Sustainable Membrane-Based Acoustic Metamaterials Using Cork and Honeycomb Structures: Experimental and Numerical Characterization
Abstract
1. Introduction
- To realize and experimentally test different metamaterial configurations, varying the number of membranes (from one to three) and keeping the number of honeycomb supports constant.
- To measure the sound absorption coefficient for each configuration by using the impedance tube method according to ISO 10534-2 [31], covering a frequency range between 250 and 1400 Hz.
- To analyze the behavior of the membranes through numerical simulations to understand the mechanisms responsible for the absorption peaks.
- To evaluate acoustic efficiency by highlighting the best performing configurations in terms of average absorption/size ratio.
- To discuss the sustainability and real-world applicability of the proposed system by comparing it with conventional solutions for effectiveness, environmental impact and potential for integration into architecture.
- Proposal and realization of a completely bio-based acoustic metamaterial, built with readily available, lightweight and low environmental impact natural materials.
- Systematic experimental evaluation of the influence of the number of cork membranes on paper honeycomb structures, with extensive data on low-frequency sound absorption.
- Integration of measurement, analytical simulation and comparative analysis, to provide a complete picture of the physical phenomena involved.
2. Materials and Methods
2.1. Materials Used and Specimens Set Up
- Configuration A: a single cork membrane, coupled with three honeycomb layers (1M–3H).
- Configuration B: two cork membranes, each separated by a honeycomb layer (2M–3H).
- Configuration C: three cork membranes, alternating with three honeycomb layers (3M–3H).
2.2. Experimental Apparatus: Kundt Tube-Based Measurement
2.3. Simulation Based on Mass–Spring–Damper Systems
- 1M–3H: a single membrane coupled to three honeycomb layers;
- 2M–3H: two membranes intercalated by three honeycomb layers;
- 3M–3H: three membranes intercalated by three honeycomb layers.
- c is the damping coefficient [Ns/m],
- ζ is the damping ratio (dimensionless),
- k is the stiffness of the system [N/m],
- m is the mass [kg].
- is the vector of membrane displacements;
- , and are the mass, damping and stiffness matrices;
- is the vector of the external force (incident sound pressure).
3. Results and Discussion
3.1. Sound Absorption Coefficient
- An increase in the average sound absorption value (SAC) over the entire frequency range analyzed;
- An expansion of the useful absorption band, with effective performance starting from 250 Hz;
- The appearance of multiple resonant peaks, attributable to distinct local vibration modes for each membrane and to the interactions between them.
- a greater number of active vibrating surfaces, capable of intercepting and dissipating sound energy;
- the segmentation of the internal cavities, each with its own resonance frequency;
- a complexification of internal reflections and interferences, which contributes to the broadening of the absorbed spectrum.
- the stiffness of the membrane, a function of the elastic modulus and thickness;
- the density of the material;
- the depth of the underlying cavity;
- the dynamic coupling between adjacent resonators.
- the absorption values have an average uncertainty of ±0.03 on α, which is fully acceptable for laboratory tests;
- possible assembly imperfections or microstructural heterogeneities of natural materials (particularly cork) can affect the performance;
- the absence of diffuse porosity limits the absorption at high frequencies (>1400 Hz), as expected for non-fibrous metamaterials.
- the progressive increase in membranes allows a fine and controlled modulation of the acoustic response;
- high performance can be achieved with natural and sustainable materials, without resorting to metallic elements or synthetic polymers;
- the system exhibits the typical characteristics of membrane metamaterials, with highly effective localized resonances at low frequencies (<1000 Hz).
3.2. Analytical Modeling and Acoustic Performance Predictions
- the resonance frequency decreases with the increase in the number of membranes, except for the medium configuration;
- the damping ratio also increases, consistent with the hypothesis that more complex structures disperse more acoustic energy.
- frequency of the absorption peaks,
- maximum amplitude of the SAC coefficient,
- qualitative shape of the curves.
4. Conclusions
- enhanced average absorption over a broader frequency band;
- the appearance of multiple, non-equidistant resonances, associated with localized vibration modes;
- a modular strategy to tune the response without increasing the system’s overall thickness.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hemmat, W.; Hesam, A.M.; Atifnigar, H. Exploring noise pollution, causes, effects, and mitigation strategies: A review paper. Eur. J. Theor. Appl. Sci. 2023, 1, 995–1005. [Google Scholar] [CrossRef]
- MasMasum, M.; Pal, S.; Akhie, A.; Ruva, I.; Akter, N.; Nath, S. Spatiotemporal monitoring and assessment of noise pollution in an urban setting. Environ. Chall. 2021, 5, 100218. [Google Scholar] [CrossRef]
- Morillas, J.M.B.; Gozalo, G.R.; González, D.M.; Moraga, P.A.; Vílchez-Gómez, R. Noise pollution and urban planning. Curr. Pollut. Rep. 2018, 4, 208–219. [Google Scholar] [CrossRef]
- Stansfeld, S.; Haines, M.; Brown, B. Noise and health in the urban environment. Rev. Environ. Heal. 2000, 15, 43–82. [Google Scholar] [CrossRef] [PubMed]
- Narendra, S.; Davar, S.C. Noise pollution-sources, effects and control. J. Hum. Ecol. 2004, 16, 181–187. [Google Scholar] [CrossRef]
- Du, N.; Fan, J.; Wu, H. Optimum porosity of fibrous porous materials for thermal insulation. Fibers Polym. 2008, 9, 27–33. [Google Scholar] [CrossRef]
- Arenas, J.P.; Crocker, M.J. Recent trends in porous sound-absorbing materials. Sound Vib. 2010, 44, 12–18. [Google Scholar]
- Dong, S.; Duan, Y.; Chen, X.; You, F.; Jiang, X.; Wang, D.; Hu, D.; Zhao, P. Recent advances in preparation and structure of polyurethane porous materials for sound absorbing application. Macromol. Rapid Commun. 2024, 45, e2400108. [Google Scholar] [CrossRef]
- Cummer, S.A.; Christensen, J.; Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 2016, 1, 16001. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G.; Romero, V.P. Optimizing controlled-resonance acoustic metamaterials with perforated plexiglass disks, honeycomb structures, and embedded metallic masses. Fibers 2025, 13, 11. [Google Scholar] [CrossRef]
- Gao, N.; Zhang, Z.; Deng, J.; Guo, X.; Cheng, B.; Hou, H. Acoustic metamaterials for noise reduction: A review. Adv. Mater. Technol. 2022, 7, 2100698. [Google Scholar] [CrossRef]
- Ciaburro, G.; Romero, V.P.; Iannace, G.; Moncayo, L.B. Improving Acoustic Properties of Sandwich Structures Using Recycled Membrane and HoneyComb Composite (RMHCC). Buildings 2024, 14, 2878. [Google Scholar] [CrossRef]
- Naify, C.J.; Chang, C.-M.; McKnight, G.; Nutt, S. Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials. J. Appl. Phys. 2010, 108, 114905. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, H.; Luo, X.; Huang, Z. Membrane-constrained acoustic metamaterials for low frequency sound insulation. Appl. Phys. Lett. 2016, 108, 041905. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G.; Ricciotti, L.; Apicella, A.; Perrotta, V.; Aversa, R. Acoustic applications of a foamed geopolymeric-architected metamaterial. Appl. Sci. 2024, 14, 1207. [Google Scholar] [CrossRef]
- Zhou, G.; Wu, J.H.; Lu, K.; Tian, X.; Huang, W.; Zhu, K. Broadband low-frequency membrane-type acoustic metamaterials with multi-state anti-resonances. Appl. Acoust. 2020, 159, 107078. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G. Modeling acoustic metamaterials based on reused buttons using data fitting with neural network. J. Acoust. Soc. Am. 2021, 150, 51–63. [Google Scholar] [CrossRef]
- Gil, L. Cork composites: A review. Materials 2009, 2, 776–789. [Google Scholar] [CrossRef]
- Morillas, J.M.B.; González, D.M.; Vílchez-Gómez, R.; Escobar, V.G.; Maderuelo-Sanz, R.; Gozalo, G.R.; Moraga, P.A. Virgin natural cork characterization as a sustainable material for use in acoustic solutions. Sustainability 2021, 13, 4976. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G. Membrane-type acoustic metamaterial using cork sheets and attached masses based on reused materials. Appl. Acoust. 2022, 189, 108605. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, M.; Zhang, S.; Lu, J. Influence of fiber characteristics and manufacturing process on the structure and properties of aramid paper. Polym. Technol. Eng. 2012, 51, 134–139. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, X.; Yang, K.; Pan, B.; Fei, B.; Yi, X.; Chen, Y. Shear property characterization of aramid paper and its application to the prediction of honeycomb behaviors. Compos. Struct. 2020, 254, 112800. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, J.; Zhang, H.; Yang, Z.; Fu, X.; Wang, J.; Han, S. Research on acoustic absorption properties of aramid honeycomb composite material reinforced by polyimide foam. Adv. Eng. Mater. 2022, 24, 2101158. [Google Scholar] [CrossRef]
- Luo, Z.; Li, T.; Yan, Y.; Zhou, Z.; Zha, G. Prediction of sound insulation performance of aramid honeycomb sandwich panel based on artificial neural network. Appl. Acoust. 2022, 190, 108656. [Google Scholar] [CrossRef]
- Xu, Q.; Qiao, J.; Sun, J.; Zhang, G.; Li, L. A tunable massless membrane metamaterial for perfect and low-frequency sound absorption. J. Sound Vib. 2021, 493, 115823. [Google Scholar] [CrossRef]
- Xing, T.; Gai, X.; Zhao, J.; Li, X.; Cai, Z.; Guan, X.; Wang, F. Low frequency sound absorption of adjustable membrane-type acoustic metamaterials. Appl. Acoust. 2022, 188, 108586. [Google Scholar] [CrossRef]
- Ma, F.; Wu, J.H.; Huang, M.; Zhang, W.; Zhang, S. A purely flexible lightweight membrane-type acoustic metamaterial. J. Phys. D Appl. Phys. 2015, 48, 175105. [Google Scholar] [CrossRef]
- Xu, H.; Kong, D. A thin-film acoustic metamaterial absorber with tunable sound absorption characteristics. J. Acoust. Soc. Am. 2023, 153, 3493–3500. [Google Scholar] [CrossRef]
- Doutres, O.; Salissou, Y.; Atalla, N.; Panneton, R. Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube. Appl. Acoust. 2010, 71, 506–509. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, Z.; Luo, P.; Shen, G.; Zhang, S. Review of acoustic agglomeration technology research. ACS Omega 2024, 9, 21690–21705. [Google Scholar] [CrossRef]
- EN ISO 10534-2; Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 2: Transfer-Function Method. ISO: Geneva, Switzerland, 2023.
- Fortes, M.A.; Rosa, M.E.; Pereira, H. Mechanical, elastic and acoustic properties of cork. J. Mater. Sci. 2004, 39, 221–230. [Google Scholar]
- Foo, C.C.; Chai, G.B.; Seah, L.K. Mechanical properties of Nomex material and Nomex honeycomb structure. Compos. Struct. 2007, 80, 588–594. [Google Scholar] [CrossRef]
- Roy, R.; Park, S.-J.; Kweon, J.-H.; Choi, J.-H. Characterization of Nomex honeycomb core constituent material mechanical properties. Compos. Struct. 2014, 117, 255–266. [Google Scholar] [CrossRef]
- Ahmad, S.; Zhang, J.; Feng, P.; Yu, D.; Wu, Z.; Ke, M. Processing technologies for Nomex honeycomb composites (NHCs): A critical review. Compos. Struct. 2020, 250, 112545. [Google Scholar] [CrossRef]
- Darshan, C.; Varun, K.S.; Swamy, S.R. Environmental Impact Assessment of Natural Vs Synthetic Fiber Reinforcement in Polymer Composites. Int. J. Res. Appl. Sci. Eng. Technol. 2024, 12, 1666–1679. [Google Scholar] [CrossRef]
- Bravo-Moncayo, L.; Puyana-Romero, V.; Chávez, M.; Ciaburro, G. Improving Building Acoustics with Coir Fiber Composites: Towards Sustainable Construction Systems. Sustainability 2025, 17, 6306. [Google Scholar] [CrossRef]
- Puyana-Romero, V.; Chuquín, J.S.A.; Chicaiza, S.I.M.; Ciaburro, G. Characterization and Simulation of Acoustic Properties of Sugarcane Bagasse-Based Composite Using Artificial Neural Network Model. Fibers 2023, 11, 18. [Google Scholar] [CrossRef]
- Puyana-Romero, V.; Cevallos, W.A.J.; Ciaburro, G. Simulation of Acoustic Properties of Plaster Matrix Composite Material Reinforced with Corn Stem Fibers. Fibers 2023, 11, 26. [Google Scholar] [CrossRef]
- Gómez-Aguilar, J.F.; Yépez-Martínez, H.; Calderón-Ramón, C.; Cruz-Orduña, I.; Escobar-Jiménez, R.F.; Olivares-Peregrino, V.H. Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel. Entropy 2015, 17, 6289–6303. [Google Scholar] [CrossRef]
- Barry, O.; Oguamanam, D.C.D.; Zu, J.W. On the Dynamic Analysis of a Beam Carrying Multiple Mass-Spring-Mass-Damper System. Shock. Vib. 2014, 2014, 485630. [Google Scholar] [CrossRef]
- Nikooyan, A.A.; Zadpoor, A.A. Mass–spring–damper modelling of the human body to study running and hopping–an overview. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2011, 225, 1121–1135. [Google Scholar] [CrossRef]
- Li, H.; Pan, Y.; Shi, P.; Shi, Y. Switched fuzzy output feedback control and its application to a mass–spring–damping system. IEEE Trans. Fuzzy Syst. 2015, 24, 1259–1269. [Google Scholar] [CrossRef]
- Hu, S.-L.J.; Li, H. Simultaneous mass, damping, and stiffness updating for dynamic systems. AIAA J. 2007, 45, 2529–2537. [Google Scholar] [CrossRef]
- Gavin, H.P. Structural Element Stiffness, Mass, and Damping Matrices—CEE 541. Structural Dynamics; Duke University: Durham, NC, USA, 2020. [Google Scholar]
- Yang, Z.; Mei, J.; Yang, M.; Chan, N.H.; Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 2008, 101, 204301. [Google Scholar] [CrossRef] [PubMed]
- Langfeldt, F.; Riecken, J.; Gleine, W.; von Estorff, O. A membrane-type acoustic metamaterial with adjustable acoustic properties. J. Sound Vib. 2016, 373, 1–18. [Google Scholar] [CrossRef]
- Huang, T.Y.; Shen, C.; Jing, Y. Membrane-and plate-type acoustic metamaterials. J. Acoust. Soc. Am. 2016, 139, 3240–3250. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, G.; Zhou, X.; Hu, G.; Sun, C.-T. Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Membrane model. J. Acoust. Soc. Am. 2014, 136, 969–979. [Google Scholar] [CrossRef]
- Langfeldt, F.; Kemsies, H.; Gleine, W.; von Estorff, O. Perforated membrane-type acoustic metamaterials. Phys. Lett. A 2017, 381, 1457–1462. [Google Scholar] [CrossRef]
- Selzo, M.R.; Moore, C.J.; Hossain, M.; Palmeri, M.L.; Gallippi, C.M. On the quantitative potential of viscoelastic response (VisR) ultrasound using the one-dimensional mass-spring-damper model. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2016, 63, 1276–1287. [Google Scholar] [CrossRef]
- Allard, J.F.; Atalla, N. Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, 2nd ed.; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Assif, S.; Faiz, A.; Aziz, C.; L.B, P.K.; Hajjaji, A. Validation using the in vivo experiment of the 3D model of the human ear using the equivalent mechanical impedance of the Mass-Spring-Damper System. Eur. Phys. J. Appl. Phys. 2022, 97, 74. [Google Scholar] [CrossRef]
- Jing, Y.; Wang, L.; Gao, Y. Mass-spring model for elastic wave propagation in multilayered van der Waals metamaterials. Appl. Math. Mech. 2024, 45, 1107–1118. [Google Scholar] [CrossRef]
- Yang, Y.; Nawrocki, R.; Voyles, R.; Zhang, H.H. Modeling of an internal stress and strain distribution of an inverted staggered thin-film transistor based on two-dimensional mass-spring-damper structure. Comput. Model. Eng. Sci. 2020, 125, 515–539. [Google Scholar] [CrossRef]
Material | Density (kg/m3) | Thickness (mm) | Elastic Module (MPa) | Porosity (%) | Sustainability |
---|---|---|---|---|---|
Cork | ~200 | 2 | ~10 | ~5–10 | Recyclable, bio-based |
Aramid paper (HC) | ~48–72 | 13 for each layer | ~50–300 | ~90–98 | Recyclable |
Configuration | f0 [Hz] | m [kg/m2] | |
---|---|---|---|
1M–3H | 700 | 0.2 | 0.1 |
2M–3H | 550 | 0.35 | 0.1 |
3M–3H | 600 | 0.5 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciaburro, G.; Puyana-Romero, V. Sustainable Membrane-Based Acoustic Metamaterials Using Cork and Honeycomb Structures: Experimental and Numerical Characterization. Buildings 2025, 15, 2763. https://doi.org/10.3390/buildings15152763
Ciaburro G, Puyana-Romero V. Sustainable Membrane-Based Acoustic Metamaterials Using Cork and Honeycomb Structures: Experimental and Numerical Characterization. Buildings. 2025; 15(15):2763. https://doi.org/10.3390/buildings15152763
Chicago/Turabian StyleCiaburro, Giuseppe, and Virginia Puyana-Romero. 2025. "Sustainable Membrane-Based Acoustic Metamaterials Using Cork and Honeycomb Structures: Experimental and Numerical Characterization" Buildings 15, no. 15: 2763. https://doi.org/10.3390/buildings15152763
APA StyleCiaburro, G., & Puyana-Romero, V. (2025). Sustainable Membrane-Based Acoustic Metamaterials Using Cork and Honeycomb Structures: Experimental and Numerical Characterization. Buildings, 15(15), 2763. https://doi.org/10.3390/buildings15152763