Construction Scheme Effects on Deformation Controls for Open-Top UBITs Underpassing Existing Stations
Abstract
1. Introduction
2. Project Overview
2.1. Project Background
2.2. Construction Technology Features
3. Model Building and Validation
3.1. Model Establishment
3.2. Numerical Simulation Validation
3.3. Construction Scheme Design
4. Analysis of the Impact of Different Construction Schemes on Floor Slab Deformation
4.1. Influence of Pipe Jacking Sequence
4.2. Influence of Pre-Stress Tension Level
4.3. Influence of Soil Chamber Excavation Sequence on Floor Slab Deformation
4.4. Discussions
5. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Chen, X.; Su, D.; Liu, S.; Liu, X.; Jiang, S.; Gao, H.; Yang, W. Mechanical performance of a prefabricated subway station structure constructed by twin closely-spaced rectangular pipe-jacking boxes. Tunn. Undergr. Space Technol. 2023, 135, 105062. [Google Scholar] [CrossRef]
- Bai, Q.; Zhang, Y.; Zhao, W.; Jia, P.; Li, S.; Wang, Z. Construction of subway station using the small pipe roof-beam method: A case study of Shifu Road station in Shenyang. Tunn. Undergr. Space Technol. 2023, 135, 105000. [Google Scholar] [CrossRef]
- Di, H.; He, P.; Li, X.; Xiao, F.; Chen, H. Influence of large-diameter shield tunneling on deformation of adjacent high-speed railway subgrade in soft soils and effectiveness of protective measures. Tunn. Undergr. Space Technol. 2025, 156, 106260. [Google Scholar] [CrossRef]
- Li, X.; Meng, S.; Sun, W.; Yuan, M.; Liu, X.; Nan, Y.; Wang, Y. Research on the risk assessment of the green construction of hydraulic tunnels based a on combination weighting-cloud model. Evol. Intell. 2025, 18, 57. [Google Scholar] [CrossRef]
- Xu, D.; Jiang, L.; Qin, Y.; Shen, H.; Ji, B. High-precision FBG-based sensor for soil settlement monitoring: A comparative study with magnetic settlement gauges and PIV technique. Sens. Actuators A Phys. 2024, 366, 114935. [Google Scholar] [CrossRef]
- He, W.; Pan, Y.; Hou, Y.; Chen, J.-J. Multi-objective optimization framework for generative design of horse-shoe-shaped pipe arrangement in pre-stressed underground bundles. Tunn. Undergr. Space Technol. 2025, 158, 106437. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, D.; Wang, M.; Li, J. Ground and tunnel deformation induced by excavation in pipe-roof pre-construction tunnel: A case study. Tunn. Undergr. Space Technol. 2023, 131, 104832. [Google Scholar] [CrossRef]
- Hu, D.; Huang, J.; Xiang, X.; Ni, P.; Li, Y.; Liang, X.; Liu, J. Jacking Force Prediction for Box Jacking Tunnel Considering the Soil Arching Effect. Int. J. Numer. Anal. Methods Geomech. 2025, 49, 2161–2176. [Google Scholar] [CrossRef]
- Wang, M.; Fang, Z.; Li, X.; Kang, J.; Wei, Y.; Wang, S.; Liu, T. Research on the Prediction Method of 3D Surface Deformation in Filling Mining Based on InSAR-IPIM. Energy Sci. Eng. 2025, 13, 2401–2414. [Google Scholar] [CrossRef]
- Mei, Y.; Zhou, D.; Shi, W.; Zhang, Y.; Zhang, Y. Laws and Numerical Analysis of Surface Deformation Caused by Excavation of Large Diameter Slurry Shield in Upper-Soft and Lower-Hard Composite Stratum. Buildings 2022, 12, 1470. [Google Scholar] [CrossRef]
- Yao, Q.; Di, H.; Ji, C.; Zhou, S. Ground collapse caused by shield tunneling in sandy cobble stratum and its control measures. Bull. Eng. Geol. Environ. 2020, 79, 5599–5614. [Google Scholar] [CrossRef]
- Tian, Z.; Zhou, S.; Lee, A.; Zhao, Y.; Gong, Q. A Bayesian-based approach for inversion of earth pressures on in-service underground structures. Acta Geotech. 2024, 19, 1911–1928. [Google Scholar] [CrossRef]
- Tian, Z.; Lee, A.; Zhou, S. Adaptive tempered reversible jump algorithm for Bayesian curve fitting. Inverse Probl. 2024, 40, 045024. [Google Scholar] [CrossRef]
- Tian, Z.; Zhou, S.; Lee, A.; Shan, Y.; Detmann, B. How to identify earth pressures on in-service tunnel linings: Insights from Bayesian inversion to address non-uniqueness. Transp. Geotech. 2024, 48, 101344. [Google Scholar] [CrossRef]
- Zhou, S.; Tian, Z.; Yao, Q.; Dai, L. Rethinking tunnel-soil relative stiffness: Insights from interactions between tunnels and strata subjected to ground surcharge. Int. J. Rail Transp. 2025, 13, 1–16. [Google Scholar] [CrossRef]
- Fang, Q.; Du, J.; Li, J.; Zhang, D.; Cao, L. Settlement characteristics of large-diameter shield excavation below existing subway in close vicinity. J. Cent. South Univ. 2021, 28, 882–897. [Google Scholar] [CrossRef]
- Li, P.; Du, S.-J.; Ma, X.-F.; Yin, Z.-Y.; Shen, S.-L. Centrifuge investigation into the effect of new shield tunnelling on an existing underlying large-diameter tunnel. Tunn. Undergr. Space Technol. 2014, 42, 59–66. [Google Scholar] [CrossRef]
- Luo, L.; Zhe, Q.; Liu, W.; Fang, Y.; Wang, F. Research on the Longitudinal Deformation of Segments Induced by Pipe-Jacking Tunneling over Existing Shield Tunnels. Buildings 2025, 15, 1394. [Google Scholar] [CrossRef]
- Ma, P.; Shimada, H.; Huang, S.; Moses, D.N.; Zhao, G.; Ma, B. Transition of the pipe jacking technology in Japan and investigation of its application status. Tunn. Undergr. Space Technol. 2023, 139, 105212. [Google Scholar] [CrossRef]
- Sofianos, A.I.; Loukas, P.; Chantzakos, C. Pipe jacking a sewer under Athens. Tunn. Undergr. Space Technol. 2004, 19, 193–203. [Google Scholar] [CrossRef]
- Ong, D.E.L.; Barla, M.; Cheng, J.W.-C.; Choo, C.S.; Sun, M.; Peerun, M.I. Irregular-Shaped Pipe Jacking Technique. In Sustainable Pipe Jacking Technology in the Urban Environment: Recent Advances and Innovations; Springer: Berlin/Heidelberg, Germany, 2022; pp. 147–198. [Google Scholar]
- Ren, D.-J.; Xu, Y.-S.; Shen, J.S.; Zhou, A.; Arulrajah, A. Prediction of Ground Deformation during Pipe-Jacking Considering Multiple Factors. Appl. Sci. 2018, 8, 1051. [Google Scholar] [CrossRef]
- Ma, P.; Shimada, H.; Sasaoka, T.; Moses, D.N.; Matsumoto, F.; Chen, X. Investigation on the engineering effects of the geometrical configuration of the jacking rectangular pipe. Tunn. Undergr. Space Technol. 2022, 119, 104239. [Google Scholar] [CrossRef]
- Shimada, H.; Khazaei, S.; Matsui, K. Small diameter tunnel excavation method using slurry pipe-jacking. Geotech. Geol. Eng. 2004, 22, 161–186. [Google Scholar] [CrossRef]
- Tian, Z.; Yin, X.; Zhou, S. Learning loads on in-service underground infrastructure with a trans-dimensional Bayesian inversion method. Comput.-Aided Civ. Infrastruct. Eng. 2025, 40, 1–25. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, H.; Guo, J.; Zhang, Z.; Chao, X. Optimization of Advanced Support Parameters of Surrounding Rock in Tunnels Constructed by ADECO-RS. Buildings 2024, 14, 3297. [Google Scholar] [CrossRef]
- Bi, X.; Wang, X.; Zhang, Z.; Pan, W.; Jiao, B.; Liu, X. Influence Analysis of Unbonded Tendons Arrangement of the Bundled Integrate Structure at Saturated Soft Soil Area. Tunn. Constr. 2023, 43, 1299–1307. (In Chinese) [Google Scholar]
- Zhou, X.; Li, Z.; Chen, J.; Bian, G. Comparative Analysis of Effect of Underground Bundled Pipe-roof Supported Excavation Construction on Surface Settlement in Soft Soil Area. Tunn. Rail Transit 2022, 3, 25–28. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, J.; Tong, H.; Yuan, J.; Wang, Y.; Cui, J.; Shan, Y. Three-dimensional strength and deformation characteristics of calcareous sand under various stress paths. Bull. Eng. Geol. Environ. 2025, 84, 61. [Google Scholar] [CrossRef]
- Su, Y.; Luo, B.; Luo, Z.; Xu, F.; Huang, H.; Long, Z.; Shen, C. Mechanical characteristics and solidification mechanism of slag/fly ash-based geopolymer and cement solidified organic clay: A comparative study. J. Build. Eng. 2023, 71, 106459. [Google Scholar] [CrossRef]
- Luo, B.; Su, Y.; Ding, X.; Chen, Y.; Liu, C. Modulation of initial CaO/Al2O3 and SiO2/Al2O3 ratios on the properties of slag/fly ash-based geopolymer stabilized clay: Synergistic effects and stabilization mechanism. Mater. Today Commun. 2025, 47, 113295. [Google Scholar] [CrossRef]
- Qian, Y.; Liu, C.; Yuan, Y.; Xu, J.; Wang, P.; Wang, K. Numerical characterization and formation process study of rail light bands in high-speed turnout areas. Eng. Fail. Anal. 2025, 168, 109083. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Xu, L.; Zhou, S.; Luo, B.; Ding, K. In-situ investigation on dynamic response of highway transition section with foamed concrete. Earthq. Eng. Eng. Vib. 2025, 24, 547–563. [Google Scholar] [CrossRef]
- Ding, X.-H.; Luo, B.; Zhou, H.-T.; Chen, Y.-H. Generalized solutions for advection–dispersion transport equations subject to time- and space-dependent internal and boundary sources. Comput. Geotech. 2025, 178, 106944. [Google Scholar] [CrossRef]
- Di, H.; Zhou, S.; Xiao, J.; Gong, Q.; Luo, Z. Investigation of the long-term settlement of a cut-and-cover metro tunnel in a soft deposit. Eng. Geol. 2016, 204, 33–40. [Google Scholar] [CrossRef]
- Gu, X.; Wu, R.; Liang, F.; Gao, G. On HSS model parameters for Shanghai soils with engineering verification. Rock Soil Mech. 2021, 42, 833–845. (In Chinese) [Google Scholar]
- Benz, T. Small Strain Stiffness of Soils and its Numerical Consequences. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2006. [Google Scholar]
- He, C.; Cai, Y.; Pu, C.; Zhou, S.; Di, H.; Zhang, X. Deformation analysis and protection measures of existing metro tunnels effected by river channel excavation in soft soils. Tunn. Undergr. Space Technol. 2024, 144, 105504. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, Y.; Huang, Y. Deformation Analysis of Existing Buildings Affected by Shield Tunnels Based on Intelligent Inversion and Measured Data. Buildings 2022, 14, 2022. [Google Scholar] [CrossRef]
- Lan, G.; Guo, M.; Dong, X. Deformation analysis of diaphragm wall foundation of long-span bridge based on HSS constitutive model. In Proceedings of the 2021 4th International Symposium on Traffic Transportation and Civil Architecture (ISTTCA), Suzhou, China, 12–14 November 2021; pp. 815–819. [Google Scholar] [CrossRef]
- Wu, S.; Wu, J.; Liu, D. Research on Construction Sequences and Construction Methods of the Small Clear-Distance, Double-Arch Tunnel under an Asymmetrical Load. Appl. Sci. 2023, 13, 8242. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, A.; Fang, Q.; Wan, Y.; Li, J.; Guo, X. Spatiotemporal Deformation of Existing Pipeline Due to New Shield Tunnelling Parallel Beneath Considering Construction Process. Appl. Sci. 2022, 12, 500. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, C.; Fu, H.; Deng, H.; Ma, S.; Fu, J. Numerical Study on the Disturbance Effect of Short-Distance Parallel Shield Tunnelling Undercrossing Existing Tunnels. Adv. Civ. Eng. 2020, 2020, 8810658. [Google Scholar] [CrossRef]
- GB 50911-2013; Code for Monitoring Measurement of Urban Rail Transit Engineering. China Architecture & Building Press: Beijing, China, 2013.
- Guo, L.; Liu, H.; Zhang, Z.; Chen, Z.; Pan, W.; Zhang, G. Shear performance of a prestressed rectangular bundle composite pipe curtain joint. Eng. Struct. 2025, 323, 119159. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Wang, Y.; Shao, C.; Cong, Q. Predicting variation of multipoint earth pressure in sealed chambers of shield tunneling machines based on hybrid deep learning. Autom. Constr. 2022, 143, 104567. [Google Scholar] [CrossRef]
- Liu, J.; Wang, F.; He, S.; Wang, E.; Zhou, H. Enlarging a large-diameter shield tunnel using the Pile–Beam–Arch method to create a metro station. Tunn. Undergr. Space Technol. 2015, 49, 130–143. [Google Scholar] [CrossRef]
- Wang, D.; Ye, S.; Zhang, J. Risk Reduction Measures and Monitoring Analysis of Deep Foundation Pit with Water in a Metro Station in Hefei. Water 2023, 15, 3007. [Google Scholar] [CrossRef]
- Xie, P.; Zhang, R.; Zheng, J.; Li, Z. Probabilistic analysis of subway station excavation based on BIM-RF integrated technology. Autom. Constr. 2022, 135, 104114. [Google Scholar] [CrossRef]
- Xing, H.; Xiong, F.; Wu, J. Effects of Pit Excavation on an Existing Subway Station and Preventive Measures. J. Perform. Constr. Facil. 2016, 30, 04016063. [Google Scholar] [CrossRef]
Soil Number | γ (kN/m3) | e | ccu (kPa) | φcu (°) | Es (MPa) |
---|---|---|---|---|---|
①1a | 19.0 | ||||
①2 | 18.7 | 0.95 | 25.6 | 34.2 | 4.0 |
②2c | 17.3 | 1.35 | 13.9 | 19.0 | 2.2 |
②2t | 19.8 | 0.69 | 7.0 | 25.8 | 3.5 |
③1a | 19.8 | 0.72 | 16.0 | 36.3 | 2.5 |
④2b | 18.1 | 1.11 | 15.9 | 28.1 | 3.5 |
⑤1b | 19.2 | 0.86 | 29.3 | 27.7 | 6.0 |
⑤2 | 18.9 | 0.91 | 20.5 | 22.3 | 5.0 |
⑤3a | 19.0 | 0.87 | 25.9 | 31.8 | 8.0 |
⑥2 | 18.8 | 0.93 | 25.5 | 28.2 | 4.2 |
⑥3a | 19.6 | 0.76 | 38.5 | 24.9 | 5.0 |
⑥4a | 20.0 | 0.65 | 19.7 | 30.2 | 8.0 |
Scheme Number | Bottom Horizontal Pipe Jacking Timing | Pipe Jacking Sequence |
---|---|---|
Scheme 1 | Later jacking of bottom horizontal pipe | 1-2-3-4-5 |
Scheme 2 | 1-3-2-4-5 | |
Scheme 3 | 1-4-2-3-5 | |
Scheme 4 | 2-3-1-4-5 | |
Scheme 5 | 2-4-1-3-5 | |
Scheme 6 | 3-4-1-2-5 | |
Scheme 7 | Early jacking of bottom horizontal pipe | 5-1-2-3-4 |
Scheme 8 | 5-1-3-2-4 | |
Scheme 9 | 5-1-4-2-3 | |
Scheme 10 | 5-2-3-1-4 | |
Scheme 11 | 5-2-4-1-3 | |
Scheme 12 | 5-3-4-1-2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Zhou, J.; Tan, M.; Jia, M.; Di, H. Construction Scheme Effects on Deformation Controls for Open-Top UBITs Underpassing Existing Stations. Buildings 2025, 15, 2762. https://doi.org/10.3390/buildings15152762
Yao Y, Zhou J, Tan M, Jia M, Di H. Construction Scheme Effects on Deformation Controls for Open-Top UBITs Underpassing Existing Stations. Buildings. 2025; 15(15):2762. https://doi.org/10.3390/buildings15152762
Chicago/Turabian StyleYao, Yanming, Junhong Zhou, Mansheng Tan, Mingjie Jia, and Honggui Di. 2025. "Construction Scheme Effects on Deformation Controls for Open-Top UBITs Underpassing Existing Stations" Buildings 15, no. 15: 2762. https://doi.org/10.3390/buildings15152762
APA StyleYao, Y., Zhou, J., Tan, M., Jia, M., & Di, H. (2025). Construction Scheme Effects on Deformation Controls for Open-Top UBITs Underpassing Existing Stations. Buildings, 15(15), 2762. https://doi.org/10.3390/buildings15152762