committee 219-ACS; RILEM State-of-the-Art Reports; Springer: Dordrecht, The Netherlands, 2016; Volume 17, ISBN 978-94-017-7251-8. [Google Scholar]
- Saha, A.K.; Khan, M.N.N.; Sarker, P.K.; Shaikh, F.A.; Pramanik, A. The ASR Mechanism of Reactive Aggregates in Concrete and Its Mitigation by Fly Ash: A Critical Review. Constr. Build. Mater. 2018, 171, 743–758. [Google Scholar] [CrossRef]
- Gu, Y.; Dangla, P.; Martin, R.-P.; Omikrine Metalssi, O.; Fen-Chong, T. Modeling the Sulfate Attack Induced Expansion of Cementitious Materials Based on Interface-Controlled Crystal Growth Mechanisms. Cem. Concr. Res. 2022, 152, 106676. [Google Scholar] [CrossRef]
- Mehta, P.K. Sulfate Attack on Concrete: A Critical Review. In Material Science of Concrete III; The American Ceramic Society: Westerville, OH, USA, 1992. [Google Scholar]
- Neville, A. The Confused World of Sulfate Attack on Concrete. Cem. Concr. Res. 2004, 34, 1275–1296. [Google Scholar] [CrossRef]
- Rajabipour, F.; Giannini, E.; Dunant, C.; Ideker, J.H.; Thomas, M.D.A. Alkali-Silica Reaction: Current Understanding of the Reaction Mechanisms and the Knowledge Gaps. Cem. Concr. Res. 2015, 76, 130–146. [Google Scholar] [CrossRef]
- Elinwa, A.U.; Mahmood, Y.A. Ash from Timber Waste as Cement Replacement Material. Cem. Concr. Compos. 2002, 24, 219–222. [Google Scholar] [CrossRef]
- Naik, T.R.; Kraus, R.N.; McCormick, S. Recycling of Wood Ash in Cement-Based Construction Material. In Proceedings of the 4th Biennial Residue to Revenue Residual Wood Conference, Richmond, BC, Canada, 4–6 November 2001. [Google Scholar]
- Soriano, L.; Font, A.; Borrachero, M.V.; Monzó, J.M.; Payá, J.; Tashima, M.M. Biomass Ashes to Produce an Alternative Alkaline Activator for Alkali-Activated Cements. Mater. Lett. 2022, 308, 131198. [Google Scholar] [CrossRef]
- World Bioenergy Association. Global Bioenergy Statistics Report 2022. Stockholm, Sweden. Available online: https://www.worldbioenergy.org/uploads/221223%20WBA%20GBS%202022.pdf (accessed on 15 July 2025).
- California Energy Commission. Biomass Energy in California. Available online: https://www.energy.ca.gov/data-reports/california-power-generation-and-power-sources/bioenergy/biomass-energy-california (accessed on 15 July 2025).
- Governor’s Forest Management Task Force California Forest Management Task Force. California’s Wildfire and Forest Resilience Action Plan: Recommendations of the Governor’s Forest Management Task Force; California Department of Water Resources: Sacramento, CA, USA, 2021. [Google Scholar]
- International Renewable Energy Agency. Renewable Energy Statistics 2021; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2021. [Google Scholar]
- Mayhead, G.; Tittmann, P. Uncertain Future for California’s Biomass Power Plants. Calif. Agric. 2012, 66, 6–7. [Google Scholar] [CrossRef]
- Udoeyo, F.F.; Inyang, H.; Young, D.T.; Oparadu, E.E. Potential of Wood Waste Ash as an Additive in Concrete. J. Mater. Civ. Eng. 2006, 18, 605–611. [Google Scholar] [CrossRef]
- Wang, S.; Miller, A.; Llamazos, E.; Fonseca, F.; Baxter, L. Biomass Fly Ash in Concrete: Mixture Proportioning and Mechanical Properties. Fuel 2008, 87, 365–371. [Google Scholar] [CrossRef]
- Carević, I.; Baričević, A.; Štirmer, N.; Šantek Bajto, J. Correlation between Physical and Chemical Properties of Wood Biomass Ash and Cement Composites Performances. Constr. Build. Mater. 2020, 256, 119450. [Google Scholar] [CrossRef]
- Teixeira, E.R.; Camões, A.; Branco, F.G. Valorisation of Wood Fly Ash on Concrete. Resour. Conserv. Recycl. 2019, 145, 292–310. [Google Scholar] [CrossRef]
- Cheah, C.B.; Ramli, M. The Implementation of Wood Waste Ash as a Partial Cement Replacement Material in the Production of Structural Grade Concrete and Mortar: An Overview. Resour. Conserv. Recycl. 2011, 55, 669–685. [Google Scholar] [CrossRef]
- da Luz Garcia, M.; Sousa-Coutinho, J. Strength and Durability of Cement with Forest Waste Bottom Ash. Constr. Build. Mater. 2013, 41, 897–910. [Google Scholar] [CrossRef]
- Wang, S.; Baxter, L. Comprehensive Study of Biomass Fly Ash in Concrete: Strength, Microscopy, Kinetics and Durability. Fuel Process. Technol. 2007, 88, 1165–1170. [Google Scholar] [CrossRef]
- Rajamma, R.; Ball, R.J.; Tarelho, L.A.C.; Allen, G.C.; Labrincha, J.A.; Ferreira, V.M. Characterisation and Use of Biomass Fly Ash in Cement-Based Materials. J. Hazard. Mater. 2009, 172, 1049–1060. [Google Scholar] [CrossRef]
- Nassar, R.-U.-D.; Singh, N.; Varsha, S.; Sai, A.R.; Sufyan-Ud-Din, M. Strength, Electrical Resistivity and Sulfate Attack Resistance of Blended Mortars Produced with Agriculture Waste Ashes. Case Stud. Constr. Mater. 2022, 16, e00944. [Google Scholar] [CrossRef]
- ASTM C1876-19; Standard Test Method for Bulk Electrical Resistivity or Bulk Conductivity of Concrete. ASTM: West Conshohocken, PA, USA, 2019.
- Rangelov, M.; Nassiri, S. Empirical Time-Dependent Tortuosity Relations for Hydrating Mortar Mixtures Based on Modified Archie’s Law. Constr. Build. Mater. 2018, 171, 825–838. [Google Scholar] [CrossRef]
- Rangelov, M.; Nassiri, S. Sensor-Based Time-Dependent Formation Factor in Prediction of Chloride Ingress in Mortar. Mag. Concr. Res. 2019, 71, 1180–1192. [Google Scholar] [CrossRef]
- Wang, S.; Llamazos, E.; Baxter, L.; Fonseca, F. Durability of Biomass Fly Ash Concrete: Freezing and Thawing and Rapid Chloride Permeability Tests. Fuel 2008, 87, 359–364. [Google Scholar] [CrossRef]
- Nagrockienė, D.; Daugėla, A. Investigation into the Properties of Concrete Modified with Biomass Combustion Fly Ash. Constr. Build. Mater. 2018, 174, 369–375. [Google Scholar] [CrossRef]
- Rangelov, M.; Nassiri, S.; Gurung, D.; Ginn, T. Advanced Calibration of Historic Apparent Moisture Diffusivity Models for Mortar. Mater. J. 2020, 117, 65–74. [Google Scholar] [CrossRef]
- Rangelov, M.; Nassiri, S. Application of a Poromechanistic-Empirical Drying Shrinkage Modeling Approach to Structural Design of Concrete Pavements. In Proceedings of the 12th International Conference on Concrete Pavements, Virtual, 27 September–1 October 2021; pp. 663–670. [Google Scholar]
- Candamano, S.; Crea, F.; Romano, D.; Lacobini, I. Workability, Strength and Drying Shrinkage of Structural Mortar Containing Forest Biomass Ash in Partial Replacement of Cement. Adv. Mater. Res. 2014, 1051, 737–742. [Google Scholar] [CrossRef]
- Tosti, L.; van Zomeren, A.; Pels, J.R.; Damgaard, A.; Comans, R.N.J. Life Cycle Assessment of the Reuse of Fly Ash from Biomass Combustion as Secondary Cementitious Material in Cement Products. J. Clean. Prod. 2020, 245, 118937. [Google Scholar] [CrossRef]
- Fořt, J.; Šál, J.; Žák, J.; Černý, R. Assessment of Wood-Based Fly Ash as Alternative Cement Replacement. Sustainability 2020, 12, 9580. [Google Scholar] [CrossRef]
- American Concrete Institute. Report on the Use of Raw or Processed Natural Pozzolans in Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2012. [Google Scholar]
- Snellings, R.; Mertens, G.; Elsen, J. Supplementary Cementitious Materials. Rev. Mineral. Geochem. 2012, 74, 211–278. [Google Scholar] [CrossRef]
- Rashad, A.M. A Short Manual on Natural Pumice as a Lightweight Aggregate. J. Build. Eng. 2019, 25, 100802. [Google Scholar] [CrossRef]
- Seraj, S.; Cano, R.; Liu, S.; Whitney, D.; Fowler, D.; Ferron, R.; Zhu, J.; Juenger, M. Evaluating the Performance of Alternative Supplementary Cementing Material in Concrete; Fhwa/Tx-14/0-6717-1; National Technical Information Service: Springfield, VA, USA, 2014; Volume 7, 144p. [Google Scholar]
- Ragul, P.; Naga Theera Hari, M.; Arunachelam, N.; Chellapandian, M. An Experimental Study on the Partial Replacement of Fine Aggregate with Perlite in Cement Concrete. Mater. Today Proc. 2022, 68, 1219–1224. [Google Scholar] [CrossRef]
- Contrafatto, L. Volcanic Ash. In Sustainable Concrete Made with Ashes and Dust from Different Sources: Materials, Properties and Applications; Woodhead Publishing: Catania, Italy, 2022; pp. 331–418. ISBN 978-0-12-824050-2. [Google Scholar]
- Tchamdjou, W.H.J.; Grigoletto, S.; Michel, F.; Courard, L.; Cherradi, T.; Abidi, M.L. Effects of Various Amounts of Natural Pozzolans from Volcanic Scoria on Performance of Portland Cement Mortars. Int. J. Eng. Res. Afr. 2017, 32, 36–52. [Google Scholar] [CrossRef]
- al-Swaidani, A.M.; Aliyan, S.D. Effect of Adding Scoria as Cement Replacement on Durability-Related Properties. Int. J. Concr. Struct. Mater. 2015, 9, 241–254. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries 2022; U.S. Geological Survey: Reston, VA, USA, 2022. [Google Scholar]
- Elfert, R.J., Jr. Bureau of Reclamation Experiences with Fly Ash and Other Pozzolans in Concrete. In Proceedings of the Third International Ash Utilization Symposium, National Coal Association, Edison Electric Institute, American Public Power Association, National Ash Association, and Bureau of Mines, Pittsburgh, PA, USA, 13–14 March 1973; pp. 80–93. [Google Scholar]
- De Belie, N. Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials: State-of-the-Art Report of the RILEM Technical Committee 238-SCM, Working Group 4; De Belie, N., Soutsos, M., Gruyaert, E., Eds.; RILEM State-of-the-Art Reports; Springer International Publishing: Cham, Switzerland, 2018; Volume 25, ISBN 978-3-319-70605-4. [Google Scholar]
- Erdem, T.K.; Meral, Ç.; Tokyay, M.; Erdoǧan, T.Y. Use of Perlite as a Pozzolanic Addition in Producing Blended Cements. Cem. Concr. Compos. 2007, 29, 13–21. [Google Scholar] [CrossRef]
- Hossain, K.M.A.; Lachemi, M. Residual Strength and Durability of Volcanic Ash Concrete Exposed to High Temperature. ACI Mater. J. 2004, 101, 493–500. [Google Scholar] [CrossRef]
- Hossain, K.M.A. Volcanic Ash and Pumice as Cement Additives: Pozzolanic, Alkali-Silica Reaction and Autoclave Expansion Characteristics. Cem. Concr. Res. 2005, 35, 1141–1144. [Google Scholar] [CrossRef]
- Alqarni, A.S. A Comprehensive Review on Properties of Sustainable Concrete Using Volcanic Pumice Powder Ash as a Supplementary Cementitious Material. Constr. Build. Mater. 2022, 323, 126533. [Google Scholar] [CrossRef]
- Iswarya, G.; Beulah, M. Use of Zeolite and Industrial Waste Materials in High Strength Concrete—A Review. Mater. Today Proc. 2021, 46, 116–123. [Google Scholar] [CrossRef]
- Rahman, F.; Adil, W.; Raheel, M.; Saberian, M.; Li, J.; Maqsood, T. Experimental Investigation of High Replacement of Cement by Pumice in Cement Mortar: A Mechanical, Durability and Microstructural Study. J. Build. Eng. 2022, 49, 104037. [Google Scholar] [CrossRef]
- Mielenz, R.; Witte, L.; Glantz, O. Effect of Calcination on Natural Pozzolans. In Symposium on Use of Pozzolanic Materials in Mortars and Concretes; 19428-2959; ASTM International100 Barr Harbor Drive: West Conshohocken, PA, USA, 1950; pp. 43–92. ISBN 978-0-8031-5639-5. [Google Scholar]
- Vejmelková, E.; Koňáková, D.; Kulovaná, T.; Keppert, M.; Žumár, J.; Rovnaníková, P.; Keršner, Z.; Sedlmajer, M.; Černý, R. Engineering Properties of Concrete Containing Natural Zeolite as Supplementary Cementitious Material: Strength, Toughness, Durability, and Hygrothermal Performance. Cem. Concr. Compos. 2015, 55, 259–267. [Google Scholar] [CrossRef]
- Ababneh, A.; Matalkah, F. Potential Use of Jordanian Volcanic Tuffs as Supplementary Cementitious Materials. Case Stud. Constr. Mater. 2018, 8, 193–202. [Google Scholar] [CrossRef]
- Khan, K.; Amin, M.N.; Usman, M.; Imran, M.; Al-Faiad, M.A.; Shalabi, F.I. Effect of Fineness and Heat Treatment on the Pozzolanic Activity of Natural Volcanic Ash for Its Utilization as Supplementary Cementitious Materials. Crystals 2022, 12, 302. [Google Scholar] [CrossRef]
- Labbaci, Y.; Abdelaziz, Y.; Mekkaoui, A.; Alouani, A.; Labbaci, B. The Use of the Volcanic Powders as Supplementary Cementitious Materials for Environmental-Friendly Durable Concrete. Constr. Build. Mater. 2017, 133, 468–481. [Google Scholar] [CrossRef]
- Zeyad, A.M.; Tayeh, B.A.; Yusuf, M.O. Strength and Transport Characteristics of Volcanic Pumice Powder Based High Strength Concrete. Constr. Build. Mater. 2019, 216, 314–324. [Google Scholar] [CrossRef]
- Hossain, K.M.A.; Ahmed, S.; Lachemi, M. Lightweight Concrete Incorporating Pumice Based Blended Cement and Aggregate: Mechanical and Durability Characteristics. Constr. Build. Mater. 2011, 25, 1186–1195. [Google Scholar] [CrossRef]
- Tran, Y.T.; Lee, J.; Kumar, P.; Kim, K.H.; Lee, S.S. Natural Zeolite and Its Application in Concrete Composite Production. Compos. Part B Eng. 2019, 165, 354–364. [Google Scholar] [CrossRef]
- Dedeloudis, C.; Zervaki, M.; Sideris, K.; Juenger, M.; Alderete, N.; Kamali-Bernard, S.; Villagrán, Y.; Snellings, R. Natural Pozzolans. In Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials: State-of-the-Art Report of the RILEM Technical Committee 238-SCM, Working Group 4; De Belie, N., Soutsos, M., Gruyaert, E., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 181–231. ISBN 978-3-319-70606-1. [Google Scholar]
- Lemougna, P.N.; Wang, K.; Tang, Q.; Nzeukou, A.N.; Billong, N.; Melo, U.C.; Xue-min, C. Review on the Use of Volcanic Ashes for Engineering Applications. Resour. Conserv. Recycl. 2018, 137, 177–190. [Google Scholar] [CrossRef]
- Portland Cement Association. Environmental Product Declaration—Portland Cement (per ASTM C219 and Specified in ASTM C150, ASTM C1157, AASHTO M 85, or CSA A3001); Portland Cement Association: Skokie, IL, USA, 2023. [Google Scholar]
- Ito, A.; Wagai, R. Global Distribution of Clay-Size Minerals on Land Surface for Biogeochemical and Climatological Studies. Sci. Data 2017, 4, 170103. [Google Scholar] [CrossRef]
- Fernandez, R.; Martirena, F.; Scrivener, K.L. The Origin of the Pozzolanic Activity of Calcined Clay Minerals: A Comparison between Kaolinite, Illite and Montmorillonite. Cem. Concr. Res. 2011, 41, 113–122. [Google Scholar] [CrossRef]
- Ram, K.; Serdar, M.; Londono-Zuluaga, D.; Scrivener, K. The Effect of Pore Microstructure on Strength and Chloride Ingress in Blended Cement Based on Low Kaolin Clay. Case Stud. Constr. Mater. 2022, 17, e01242. [Google Scholar] [CrossRef]
- Murray, H.H. Traditional and New Applications for Kaolin, Smectite, and Palygorskite: A General Overview. Appl. Clay Sci. 2000, 17, 207–221. [Google Scholar] [CrossRef]
- Wild, S.; Khatib, J.M.; Jones, A. Relative Strength, Pozzolanic Activity and Cement Hydration in Superplasticised Metakaolin Concrete. Cem. Concr. Res. 1996, 26, 1537–1544. [Google Scholar] [CrossRef]
- Scrivener, K.; Martirena, F.; Bishnoi, S.; Maity, S. Calcined Clay Limestone Cements (LC3). Cem. Concr. Res. 2018, 114, 49–56. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Nepal, J.; Das, B.B. Properties, Compatibility, Environmental Benefits and Future Directions of Limestone Calcined Clay Cement (LC3) Concrete: A Review. J. Build. Eng. 2023, 79, 107794. [Google Scholar] [CrossRef]
- Sharma, M.; Bishnoi, S.; Martirena, F.; Scrivener, K. Limestone Calcined Clay Cement and Concrete: A State-of-the-Art Review. Cem. Concr. Res. 2021, 149, 106564. [Google Scholar] [CrossRef]
- Saidi, T.; Hasan, M. The Effect of Partial Replacement of Cement with Diatomaceous Earth (DE) on the Compressive Strength and Absorption of Mortar. J. King Saud Univ. Eng. Sci. 2022, 34, 250–259. [Google Scholar] [CrossRef]
- Bellil, A.; Aziz, A.; El Amrani El Hassani, I.-I.; Achab, M.; El Haddar, A.; Benzaouak, A. Producing of Lightweight Concrete from Two Varieties of Natural Pozzolan from the Middle Atlas (Morocco): Economic, Ecological, and Social Implications. Silicon 2021, 14, 4237–4248. [Google Scholar] [CrossRef]
- Adjaottor, A.A.; Bediako, M.; Kevern, J.T.; Gawu, S.K.Y. Feasibility Studies of Using Ghanaian-Nyamebekyere Calcined Clay as an Artificial Pozzolan. ACI Mater. J. 2019, 116, 127–132. [Google Scholar] [CrossRef]
- Cemnet International Cement Review—News, Events & Training. Available online: https://www.cemnet.com/ (accessed on 23 December 2024).
- Huang, Z.; Huang, Y.; Liao, W.; Han, N.; Zhou, Y.; Xing, F.; Sui, T.; Wang, B.; Ma, H. Development of Limestone Calcined Clay Cement Concrete in South China and Its Bond Behavior with Steel Reinforcement. J. Zhejiang Univ. Sci. A 2020, 21, 892–907. [Google Scholar] [CrossRef]
- USDA The Twelve Orders of Soil Taxonomy. Available online: http://www.nrcs.usda.gov/resources/education-and-teaching-materials/the-twelve-orders-of-soil-taxonomy (accessed on 2 December 2022).
- Bakera, A.T.; Alexander, M.G. Use of Metakaolin as Supplementary Cementitious Material in Concrete, with Focus on Durability Properties. RILEM Tech. Lett. 2019, 4, 89–102. [Google Scholar] [CrossRef]
- Habert, G.; Miller, S.A.; John, V.M.; Provis, J.L.; Favier, A.; Horvath, A.; Scrivener, K.L. Environmental Impacts and Decarbonization Strategies in the Cement and Concrete Industries. Nat. Rev. Earth Environ. 2020, 1, 559–573. [Google Scholar] [CrossRef]
- Hanein, T.; Thienel, K.C.; Zunino, F.; Marsh, A.T.M.; Maier, M.; Wang, B.; Canut, M.; Juenger, M.C.G.; Haha, M.; Avet, F.; et al. Clay Calcination Technology: State-of-the-Art Review by the RILEM TC 282-CCL. Mater. Struct. Mater. Constr. 2022, 55, 3. [Google Scholar] [CrossRef]
- Jaskulski, R.; Jóźwiak-Niedźwiedzka, D.; Yakymechko, Y. Calcined Clay as Supplementary Cementitious Material. Materials 2020, 13, 4734. [Google Scholar] [CrossRef] [PubMed]
- Cancio Díaz, Y.; Sánchez Berriel, S.; Heierli, U.; Favier, A.R.; Sánchez Machado, I.R.; Scrivener, K.L.; Martirena Hernández, J.F.; Habert, G. Limestone Calcined Clay Cement as a Low-Carbon Solution to Meet Expanding Cement Demand in Emerging Economies. Dev. Eng. 2017, 2, 82–91. [Google Scholar] [CrossRef]
- Danner, T. Reactivity of Calcined Clays. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2013. [Google Scholar]
- San Nicolas, R.; Cyr, M.; Escadeillas, G. Characteristics and Applications of Flash Metakaolins. Appl. Clay Sci. 2013, 83–84, 253–262. [Google Scholar] [CrossRef]
- Provis, J.L.; Duxson, P.; Deventer, J.S.J. The Role of Particle Technology in Developing Sustainable Construction Materials. Adv. Powder Technol. 2010, 21, 2–7. [Google Scholar] [CrossRef]
- Hou, P.; Muzenda, T.R.; Li, Q.; Chen, H.; Kawashima, S.; Sui, T.; Yong, H.; Xie, N.; Cheng, X. Mechanisms Dominating Thixotropy in Limestone Calcined Clay Cement (LC3). Cem. Concr. Res. 2021, 140, 106316. [Google Scholar] [CrossRef]
- Mota dos Santos, A.A.; Cordeiro, G.C. Investigation of Particle Characteristics and Enhancing the Pozzolanic Activity of Diatomite by Grinding. Mater. Chem. Phys. 2021, 270, 124799. [Google Scholar] [CrossRef]
- Yılmaz, B.; Ediz, N. The Use of Raw and Calcined Diatomite in Cement Production. Cem. Concr. Compos. 2008, 30, 202–211. [Google Scholar] [CrossRef]
- Mehdipour, I.; Khayat, K.H. Effect of Particle-Size Distribution and Specific Surface Area of Different Binder Systems on Packing Density and Flow Characteristics of Cement Paste. Cem. Concr. Compos. 2017, 78, 120–131. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoǧlu, M.; Özturan, T.; Mermerdaş, K. Microstructural Properties and Pozzolanic Activity of Calcined Kaolins as Supplementary Cementing Materials. Can. J. Civ. Eng. 2012, 39, 1274–1284. [Google Scholar] [CrossRef]
- Thankam, G.L.; Thurvas Renganathan, N. Ideal Supplementary Cementing Material—Metakaolin: A Review. Int. Rev. Appl. Sci. Eng. 2020, 11, 58–65. [Google Scholar] [CrossRef]
- Yue, Y.; Abdelsalam, M.; Khater, A.; Ghazy, M. A Comparative Life Cycle Assessment of Asphalt Mixtures Modified with a Novel Composite of Diatomite Powder and Lignin Fiber. Constr. Build. Mater. 2022, 323, 126608. [Google Scholar] [CrossRef]
- Zhang, M.H.; Malhotra, V.M. Characteristics of a Thermally Activated Alumino-Silicate Pozzolanic Material and Its Use in Concrete. Cem. Concr. Res. 1995, 25, 1713–1725. [Google Scholar] [CrossRef]
- Badogiannis, E.; Papadakis, V.G.; Chaniotakis, E.; Tsivilis, S. Exploitation of Poor Greek Kaolins: Strength Development of Metakaolin Concrete and Evaluation by Means of k-Value. Cem. Concr. Res. 2004, 34, 1035–1041. [Google Scholar] [CrossRef]
- Dhandapani, Y.; Sakthivel, T.; Santhanam, M.; Gettu, R.; Pillai, R.G. Mechanical Properties and Durability Performance of Concretes with Limestone Calcined Clay Cement (LC3). Cem. Concr. Res. 2018, 107, 136–151. [Google Scholar] [CrossRef]
- Al-Akhras, N.M. Durability of Metakaolin Concrete to Sulfate Attack. Cem. Concr. Res. 2006, 36, 1727–1734. [Google Scholar] [CrossRef]
- Mansour, A.M.; Al Biajawi, M.I. The Effect of the Addition of Metakaolin on the Fresh and Hardened Properties of Blended Cement Products: A Review. Mater. Today Proc. 2022, 66, 2811–2817. [Google Scholar] [CrossRef]
- Ramlochan, T.; Thomas, M.; Gruber, K.A. Effect of Metakaolin on Alkali-Silica Reaction in Concrete. Cem. Concr. Res. 2000, 30, 339–344. [Google Scholar] [CrossRef]
- ISO 14025:2006; Environmental Labels and Declarations—Type III Environmental Declarations—Principles and Procedures. International Organization for Standardization: Geneva, Switzerland, 2006.
- European Kaolin and Plastic Clays Association (KPC-Europe). Environmental Product Declaration for Kaolinite Products—Sector EPD; EPD: Leuven, Belgium, 2021; Available online: https://environdec.com/library/epd3756 (accessed on 15 July 2025).
- Snyder, M.B.; Cavalline, T.L.; Fick, G.; Taylor, P.; Gross, J. Recycling Concrete Pavement Materials: A Practitioner’s Reference Guide; National Concrete Pavement Technology Center, Iowa State University: Ames, IA, USA, 2018; 92p. [Google Scholar]
- Chen, X.; Li, Y.; Bai, H.; Ma, L. Utilization of Recycled Concrete Powder in Cement Composite: Strength, Microstructure and Hydration Characteristics. J. Renew. Mater. 2021, 9, 2189–2208. [Google Scholar] [CrossRef]
- Lu, B.; Shi, C.; Zhang, J.; Wang, J. Effects of Carbonated Hardened Cement Paste Powder on Hydration and Microstructure of Portland Cement. Constr. Build. Mater. 2018, 186, 699–708. [Google Scholar] [CrossRef]
- Tang, Q.; Ma, Z.; Wu, H.; Wang, W. The Utilization of Eco-Friendly Recycled Powder from Concrete and Brick Waste in New Concrete: A Critical Review. Cem. Concr. Compos. 2020, 114, 103807. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, M.; Duan, Z.; Liang, C.; Wu, H. Effects of Active Waste Powder Obtained from C&D Waste on the Microproperties and Water Permeability of Concrete. J. Clean. Prod. 2020, 257, 120518. [Google Scholar] [CrossRef]
- Akhtar, A.; Sarmah, A.K. Construction and Demolition Waste Generation and Properties of Recycled Aggregate Concrete: A Global Perspective. J. Clean. Prod. 2018, 186, 262–281. [Google Scholar] [CrossRef]
- EPA United States Environmental Protection Agency. Advancing Sustainable Materials Management: 2018 Fact Sheet, Assessing Trends in Materials Generation and Management in the United States; United States Environmental Protection Agency Office of Land and Emergency Management: Washington, DC, USA, 2020. [Google Scholar]
- Kaliyavaradhan, S.K.; Ling, T.-C.; Mo, K.H. Valorization of Waste Powders from Cement-Concrete Life Cycle: A Pathway to Circular Future. J. Clean. Prod. 2020, 268, 122358. [Google Scholar] [CrossRef]
- Moon, D.-J.; Moon, H.-Y.; Kim, Y.-B. Fundamental Properties of Mortar Containing Waste Concrete Powder. Geosyst. Eng. 2005, 8, 95–100. [Google Scholar] [CrossRef]
- Duan, Z.; Hou, S.; Xiao, J.; Singh, A. Rheological Properties of Mortar Containing Recycled Powders from Construction and Demolition Wastes. Constr. Build. Mater. 2020, 237, 117622. [Google Scholar] [CrossRef]
- Duan, Z.; Hou, S.; Xiao, J.; Li, B. Study on the Essential Properties of Recycled Powders from Construction and Demolition Waste. J. Clean. Prod. 2020, 253, 119865. [Google Scholar] [CrossRef]
- Quan, H.; Kasami, H. Experimental Study on the Effects of Recycled Concrete Powder on Properties of Self-Compacting Concrete. Open Civ. Eng. J. 2018, 12, 430–440. [Google Scholar] [CrossRef]
- Xiao, J.; Ma, Z.; Sui, T.; Akbarnezhad, A.; Duan, Z. Mechanical Properties of Concrete Mixed with Recycled Powder Produced from Construction and Demolition Waste. J. Clean. Prod. 2018, 188, 720–731. [Google Scholar] [CrossRef]
- Likes, L.; Markandeya, A.; Haider, M.M.; Bollinger, D.; McCloy, J.S.; Nassiri, S. Recycled Concrete and Brick Powders as Supplements to Portland Cement for More Sustainable Concrete. J. Clean. Prod. 2022, 364, 132651. [Google Scholar] [CrossRef]
- Sun, C.; Chen, L.; Xiao, J.; Singh, A.; Zeng, J. Compound Utilization of Construction and Industrial Waste as Cementitious Recycled Powder in Mortar. Resour. Conserv. Recycl. 2021, 170, 105561. [Google Scholar] [CrossRef]
- Vulcan Materials Company. Environmental Product Declaration for 12 Concrete Aggregate Products Manufactured by Vulcan Materials Company at Their Pleasanton, California Sand and Gravel Facility; Vulcan Materials Company: Glendale, CA, USA, 2017. [Google Scholar]
- Graniterock. Environmental Product Declaration for the Construction Aggregate Produced at 2 Graniterock Facilities; EPD, Graniterock: Watsonville, CA, USA, 2018; Available online: https://www.nrmca.org/wp-content/uploads/2019/10/Graniterock_EPD2018-07-03.pdf (accessed on 15 July 2025).
- Gastaldi, D.; Canonico, F.; Capelli, L.; Buzzi, L.; Boccaleri, E.; Irico, S. An Investigation on the Recycling of Hydrated Cement from Concrete Demolition Waste. Cem. Concr. Compos. 2015, 61, 29–35. [Google Scholar] [CrossRef]
- Kwon, E.; Ahn, J.; Cho, B.; Park, D. A Study on Development of Recycled Cement Made from Waste Cementitious Powder. Constr. Build. Mater. 2015, 83, 174–180. [Google Scholar] [CrossRef]
- Gowda, M.R.; Narasimhan, M.C.; Karisiddappa, N. Development and Study of the Strength of Self-Compacting Mortar Mixes Using Local Materials. J. Mater. Civ. Eng. 2011, 23, 526–532. [Google Scholar] [CrossRef]
- Cohen, E.; Peled, A.; Bar-Nes, G. Dolomite-Based Quarry-Dust as a Substitute for Fly-Ash Geopolymers and Cement Pastes. J. Clean. Prod. 2019, 235, 910–919. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiu, J.; Xing, J.; Sun, X. Recycling of Quarry Dust for Supplementary Cementitious Materials in Low Carbon Cement. Constr. Build. Mater. 2020, 237, 117608. [Google Scholar] [CrossRef]
- Aliyu, M.M.; Nuruddeen, M.M.; Nura, Y.A. The Use of Quarry Dust for Partial Replacement of Cement in Cement-Sand Mortar. FUDMA J. Sci. 2021, 4, 432–437. [Google Scholar] [CrossRef]
- Medina, G.; Sáez del Bosque, I.F.; Frías, M.; Sánchez de Rojas, M.I.; Medina, C. Durability of New Recycled Granite Quarry Dust-Bearing Cements. Constr. Build. Mater. 2018, 187, 414–425. [Google Scholar] [CrossRef]
- Zhao, Y.; Goulias, D.; Dobiszewska, M.; Modrzyński, P. Life-Cycle Sustainability Assessment of Using Rock Dust as a Partial Replacement of Fine Aggregate and Cement in Concrete Pavements. Sustainability 2022, 14, 12449. [Google Scholar] [CrossRef]
- Yang, R.; Yu, R.; Shui, Z.; Gao, X.; Xiao, X.; Fan, D.; Chen, Z.; Cai, J.; Li, X.; He, Y. Feasibility Analysis of Treating Recycled Rock Dust as an Environmentally Friendly Alternative Material in Ultra-High Performance Concrete (UHPC). J. Clean. Prod. 2020, 258, 120673. [Google Scholar] [CrossRef]
- USGS Diatomite Statistics and Information|U.S. Geological Survey. Available online: https://www.usgs.gov/centers/national-minerals-information-center/diatomite-statistics-and-information (accessed on 25 April 2022).
- U.S. Environmental Protection Agency (EPA) Hot Mix Asphalt Plants. Available online: https://www3.epa.gov/ttnchie1/ap42/ch11/final/c11s01.pdf?utm_source=chatgpt.com (accessed on 22 December 2024).
- Rahim, N.H.A.; Norhana, A.R.; Kartini, K. Compressive Strength and Rebound Number of Quarry Dust Fine Powder (QDFP) Concrete. In Proceedings of the 2011 National Postgraduate Conference, Perak, Malaysia, 19–20 September 2011; pp. 1–4. [Google Scholar]
- Rajagopalan, S.R.; Kang, S.-T. Evaluation of Sulfate Resistance of Cement Mortars with the Replacement of Fine Stone Powder. J. Mater. Cycles Waste Manag. 2021, 23, 1995–2004. [Google Scholar] [CrossRef]
- Basu, P.; Thomas, B.S.; Chandra Gupta, R.; Agrawal, V. Strength, Permeation, Freeze-Thaw Resistance, and Microstructural Properties of Self-Compacting Concrete Containing Sandstone Waste. J. Clean. Prod. 2021, 305, 127090. [Google Scholar] [CrossRef]
- Chesner, W.; Collins, R.; MacKay, M.; Emery, J. User Guidelines for Waste and Byproduct Materials in Pavement Construction—FHWA-RD-97-148; Federal Highway Administration Turner-Fairbank Highway Research Center: McLean, VA, USA, 2002. [Google Scholar]
- Li, J.; Mavrodi, D.V.; Dong, Y. Effect of Rock Dust-Amended Compost on the Soil Properties, Soil Microbial Activity, and Fruit Production in an Apple Orchard from the Jiangsu Province of China. Arch. Agron. Soil Sci. 2021, 67, 1313–1326. [Google Scholar] [CrossRef]
- Rock Dust and Clay Minerals for Remineralization. Rock Phosphate, Granulated Fertilizer, OMRI Listed. Available online: https://rockdustlocal.com/uploads/3/4/3/4/34349856/rock_dust_local_smart_farm_price_sheet12021.pdf (accessed on 15 July 2025).
- Siddique, R. Use of Municipal Solid Waste Ash in Concrete. Resour. Conserv. Recycl. 2010, 55, 83–91. [Google Scholar] [CrossRef]
- Che Amat, R.; Ismail, K.N.; Ibrahim, N.M.; Malek, R.A.; Ahmad, K.R. Use of Municipal Solid Waste Incineration Bottom Ash and Rice Husk Ash as Blended Cement. Key Eng. Mater. 2022, 908, 664–671. [Google Scholar] [CrossRef]
- Tyrer, M. Municipal Solid Waste Incinerator (MSWI) Concrete; Woodhead Publishing: Cambridge, UK, 2013; ISBN 9780857094247. [Google Scholar]
- Wu, K.; Shi, H.; Guo, X. Utilization of Municipal Solid Waste Incineration Fly Ash for Sulfoaluminate Cement Clinker Production. Waste Manag. 2011, 31, 2001–2008. [Google Scholar] [CrossRef]
- Clavier, K.A.; Watts, B.; Liu, Y.; Ferraro, C.C.; Townsend, T.G. Risk and Performance Assessment of Cement Made Using Municipal Solid Waste Incinerator Bottom Ash as a Cement Kiln Feed. Resour. Conserv. Recycl. 2019, 146, 270–279. [Google Scholar] [CrossRef]
- Joseph, A.M.; Snellings, R.; Van den Heede, P.; Matthys, S.; De Belie, N. The Use of Municipal Solidwaste Incineration Ash in Various Building Materials: A Belgian Point of View. Materials 2018, 11, 141. [Google Scholar] [CrossRef]
- Silva, P.R.; Silva, R.V.; de Brito, J. Mechanical Properties of Recycled Aggregate Concrete with Bottom Ash Additions; Woodhead Publishing: Cambridge, UK, 2022; Volume 1, ISBN 9780128241059. [Google Scholar]
- The World Bank Trends in Solid Waste Management. Available online: https://datatopics.worldbank.org/what-a-waste/trends_in_solid_waste_management.html (accessed on 10 December 2024).
- Ashraf, M.S.; Ghouleh, Z.; Shao, Y. Production of Eco-Cement Exclusively from Municipal Solid Waste Incineration Residues. Resour. Conserv. Recycl. 2019, 149, 332–342. [Google Scholar] [CrossRef]
- Wang, L.; Jin, Y.; Nie, Y. Investigation of Accelerated and Natural Carbonation of MSWI Fly Ash with a High Content of Ca. J. Hazard. Mater. 2010, 174, 334–343. [Google Scholar] [CrossRef]
- Gao, X.; Wang, W.; Ye, T.; Wang, F.; Lan, Y. Utilization of Washed MSWI Fly Ash as Partial Cement Substitute with the Addition of Dithiocarbamic Chelate. J. Environ. Manag. 2008, 88, 293–299. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, E.H. Early Age Hydration of Blended Cement with Different Size Fractions of Municipal Solid Waste Incineration Bottom Ash. Constr. Build. Mater. 2017, 156, 880–890. [Google Scholar] [CrossRef]
- Bertolini, L.; Carsana, M.; Cassago, D.; Quadrio Curzio, A.; Collepardi, M. MSWI Ashes as Mineral Additions in Concrete. Cem. Concr. Res. 2004, 34, 1899–1906. [Google Scholar] [CrossRef]
- Yang, Z.; Ji, R.; Liu, L.; Wang, X.; Zhang, Z. Recycling of Municipal Solid Waste Incineration By-Product for Cement Composites Preparation. Constr. Build. Mater. 2018, 162, 794–801. [Google Scholar] [CrossRef]
- Tang, P.; Chen, W.; Xuan, D.; Zuo, Y.; Poon, C.S. Investigation of Cementitious Properties of Different Constituents in Municipal Solid Waste Incineration Bottom Ash as Supplementary Cementitious Materials. J. Clean. Prod. 2020, 258, 120675. [Google Scholar] [CrossRef]
- Cheng, A. Effect of Incinerator Bottom Ash Properties on Mechanical and Pore Size of Blended Cement Mortars. Mater. Des. 2012, 36, 859–864. [Google Scholar] [CrossRef]
- Juenger, M.C.G.; Snellings, R.; Bernal, S.A. Supplementary Cementitious Materials: New Sources, Characterization, and Performance Insights. Cem. Concr. Res. 2019, 122, 257–273. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Carcelen-Taboada, V.; Fernández-Jiménez, A.; Palomo, A. Manufacture of Hybrid Cements with Fly Ash and Bottom Ash from a Municipal Solid Waste Incinerator. Constr. Build. Mater. 2016, 105, 218–226. [Google Scholar] [CrossRef]
- Verbinnen, B.; Billen, P.; Van Caneghem, J.; Vandecasteele, C. Recycling of MSWI Bottom Ash: A Review of Chemical Barriers, Engineering Applications and Treatment Technologies. Waste Biomass Valor. 2017, 8, 1453–1466. [Google Scholar] [CrossRef]
- Jurič, B.; Hanžič, L.; Ilić, R.; Samec, N. Utilization of Municipal Solid Waste Bottom Ash and Recycled Aggregate in Concrete. Waste Manag. 2006, 26, 1436–1442. [Google Scholar] [CrossRef] [PubMed]
- Li, J. Municipal Solid Waste Incineration Ash-Incorporated Concrete: One Step towards Environmental Justice. Buildings 2021, 11, 495. [Google Scholar] [CrossRef]
- Li, X.-G.; Lv, Y.; Ma, B.-G.; Chen, Q.-B.; Yin, X.-B.; Jian, S.-W. Utilization of Municipal Solid Waste Incineration Bottom Ash in Blended Cement. J. Clean. Prod. 2012, 32, 96–100. [Google Scholar] [CrossRef]
- de Bertoldi, M.; Vallini, G.; Pera, A. The Biology of Composting: A Review. Waste Manag. Res. 1983, 1, 157–176. [Google Scholar] [CrossRef]
- Khalil, A.I.; Hassouna, M.S.; El-Ashqar, H.M.A.; Fawzi, M. Changes in Physical, Chemical and Microbial Parameters during the Composting of Municipal Sewage Sludge. World J. Microbiol. Biotechnol. 2011, 27, 2359–2369. [Google Scholar] [CrossRef]
- Lynn, C.J.; Dhir, R.K.; Ghataora, G.S.; West, R.P. Sewage Sludge Ash Characteristics and Potential for Use in Concrete. Constr. Build. Mater. 2015, 98, 767–779. [Google Scholar] [CrossRef]
- Baeza, F.; Payá, J.; Galao, O.; Saval, J.M.; Garcés, P. Blending of Industrial Waste from Different Sources as Partial Substitution of Portland Cement in Pastes and Mortars. Constr. Build. Mater. 2014, 66, 645–653. [Google Scholar] [CrossRef]
- Hosseinzadeh Zaribaf, B. Metakaolin-Portland Limestone Cements: Evaluating the Effects of Chemical Admixtures on Early and Late Age Behavior. Ph.D. Thesis, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 2017. Available online: http://hdl.handle.net/1853/60123 (accessed on 15 July 2025).
- Cyr, M.; Coutand, M.; Clastres, P. Technological and Environmental Behavior of Sewage Sludge Ash (SSA) in Cement-Based Materials. Cem. Concr. Res. 2007, 37, 1278–1289. [Google Scholar] [CrossRef]
- Dyer, T.D.; Halliday, J.E.; Dhir, R.K. Hydration Chemistry of Sewage Sludge Ash Used as a Cement Component. J. Mater. Civ. Eng. 2011, 23, 648–655. [Google Scholar] [CrossRef]
- Jamshidi, M.; Jamshidi, A.; Mehrdadi, N.; Pacheco-Torgal, F. Mechanical Performance and Capillary Water Absorption of Sewage Sludge Ash Concrete (SSAC). Int. J. Sustain. Eng. 2012, 5, 228–234. [Google Scholar] [CrossRef]
- Pan, S.C.; Tseng, D.H.; Lee, C.C.; Lee, C. Influence of the Fineness of Sewage Sludge Ash on the Mortar Properties. Cem. Concr. Res. 2003, 33, 1749–1754. [Google Scholar] [CrossRef]
- Pérez-Carrión, M.; Baeza-Brotons, F.; Payá, J.; Saval, J.M.; Zornoza, E.; Borrachero, M.V.; Garcés, P. Potential Use of Sewage Sludge Ash (SSA) as a Cementreplacement in Precast Concrete Blocks. Mater. Constr. 2014, 64, 33. [Google Scholar] [CrossRef]
- Anderson, M.; Skerratt, R.G. Variability Study of Incinerated Sewage Sludge Ash in Relation to Future Use in Ceramic Brick Manufacture. Br. Ceram. Trans. 2003, 102, 109–113. [Google Scholar] [CrossRef]
- Tenza-Abril, A.J.; Savel, J.M.; Cuenca, A. Using Sewage-Sludge Ash as Filler in Bituminous Mixes. J. Mater. Civ. Eng. 2014, 27, 04014141. [Google Scholar] [CrossRef]
- Payá, J.; Monzó, J.; Borrachero, M.V.; Soriano, L. Sewage Sludge Ash. In New Trends in Eco-Efficient and Recycled Concrete; Woodhead Publishing: Cambridge, UK, 2018; pp. 121–152. [Google Scholar]
- Donatello, S.; Tyrer, M.; Cheeseman, C.R. Comparison of Test Methods to Assess Pozzolanic Activity. Cem. Concr. Compos. 2010, 32, 121–127. [Google Scholar] [CrossRef]
- Tantawy, M.A.; El-Roudi, A.M.; Abdalla, E.M.; Abdelzaher, M.A. Evaluation of the Pozzolanic Activity of Sewage Sludge Ash. ISRN Chem. Eng. 2012, 2012, 487037. [Google Scholar] [CrossRef]
- Feng, J.; Burke, I.T.; Chen, X.; Stewart, D.I. Assessing Metal Contamination and Speciation in Sewage Sludge: Implications for Soil Application and Environmental Risk. Rev. Environ. Sci. Biotechnol. 2023, 22, 1037–1058. [Google Scholar] [CrossRef]
- Clack, K.; Rajagopal, D.; Hoek, E.M.V. Life Cycle and Techno-Economic Assessment of Bioresource Production from Wastewater. NPJ Clean Water 2024, 7, 22. [Google Scholar] [CrossRef]
- Murakami, T.; Suzuki, Y.; Nagasawa, H.; Yamamoto, T.; Koseki, T.; Hirose, H.; Okamoto, S. Combustion Characteristics of Sewage Sludge in an Incineration Plant for Energy Recovery. Fuel Process. Technol. 2009, 90, 778–783. [Google Scholar] [CrossRef]
- CalRecycle Biosolids: Organic Materials Management. Available online: https://calrecycle.ca.gov/organics/biosolids/ (accessed on 9 March 2023).
- Wallace, J. Reworld to Shut down California’s Last MSW Incinerator. Available online: https://www.wastedive.com/news/reworld-stanislaus-county-covanta-facility-closure/729174/ (accessed on 19 January 2025).
- Tay, J.H.; Show, K.Y. Municipal Wastewater Sludge as Cementitious and Blended Cement Materials. Cem. Concr. Compos. 1994, 16, 39–48. [Google Scholar] [CrossRef]
- Bhatty, J.I.; Reid, K.J. Lightweight Aggregates from Incinerated Sludge Ash. Waste Manag. Res. J. Sustain. Circ. Econ. 1989, 7, 363–376. [Google Scholar] [CrossRef]
- Morais, L.C.; Dweck, J.; Gonçalves, E.M.; Büchler, P.M. An Experimental Study of Sewage Sludge Incineration. Environ. Technol. 2006, 27, 1047–1051. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.L.; Chang, W.C.; Lin, D.F.; Luo, H.L.; Tsai, M.C. Effects of Nano-SiO2 and Different Ash Particle Sizes on Sludge Ash-Cement Mortar. J. Environ. Manag. 2008, 88, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; Brito, J.; Dhir, R.K. Use of Recycled Aggregates Arising from Construction and Demolition Waste in New Construction Applications. J. Clean. Prod. 2019, 236, 117629. [Google Scholar] [CrossRef]
- Chang, F.C.; Lin, J.D.; Tsai, C.C.; Wang, K.S. Study on Cement Mortar and Concrete Made with Sewage Sludge Ash. Water Sci. Technol. 2010, 62, 1689–1693. [Google Scholar] [CrossRef]
- Garcés, P.; Pérez Carrión, M.; García-Alcocel, E.; Payá, J.; Monzó, J.; Borrachero, M.V. Mechanical and Physical Properties of Cement Blended with Sewage Sludge Ash. Waste Manag. 2008, 28, 2495–2502. [Google Scholar] [CrossRef]
- Chen, M.; Blanc, D.; Gautier, M.; Mehu, J.; Gourdon, R. Environmental and Technical Assessments of the Potential Utilization of Sewage Sludge Ashes (SSAs) as Secondary Raw Materials in Construction. Waste Manag. 2013, 33, 1268–1275. [Google Scholar] [CrossRef]
- Guo, S.; Dong, R.; Chang, Z.; Xie, Y.; Chen, G.; Long, G. Performance and Microstructure of Sustainable Cementitious Materials Mixed by Municipal Sewage Sludge Ash, Slag, and Fly Ash. Constr. Build. Mater. 2023, 367, 130028. [Google Scholar] [CrossRef]
- Lin, D.F.; Lin, K.L.; Luo, H.L. A Comparison between Sludge Ash and Fly Ash on the Improvement in Soft Soil. J. Air Waste Manag. Assoc. 2007, 57, 59–64. [Google Scholar] [CrossRef]
- Barbosa, R.; Lapa, N.; Dias, D.; Mendes, B. Concretes Containing Biomass Ashes: Mechanical, Chemical, and Ecotoxic Performances. Constr. Build. Mater. 2013, 48, 457–463. [Google Scholar] [CrossRef]
- Lin, K.L.; Chiang, K.Y.; Lin, C.Y. Hydration Characteristics of Waste Sludge Ash That Is Reused in Eco-Cement Clinkers. Cem. Concr. Res. 2005, 35, 1074–1081. [Google Scholar] [CrossRef]
- Werther, J.; Ogada, T. Sewage Sludge Combustion. Prog. Energy Combust. Sci. 1999, 25, 55–116. [Google Scholar] [CrossRef]
- Rutkowska, G.; Wichowski, P.; Fronczyk, J.; Franus, M.; Chalecki, M. Use of Fly Ashes from Municipal Sewage Sludge Combustion in Production of Ash Concretes. Constr. Build. Mater. 2018, 188, 874–883. [Google Scholar] [CrossRef]
- Oliva, M.; Vargas, F.; Lopez, M. Designing the Incineration Process for Improving the Cementitious Performance of Sewage Sludge Ash in Portland and Blended Cement Systems. J. Clean. Prod. 2019, 223, 1029–1041. [Google Scholar] [CrossRef]
- Nassiri, S.; Chen, Z.; Jian, G.; Zhong, T.; Haider, M.M.; Li, H.; Fernandez, C.; Sinclair, M.; Varga, T.; Fifield, L.S.; et al. Comparison of Unique Effects of Two Contrasting Types of Cellulose Nanomaterials on Setting Time, Rheology, and Compressive Strength of Cement Paste. Cem. Concr. Compos. 2021, 123, 104201. [Google Scholar] [CrossRef]
- Flores; Kamali, M.; Ghahremaninezhad, A. An Investigation into the Properties and Microstructure of Cement Mixtures Modified with Cellulose Nanocrystal. Materials 2017, 10, 498. [Google Scholar] [CrossRef]
- Cao, Y.; Zavaterri, P.; Youngblood, J.; Moon, R.; Weiss, J. The Influence of Cellulose Nanocrystal Additions on the Performance of Cement Paste. Cem. Concr. Compos. 2015, 56, 73–83. [Google Scholar] [CrossRef]
- Rebouillat, S.; Pla, F. State of the Art Manufacturing and Engineering of Nanocellulose: A Review of Available Data and Industrial Applications. J. Biomater. Nanobiotechnol. 2013, 4, 165–188. [Google Scholar] [CrossRef]
- Zhong, T.; Dhandapani, R.; Liang, D.; Wang, J.; Wolcott, M.P.; Van Fossen, D.; Liu, H. Nanocellulose from Recycled Indigo-Dyed Denim Fabric and Its Application in Composite Films. Carbohydr. Polym. 2020, 240, 116283. [Google Scholar] [CrossRef] [PubMed]
- Klemm, D.; Cranston, E.D.; Fischer, D.; Gama, M.; Kedzior, S.A.; Kralisch, D.; Kramer, F.; Kondo, T.; Lindström, T.; Nietzsche, S.; et al. Nanocellulose as a Natural Source for Groundbreaking Applications in Materials Science: Today’s State. Mater. Today 2018, 21, 720–748. [Google Scholar] [CrossRef]
- USDA Nanotechnology. 2023. Available online: https://research.fs.usda.gov/fpl/forestproducts/nanotechnology (accessed on 15 July 2025).
- Kruger Inc. The FiloCell Advantage—Biomaterials—Kruger Inc. Biomaterials. Available online: https://biomaterials.kruger.com/products/the-filocell-advantage/ (accessed on 15 July 2025).
- Sappi From Chemical to Natural. Available online: https://cdn-s3.sappi.com/s3fs-public/Sappi%20Valida%20Concrete%20Brochure.pdf (accessed on 24 December 2024).
- CelluForce Nanocellulose & Nanocrystalline Cellulose Supplier. Available online: https://celluforce.com/ (accessed on 24 December 2024).
- American Process|Biorefinery Technologies and Solutions. Available online: https://americanprocess.com/BiorefineryTechnologiesAndSolutions.aspx (accessed on 24 December 2024).
- Blue Goose Biorefineries Inc. Products. Available online: https://bluegoosebiorefineries.com/product/ (accessed on 24 December 2024).
- Innotech Materials. Available online: https://www.innotechmaterials.com/ (accessed on 24 December 2024).
- Mejdoub, R.; Hammi, H.; Suñol, J.J.; Khitouni, M.; M‘nif, A.; Boufi, S. Nanofibrillated Cellulose as Nanoreinforcement in Portland Cement: Thermal, Mechanical and Microstructural Properties. J. Compos. Mater. 2017, 51, 2491–2503. [Google Scholar] [CrossRef]
- Montes, F.; Fu, T.; Youngblood, J.P.; Weiss, J. Rheological Impact of Using Cellulose Nanocrystals (CNC) in Cement Pastes. Constr. Build. Mater. 2020, 235, 117497. [Google Scholar] [CrossRef]
- Moreno, R. Colloidal Processing of Ceramics and Composites. Adv. Appl. Ceram. 2012, 111, 246–253. [Google Scholar] [CrossRef]
- Tang, Z.; Huang, R.; Mei, C.; Sun, X.; Zhou, D.; Zhang, X.; Wu, Q. Influence of Cellulose Nanoparticles on Rheological Behavior of Oil Well Cement-Water Slurries. Materials 2019, 12, 291. [Google Scholar] [CrossRef]
- Kamasamudram, K.S.; Ashraf, W.; Landis, E.N.; Khan, R.I. Effects of Ligno- and Delignified- Cellulose Nanofibrils on the Performance of Cement-Based Materials. J. Mater. Res. Technol. 2021, 13, 321–335. [Google Scholar] [CrossRef]
- Hisseine, O.A.; Omran, A.F.; Tagnit-Hamou, A. Influence of Cellulose Filaments on Cement Paste and Concrete. J. Mater. Civ. Eng. 2018, 30, 4018109. [Google Scholar] [CrossRef]
- Oh, J.-A.; Aakyiir, M.; Liu, Y.; Qiu, A.; Meola, T.R.; Forson, P.; Araby, S.; Zhuge, Y.; Lee, S.-H.; Ma, J. Durable Cement/Cellulose Nanofiber Composites Prepared by a Facile Approach. Cem. Concr. Compos. 2022, 125, 104321. [Google Scholar] [CrossRef]
- Nasir, M.; Aziz, M.A.; Zubair, M.; Ashraf, N.; Hussein, T.N.; Allubli, M.K.; Manzar, M.S.; Al-Kutti, W.; Al-Harthi, M.A. Engineered Cellulose Nanocrystals-Based Cement Mortar from Office Paper Waste: Flow, Strength, Microstructure, and Thermal Properties. J. Build. Eng. 2022, 51, 104345. [Google Scholar] [CrossRef]
- Barnat-Hunek, D.; Szymańska-Chargot, M.; Jarosz-Hadam, M.; Łagód, G. Effect of Cellulose Nanofibrils and Nanocrystals on Physical Properties of Concrete. Constr. Build. Mater. 2019, 223, 1–11. [Google Scholar] [CrossRef]
- Barnat-Hunek, D.; Grzegorczyk-Frańczak, M.; Szymańska-Chargot, M.; Łagód, G. Effect of Eco-Friendly Cellulose Nanocrystals on Physical Properties of Cement Mortars. Polymers 2019, 11, 2088. [Google Scholar] [CrossRef]
- Goncalves, J.; Boluk, Y.; Bindiganavile, V. Cellulose Nanofibres Mitigate Chloride Ion Ingress in Cement-Based Systems. Cem. Concr. Compos. 2020, 114, 103780. [Google Scholar] [CrossRef]
- Haque, M.I.; Ashraf, W.; Khan, R.I.; Shah, S. A Comparative Investigation on the Effects of Nanocellulose from Bacteria and Plant-Based Sources for Cementitious Composites. Cem. Concr. Compos. 2022, 125, 104316. [Google Scholar] [CrossRef]
- Feng, H.; Su, Y.; Guo, A.; Zhou, Z.; Yu, Z.; Guo, Z.; Sun, Z. Capillary Water Transport Performance of Cellulose Nanocrystal Modified Cement/Fly Ash Pastes with Various Water/Binder Ratios. Constr. Build. Mater. 2024, 450, 138694. [Google Scholar] [CrossRef]
- Li, Q.; McGinnis, S.; Sydnor, C.; Wong, A.; Renneckar, S. Nanocellulose Life Cycle Assessment. ACS Sustain. Chem. Eng. 2013, 1, 919–928. [Google Scholar] [CrossRef]
- Arvidsson, R.; Nguyen, D.; Svanström, M. Life Cycle Assessment of Cellulose Nanofibrils Production by Mechanical Treatment and Two Different Pretreatment Processes. Environ. Sci. Technol. 2015, 49, 6881–6890. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.J.; Shatkin, J.A.; Nelson, K.; Ede, J.D.; Retsina, T. Establishing the Safety of Novel Bio-Based Cellulose Nanomaterials for Commercialization. NanoImpact 2017, 6, 19–29. [Google Scholar] [CrossRef]
- Kane, S.; Miller, S.A.; Kurtis, K.E.; Youngblood, J.P.; Landis, E.N.; Weiss, W.J. Harmonized Life-Cycle Inventories of Nanocellulose and Its Application in Composites. Environ. Sci. Technol. 2023, 57, 19137–19147. [Google Scholar] [CrossRef]
- Hohenthal, C.; Ovaskainen, M.; Bussini, D.; Sadocco, P.; Pajula, T.; Lehtinen, H.; Kautto, J.; Salmenkivi, K. Final Assessment of Nano Enhanced New Products. In SUNPAP (Scale-Up Nanoparticles in Modern Papermaking); Funded by European Community’s 7th Frame Work Programme Under Grant Agreement N° 228802; VTT Technical Research Centre of Finland; CTT Technical Research Center of Finland, InnovHub-SSCCP, Poyry Management Consulting Oy.: Espoo, Finland, 2012. [Google Scholar]
- De Figueirêdo, M.C.B.; De Freitas Rosa, M.; Lie Ugaya, C.M.; De Souza Filho, M.D.S.M.; Da Silva Braid, A.C.C.; De Melo, L.F.L. Life Cycle Assessment of Cellulose Nanowhiskers. J. Clean. Prod. 2012, 35, 130–139. [Google Scholar] [CrossRef]
- Piccinno, F.; Hischier, R.; Seeger, S.; Som, C. Life Cycle Assessment of a New Technology to Extract, Functionalize and Orient Cellulose Nanofibers from Food Waste. ACS Sustain. Chem. Eng. 2015, 3, 1047–1055. [Google Scholar] [CrossRef]
- Do Nascimento, D.M.; Almeida, J.S.; Vale, M.D.S.; Leitão, R.C.; Muniz, C.R.; de Figueirêdo, M.C.B.; Morais, J.P.S.; de Rosa, M.F. A Comprehensive Approach for Obtaining Cellulose Nanocrystal from Coconut Fiber. Part I: Proposition of Technological Pathways. Ind. Crops Prod. 2016, 93, 66–75. [Google Scholar] [CrossRef]
- Gu, H.; Reiner, R.; Bergman, R.; Rudie, A. LCA Study for Pilot Scale Production of Cellulose Nano Crystals (CNC) from Wood Pulp. In Proceedings of the Proceedings from the LCA XV Conference, Vancouver, BC, Canada, 6–8 October 2015; pp. 33–42. [Google Scholar]
- Dave, U.; Somanader, E.; Baharlouei, P.; Pham, L.; Rahman, M.A. Applications of Chitin in Medical, Environmental, and Agricultural Industries. J. Mar. Sci. Eng. 2021, 9, 1173. [Google Scholar] [CrossRef]
- Elieh-Ali-Komi, D.; Hamblin, M.R. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. Int. J. Adv. Res. 2016, 4, 411–427. [Google Scholar]
- Reshad, R.A.I.; Jishan, T.A.; Chowdhury, N.N. Chitosan and Its Broad Applications: A Brief Review. J. Clin. Exp. Investig. 2021, 12, 4. [Google Scholar] [CrossRef]
- Gopakumar, D.A.; Pai, A.R.; Pasquini, D.; Ben, L.S.Y.; HPS, A.K.; Thomas, S. Nanomaterials—State of Art, New Challenges, and Opportunities. In Nanoscale Materials in Water Purification; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–24. [Google Scholar] [CrossRef]
- Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110, 3479–3500. [Google Scholar] [CrossRef]
- Dufresne, A. Cellulose Nanomaterial Reinforced Polymer Nanocomposites. Curr. Opin. Colloid Interface Sci. 2017, 29, 1–8. [Google Scholar] [CrossRef]
- Zhong, T.; Jian, G.; Chen, Z.; Wolcott, M.; Nassiri, S.; Fernandez, C.A. Interfacial Interactions and Reinforcing Mechanisms of Cellulose and Chitin Nanomaterials and Starch Derivatives for Cement and Concrete Strength and Durability Enhancement: A Review. Nanotechnol. Rev. 2022, 11, 2673–2713. [Google Scholar] [CrossRef]
- Haider, M.M.; Jian, G.; Zhong, T.; Li, H.; Fernandez, C.A.; Fifield, L.S.; Wolcott, M.; Nassiri, S. Insights into Setting Time, Rheological and Mechanical Properties of Chitin Nanocrystals- and Chitin Nanofibers-Cement Paste. Cem. Concr. Compos. 2022, 132, 104623. [Google Scholar] [CrossRef]
- Santos, V.P.; Marques, N.S.S.; Maia, P.C.S.V.; Lima, M.A.B.; de Oliveira Franco, L.; Campos-Takaki, G.M. Seafood Waste as Attractive Source of Chitin and Chitosan Production and Their Applications. Int. J. Mol. Sci. 2020, 21, 4290. [Google Scholar] [CrossRef]
- Maschmeyer, T.; Luque, R.; Selva, M. Upgrading of Marine (Fish and Crustaceans) Biowaste for High Added-Value Molecules and Bio(Nano)-Materials. Chem. Soc. Rev. 2020, 49, 4527–4563. [Google Scholar] [CrossRef] [PubMed]
- Kurita, K. Chemistry and Application of Chitin and Chitosan. Polym. Degrad. Stab. 1998, 59, 117–120. [Google Scholar] [CrossRef]
- Zhong, T.; Wolcott, M.P.; Liu, H.; Wang, J. Developing Chitin Nanocrystals for Flexible Packaging Coatings. Carbohydr. Polym. 2019, 226, 115276. [Google Scholar] [CrossRef]
- Yan, N.; Chen, X. Sustainability: Don’t Waste Seafood Waste. Nature 2015, 524, 155–157. [Google Scholar] [CrossRef]
- Pighinelli, L. Methods of Chitin Production a Short Review. Am. J. Biomed. Sci. Res. 2019, 3, 307–314. [Google Scholar] [CrossRef]
- Yadav, M.; Goswami, P.; Paritosh, K.; Kumar, M.; Pareek, N.; Vivekanand, V. Seafood Waste: A Source for Preparation of Commercially Employable Chitin/Chitosan Materials. Bioresour. Bioprocess. 2019, 6, 8. [Google Scholar] [CrossRef]
- Whistler, R.O.Y.L. Chapter 22—Chitin. In Industrial Gums, 3rd ed; Whistler, R.L., Bemiller, J.N., Eds.; Academic Press: London, UK, 1993; pp. 601–604. ISBN 978-0-08-092654-4. [Google Scholar]
- Tran, T.H.; Nguyen, H.-L.; Hwang, D.S.; Lee, J.Y.; Cha, H.G.; Koo, J.M.; Hwang, S.Y.; Park, J.; Oh, D.X. Five Different Chitin Nanomaterials from Identical Source with Different Advantageous Functions and Performances. Carbohydr. Polym. 2019, 205, 392–400. [Google Scholar] [CrossRef]
- Mourya, V.K.; Inamdar, N.N. Chitosan-Modifications and Applications: Opportunities Galore. React. Funct. Polym. 2008, 68, 1013–1051. [Google Scholar] [CrossRef]
- Rouhani Shirvan, A.; Shakeri, M.; Bashari, A. Recent Advances in Application of Chitosan and Its Derivatives in Functional Finishing of Textiles. In The Impact and Prospects of Green Chemistry for Textile Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 107–133. ISBN 978-0-08-102491-1. [Google Scholar]
- Hudson, S.M.; Jenkins, D.W. Chitin and Chitosan. In Encyclopedia of Polymer Science and Technology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001; ISBN 978-0-471-44026-0. [Google Scholar]
- Haider, M.M.; Jian, G.; Li, H.; Wolcott, M.; Fernandez, C.; Nassiri, S. Impact of Chitin Nanofibers and Nanocrystals from Waste Shrimp Shells on Mechanical Properties, Setting Time, and Late-Age Hydration of Mortar. Sci. Rep. 2022, 12, 20539. [Google Scholar] [CrossRef]
- Golewski, G.L.; Szostak, B. Strengthening the Very Early-Age Structure of Cementitious Composites with Coal Fly Ash via Incorporating a Novel Nanoadmixture Based on C-S-H Phase Activators. Constr. Build. Mater. 2021, 312, 125426. [Google Scholar] [CrossRef]
- Skibsted, J.; Snellings, R. Reactivity of Supplementary Cementitious Materials (SCMs) in Cement Blends. Cem. Concr. Res. 2019, 124, 105799. [Google Scholar] [CrossRef]
- Black, L.; Garbev, K.; Gee, I. Surface Carbonation of Synthetic C-S-H Samples: A Comparison between Fresh and Aged C-S-H Using X-Ray Photoelectron Spectroscopy. Cem. Concr. Res. 2008, 38, 745–750. [Google Scholar] [CrossRef]
- Kumar, A.; Walder, B.J.; Kunhi Mohamed, A.; Hofstetter, A.; Srinivasan, B.; Rossini, A.J.; Scrivener, K.; Emsley, L.; Bowen, P. The Atomic-Level Structure of Cementitious Calcium Silicate Hydrate. J. Phys. Chem. C 2017, 121, 17188–17196. [Google Scholar] [CrossRef]
- Thomas, J.J.; Jennings, H.M.; Chen, J.J. Influence of Nucleation Seeding on the Hydration Mechanisms of Tricalcium Silicate and Cement. J. Phys. Chem. C 2009, 113, 4327–4334. [Google Scholar] [CrossRef]
- Nicoleau, L. Accelerated Growth of Calcium Silicate Hydrates: Experiments and Simulations. Cem. Concr. Res. 2011, 41, 1339–1348. [Google Scholar] [CrossRef]
- Alizadeh, R.; Raki, L.; Makar, J.M.; Beaudoin, J.J.; Moudrakovski, I. Hydration of Tricalcium Silicate in the Presence of Synthetic Calcium–Silicate–Hydrate. J. Mater. Chem. 2009, 19, 7937–7946. [Google Scholar] [CrossRef]
- Land, G.; Stephan, D. The Effect of Synthesis Conditions on the Efficiency of C-S-H Seeds to Accelerate Cement Hydration. Cem. Concr. Compos. 2018, 87, 73–78. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Xu, K.; Monteiro, P.J.M. Fibrillar Calcium Silicate Hydrate Seeds from Hydrated Tricalcium Silicate Lower Cement Demand. Cem. Concr. Res. 2020, 137, 106195. [Google Scholar] [CrossRef]
- Golewski, G.L.; Szostak, B. Application of the C-S-H Phase Nucleating Agents to Improve the Performance of Sustainable Concrete Composites Containing Fly Ash for Use in the Precast Concrete Industry. Materials 2021, 14, 6514. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, Y.; Li, H. Calcium-Silicate-Hydrate Seeds as an Accelerator for Saving Energy in Cold Weather Concreting. Constr. Build. Mater. 2020, 264, 120191. [Google Scholar] [CrossRef]
- John, E.; Epping, J.D.; Stephan, D. The Influence of the Chemical and Physical Properties of C-S-H Seeds on Their Potential to Accelerate Cement Hydration. Constr. Build. Mater. 2019, 228, 116723. [Google Scholar] [CrossRef]
- Wang, F.; Kong, X.; Jiang, L.; Wang, D. The Acceleration Mechanism of Nano-C-S-H Particles on OPC Hydration. Constr. Build. Mater. 2020, 249, 118734. [Google Scholar] [CrossRef]
- Wyrzykowski, M.; Assmann, A.; Hesse, C.; Lura, P. Microstructure Development and Autogenous Shrinkage of Mortars with C-S-H Seeding and Internal Curing. Cem. Concr. Res. 2020, 129, 105967. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Glasser, F.P. Phase Relations in the CaO–SiO2–H2O System to 200 °C at Saturated Steam Pressure. Cem. Concr. Res. 2004, 34, 1529–1534. [Google Scholar] [CrossRef]
- Eisinas, A.; Baltakys, K.; Siauciunas, R. The Effect of Gyrolite Additive on the Hydration Properties of Portland Cement. Cem. Concr. Res. 2012, 42, 27–38. [Google Scholar] [CrossRef]
- John, E.; Lehmann, C.; Stephan, D. Xonotlite and Hillebrandite as Model Compounds for Calcium Silicate Hydrate Seeding in Cementitious Materials. Transp. Res. Rec. J. Transp. Res. Board 2021, 2675, 65–72. [Google Scholar] [CrossRef]
- Wang, B.; Yao, W.; Stephan, D. Preparation of Calcium Silicate Hydrate Seeds by Means of Mechanochemical Method and Its Effect on the Early Hydration of Cement. Adv. Mech. Eng. 2019, 11, 1687814019840586. [Google Scholar] [CrossRef]
- John, E.; Matschei, T.; Stephan, D. Nucleation Seeding with Calcium Silicate Hydrate—A Review. Cem. Concr. Res. 2018, 113, 74–85. [Google Scholar] [CrossRef]
- Nassiri, S.; Markandeya, A.; Haider, M.M.; Valencia, A.; Rangelov, M.; Li, H.; Halsted, A.; Bollinger, D.; McCloy, J. Technical and Environmental Assessment of Hydrothermally Synthesized Foshagite and Tobermorite-like Crystals as Fibrillar C-S-H Seeds in Cementitious Materials. J. Sustain. Cem. Based Mater. 2023, 14, 1–24. [Google Scholar] [CrossRef]
- Taylor, H.F.W.; Bessey, G.E. A Review of Hydrothermal Reactions in the System CaO—SiO2—H2O. Mag. Concr. Res. 1950, 2, 15–26. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Kanavaris, F.; Das, B.B.; Idrees, M. Decarbonising Cement and Concrete Production: Strategies, Challenges and Pathways for Sustainable Development. J. Build. Eng. 2024, 86, 108861. [Google Scholar] [CrossRef]
- Nassiri, S.; Harvey, J.; Miller, S. Lab2Slab2Practice: A Framework for a Faster Implementation of Innovative Concrete Materials and Technology; National Center for Sustainable Transportation: Davis, CA, USA, 2025. [Google Scholar] [CrossRef]
Property of Concrete | Comparison to 100% OPC Concrete |
---|---|
Water demand | Increase |
Early strength | Decrease |
Late strength | No change at moderate replacement rates |
Pozzolanic reactivity | More research needed |
Setting time | No change or delay from the dilution of cement |
Drying shrinkage | More research needed |
Alkali–silica reaction | More research needed |
Sulfate attack resistance | More research needed |
Freeze–thaw durability | More research needed |
Property of Concrete | Comparison to 100% OPC Concrete |
---|---|
Water demand | Increase |
Early strength | Varied |
Late strength | Slight increase or decrease reported. Generally marginal change |
Setting time | Delay or no change |
Drying shrinkage | More test data needed |
Alkali–silica reaction resistance | Increase |
Sulfate attack resistance | Increase but more test data needed |
Freeze–thaw durability | Increase but more test data needed |
Property of Concrete | Comparison to 100% OPC Concrete |
---|---|
Workability | Decrease with MK and DE |
Early strength | Increase with MK |
Late strength | No change |
Setting time | Accelerate with MK |
Drying shrinkage | Increase but more test data needed especially for DE |
Alkali–silica reaction | Decrease |
Sulfate attack resistance | Increase |
Chloride permeability | Decrease |
Freeze–thaw durability | Increase |
Property of Concrete | Comparison to 100% OPC Concrete |
---|---|
Workability | Decrease |
Early strength | No change at optimal replacement levels |
Late strength | No change at optimal replacement levels |
Setting time | Accelerate |
Drying shrinkage | Decrease |
Alkali–silica reaction | No information found |
Sulfate attack resistance | No information found |
Freeze–thaw durability | Decrease but more test data needed |
Property of Concrete | Comparison to 100% OPC Concrete |
---|---|
Workability | Decrease |
Early strength | Decrease |
Late strength | Increases or no change |
Setting time | Delay |
Drying shrinkage | Decrease, more research needed |
Alkali–silica reaction | More research needed |
Sulfate attack resistance | More research needed |
Freeze–thaw durability | More research needed |
Impact Categories | Unit | 2016 Rock Dust | 2017 Rock Dust |
---|---|---|---|
Global warming | kg CO2 eq | 6.06 | 5.72 |
Acidification | kg SO2 eq | 0.05 | 0.03 |
Eutrophication | kg N eq | 0.01 | 0.04 |
Photochemical ozone creation | kg O3 eq | 0.73 | 0.72 |
Ozone depletion | kg CFC-11 eq | 1.59 × 10−7 | 4.71 × 10−7 |
Use of renewable primary energy | MJ | 7.54 | (1.04 + 13.1) HHV * |
Use of nonrenewable primary energy | MJ | 90.7 | (77.4 + 11.3) HHV * |
Use of renewable primary energy resources as raw materials | MJ or kg | 0 | 0.06 (kg) |
Use of nonrenewable primary energy resources as raw materials | MJ or kg | 0 | 1000 (kg) |
Property of Concrete | Comparison to 100% OPC Concrete |
---|---|
Workability | Depends on the ash type and properties |
Early strength | Decrease |
Late strength | Decrease or no change |
Setting time | Delay depending on calcium content and heavy metals |
Drying shrinkage | More research needed |
Alkali–silica reaction | More research needed |
Sulfate attack resistance | More research needed |
Freeze–thaw durability | More research needed |
Concrete Property | Compared to 100% OPC Concrete |
---|---|
Workability | Decrease |
Early strength | Decrease |
Late strength | Increase |
Setting time | Delay |
Drying shrinkage | Decrease, more research needed |
Alkali–silica reaction | More research needed |
Sulfate attack resistance | No change, more research needed |
Freeze–thaw durability | More research needed |
Supplier | Production Capacity (Million Tonnes) | Properties | Source |
---|---|---|---|
US Forest Service R&D: Forest Product Laboratory | Pilot | CNC: 5 nm diameter and 150 nm long CNF: 20 nm diameter and 2 μm long | [232] |
Kruger | 6000 | CNF: 80 to 300 nm wide and 100 to 2000 µm long, aspect ratio > 1000 | [233] |
Sappi North America | N/A * | CNF product with the trademark name of Valida designed as concrete admixture | [234] |
CelluForce | 300 | CNC: Average length of 150 nm and a diameter of 7.5 nm, aspect ratio 20 | [235] |
American Process | 175 | CNC: 2–20 nm diameter and 100–600 nm long CNF: 5–30 nm diameter and >1 μm long | [236] |
Blue Goose Biorefineries Inc. | N/A | CNC: Length 100–150 nm, width 9–14 nm | [237] |
Innotech Materials | N/A | CNC products with various surface functional groups available | [238] |
Property of Concrete | Comparison to 100% OPC Concrete |
---|---|
Water demand | Increase |
Early strength | Increase up to a certain dosage |
Late strength | Increase up to a certain dosage |
Pozzolanic reactivity | None |
Setting time | Increase |
Drying shrinkage | Decrease needs more research |
Alkali–silica reaction | More research needed |
Sulfate attack resistance | Increase, needs more research |
Freeze–thaw durability | Increase, needs more research |
Ref. | Type | Production Method | GWP (kg CO2 eq) | ME/FE (kg N eq/kg p eq) | TA (kg SO2 eq) | CED Value | Human Toxicity (kg 1,4-DB eq) | Fossil Fuel Depletion (kg Oil eq) | WD (kg or m3 H2O, Other Units Specified) |
---|---|---|---|---|---|---|---|---|---|
Hohenthal et al. (2012) [256] | CNF | Enzymatic + HPH | 1.2–3.1 | 0.015–0.016 | 0.008–0.045 | N/A * | N/A | 0.3–0.75 | 50 |
TEMPO oxidation + HPH | 1.0–1.8 | 0.018–0.024 | 0.005–0.0065 | N/A | N/A | 0.25–0.5 | 158 | ||
TEMPO oxidation + mechanical refinement | 0.75–1.0 | 0.014–0.015 | 0.0045–0.005 | N/A | N/A | 0.20–0.25 | 120 | ||
Li et al. (2013) [252] | CMF | TEMPO oxidation + sonication + centrifuge purifying (TOSO) TEMPO | 980 (per kg NC) | N/A | N/A | 145.9 MJ | N/A | N/A | N/A |
TEMPO oxidation + homogenization (TOHO) | 190 (per kg NC) | N/A | N/A | 34.7 MJ | N/A | N/A | N/A | ||
Chloroacetic acid etherification + sonication + centrifuge purifying (CESO) | 1160 (per kg NC) | N/A | N/A | 176.1 MJ | N/A | N/A | N/A | ||
Chloroacetic acid etherification + homogenization (CEHO) | 360 (per kg NC) | N/A | N/A | 64.9 MJ | N/A | N/A | N/A | ||
Arvidsson et al. (2015) [253] | CNF | Enzymatic pretreatment + microfluidization | 0.79 | N/A | N/A | 87 MJ/kg | N/A | N/A | 240 |
Carboxymethylation pretreatment + microfluidization | 99 | N/A | N/A | 1800 MJ/kg | N/A | N/A | 1000 | ||
Without pretreatment + homogenization treatment | 1.2 | N/A | N/A | 240 MJ/kg | N/A | N/A | 130 L/g | ||
De Figueirêdo et al. (2012) [257] | CNC | EUC system | 0.122171 | 0.000320/0.000134 | N/A | 15.943 MJ for the extraction of raw materials | 0.291122 | N/A | 131 L/g |
EC system | 0.000065/0.000024 | N/A | 1.8 MJ for the extraction of raw materials | 0.034797 | N/A | 138 L/g | |||
Piccinno et al. (2015) [258] | CNF | MFC liberated (Enzymatic + homogenization) + coating MFC with GripX + wet spinning by adding sodium alginate (route 1a) | 1.5–1.6 (10 g of MFC) | N/A | N/A | 32.2 MJ for production of 10 gr MFC | N/A | N/A | (0.201 for MFC liberation) 0.253 L/g |
MFC liberated (enzymatic + homogenization) + wet spinning by adding sodium alginate (without coating) (route 1b) | N/A | N/A | N/A | N/A | (0.201 for MFC liberation) 0.255 L/g | ||||
MFC liberated (enzymatic + homogenization) + electrospinning by adding PEO as a carrier polymer (route 2) | N/A | N/A | N/A | N/A | (0.201 for MFC liberation) 0.205 L/g | ||||
Nascimento et al. (2016) [259] | CNC | Extraction of CNC with high-powered ultrasound (CNU) | 0.207 | 5.68 × 10−5/3.03 × 10−5 | 0.00045 | N/A | 0.0477 | N/A | 0.0023 |
Chitin Nanocrystal (ChNC) | Chitin Nanofiber (ChNF) |
---|---|
Rod/whisker type | Fibrillous |
Length: 211 ± 80 nm Width: 8.7 ± 4 nm Aspect ratio: 24 ± 20 nm | Length: 1063 ± 765 nm Width: 16 ± 10 nm Aspect ratio: 67 ± 90 nm |
Property of Concrete | Comparison to 100% OPC Concrete |
---|---|
Water demand | Increase |
Early strength | Increase up to a certain dosage |
Late strength | No change |
Pozzolanic reactivity | Increase or decrease |
Setting time | Increase |
Drying shrinkage | More research needed |
Alkali silica reaction | More research needed |
Sulfate attack resistance | More research needed |
Freeze–thaw durability | More research needed |
Studied Material | Estimated Supply | Select Suppliers in the U.S. | Required Treatment | TRL | Function (SCM, Filler, Admixture) |
---|---|---|---|---|---|
Biomass energy plant ash | Potential 3.29 billion tonnes of biomass feedstock but not all combusted to produce ash (global) | 25 biomass energy plants | Grinding/milling for bottom ash and some fly ash | 4 | SCM |
Pumice, perlite, zeolite, volcanic ash | 500,000 tonnes of perlite/year (U.S.) 87,000 tonnes of zeolites/year (U.S.) 580,000 tonnes of pumice/year (U.S.) | Mines across Arizona, California, New Mexico, Idaho, Texas, and Oregon | Grinding | 8 | SCM |
Diatomaceous earth | 830,000 tonnes/year (U.S.) | Imerys Minerals California’s Lompoc Plant and Celite Corporation | Mining, drying, screening | 3 | SCM |
Metakaolin | 4.5 million tonnes of kaolin/year (U.S.) | Mines across Arizona, California, Idaho, and Oregon | Calcinating, grinding | 8 | SCM |
Recycled concrete fines | 347 million tonnes/year (U.S.) | Concrete Ready-Mix Producers and Concrete Recycling Plants | Grinding/milling | 4 | SCM and Filler |
Rock dust | 21 million tonnes of asphalt rock dust/year (U.S.) | Aggregate quarries, ready-mix concrete producers | None | 3 | SCM and Filler |
Municipal solid waste ash | 300,000 tonnes/year (U.S.) | MSW incineration plants like the Southeast Resource Recovery Facility in Long Beach and the Covanta Stanislaus Incinerator Facility in Stanislaus County | Grinding/milling may be needed | 3 | SCM |
Sewage sludge ash | 12.56 million tonnes/year (U.S.) | No active plant in California A few are still active in other states, but the number is declining | None | 3 | SCM |
Cellulose nanomaterials | Unlimited source of cellulose, but few CNM producers (global) | Kruger, Sappi North America, CelluForce, American Process Inc. | Chemical or mechanical treatments of cellulose into nanomaterials | 4 | Admixture |
Chitin nanomaterials | 100 billion tonnes of chitin/year (global) | Tidal Vision, Scandinavian Formulas, Creative Enzymes | Chemical or mechanical treatments of chitin into nanomaterials | 3 | Admixture |
C-S-H seed | Unlimited supplies of lime and silica from various sources, but a limited admixture producer (global) | Master X-seed 55 (Master Builders) | Thermochemical process of lime and silica source into C-S-H seeds | 6–8 | Admixture |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nassiri, S.; Butt, A.A.; Zarei, A.; Roy, S.; Filani, I.; Pandit, G.A.; Mateos, A.; Haider, M.M.; Harvey, J.T. Opportunities for Supplementary Cementitious Materials from Natural Sources and Industrial Byproducts: Literature Insights and Supply Assessment. Buildings 2025, 15, 3099. https://doi.org/10.3390/buildings15173099
Nassiri S, Butt AA, Zarei A, Roy S, Filani I, Pandit GA, Mateos A, Haider MM, Harvey JT. Opportunities for Supplementary Cementitious Materials from Natural Sources and Industrial Byproducts: Literature Insights and Supply Assessment. Buildings. 2025; 15(17):3099. https://doi.org/10.3390/buildings15173099
Chicago/Turabian StyleNassiri, Somayeh, Ali Azhar Butt, Ali Zarei, Souvik Roy, Iyanuoluwa Filani, Gandhar Abhay Pandit, Angel Mateos, Md Mostofa Haider, and John T. Harvey. 2025. "Opportunities for Supplementary Cementitious Materials from Natural Sources and Industrial Byproducts: Literature Insights and Supply Assessment" Buildings 15, no. 17: 3099. https://doi.org/10.3390/buildings15173099
APA StyleNassiri, S., Butt, A. A., Zarei, A., Roy, S., Filani, I., Pandit, G. A., Mateos, A., Haider, M. M., & Harvey, J. T. (2025). Opportunities for Supplementary Cementitious Materials from Natural Sources and Industrial Byproducts: Literature Insights and Supply Assessment. Buildings, 15(17), 3099. https://doi.org/10.3390/buildings15173099