Evolution Characteristics of Urban Heat Island Circulation for Loess Tableland Valley Towns
Abstract
1. Introduction
2. Methods
2.1. Physical Model
2.2. Numerical Model
2.3. Grid Sensitivity Analysis
2.4. Model Validation
3. Results and Discussion
3.1. Two Airflow Patterns for Urban Heat Island Circulation
3.2. Start Time and Outflow Time of City-Scale Closed Circulation
3.2.1. Start Time of City-Scale Closed Circulation
3.2.2. Outflow Time of City-Scale Closed Circulation
3.3. Mixing Height and Heat Island Intensity in Quasi-Steady Stage
3.3.1. Mixing Height in Quasi-Steady Stage
3.3.2. Heat Island Intensity in Quasi-Steady Stage
4. Limitation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, Y.; Zhang, Y.; Wang, S.; Wang, X.; Lu, J.; Ge, J. A numerical rotating water tank can reproduce the Coriolis effect on the urban heat dome flow. Build. Environ. 2023, 229, 109894. [Google Scholar] [CrossRef]
- Kasimov, N.; Chalov, S.; Chubarova, N.; Kosheleva, N.; Popovicheva, O.; Shartova, N.; Stepanenko, V.; Androsova, E.; Chichaeva, M.; Erina, O. Urban heat and pollution island in the Moscow megacity: Urban environmental compartments and their interactions. Urban Clim. 2024, 55, 101972. [Google Scholar] [CrossRef]
- Rendón, A.M.; Salazar, J.F.; Palacio, C.A.; Wirth, V.; Brötz, B. Effects of urbanization on the temperature inversion breakup in a mountain valley with implications for air quality. J. Appl. Meteorol. Climatol. 2014, 53, 840–858. [Google Scholar] [CrossRef]
- Fernando, H. Fluid dynamics of urban atmospheres in complex terrain. Annu. Rev. Fluid Mech. 2010, 42, 365–389. [Google Scholar] [CrossRef]
- Zhu, L.; Miao, J. Overview of urban breeze circulation studies in China. Meteorol. Sci. Technol. 2019, 47, 52. [Google Scholar]
- Wu, S.; Wang, Y.; Chen, C.; Cao, Z.; Cao, J.; Yu, Z.; Song, H. Valley city ventilation under the calm and stable weather conditions: A review. Build. Environ. 2021, 194, 107668. [Google Scholar] [CrossRef]
- Wang, Q.; Hang, J.; Fan, Y.; Li, Y. Urban plume characteristics under various wind speed, heat flux, and stratification conditions. Atmos. Environ. 2020, 239, 117774. [Google Scholar] [CrossRef]
- Lu, J.; Arya, S.P.; Snyder, W.H.; Lawson, R.E., Jr. A laboratory study of the urban heat island in a calm and stably stratified environment. Part I: Temperature field. J. Appl. Meteorol. 1997, 36, 1377–1391. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, Q.; Yin, S.; Li, Y. Effect of city shape on urban wind patterns and convective heat transfer in calm and stable background conditions. Build. Environ. 2019, 162, 106288. [Google Scholar] [CrossRef]
- Lu, J.; Arya, S.P.; Snyder, W.H.; Lawson, R.E., Jr. A laboratory study of the urban heat island in a calm and stably stratified environment. Part II: Velocity field. J. Appl. Meteorol. 1997, 36, 1392–1402. [Google Scholar] [CrossRef]
- Abbassi, Y.; Ahmadikia, H.; Baniasadi, E. Impact of wind speed on urban heat and pollution islands. Urban Clim. 2022, 44, 101200. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Q.; Chan, P.; Li, Y. Performance of summertime temperature and wind fields under different background winds in Kowloon, Hong Kong. Urban Clim. 2023, 49, 101444. [Google Scholar] [CrossRef]
- Zhong, Q.; Song, J.; Wang, X.; Wang, H.; Shi, D.; Li, Y. Modeling of urban lake breeze circulation: Implications for the mitigation of urban overheating. Urban Clim. 2025, 59, 102295. [Google Scholar] [CrossRef]
- Moroni, M.; Giorgilli, M.; Cenedese, A. Experimental investigation of slope flows via image analysis techniques. J. Atmos. Sol. Terr. Phys. 2014, 108, 17–33. [Google Scholar] [CrossRef]
- Shindler, L.; Giorgilli, M.; Moroni, M.; Cenedese, A. Investigation of local winds in a closed valley: An experimental insight using Lagrangian particle tracking. J. Wind Eng. Ind. Aerodyn. 2013, 114, 1–11. [Google Scholar] [CrossRef]
- Wu, S.; Chen, C.; Wang, Y.; Yu, Z.; Cao, J.; Zhang, R.; Song, H. Differential effects of valley city morphology on mesoscale flow field characteristics. Build. Environ. 2021, 205, 108283. [Google Scholar] [CrossRef]
- Jing, H.; Liao, H.; Ma, C.; Tao, Q.; Jiang, J. Field measurement study of wind characteristics at different measuring positions in a mountainous valley. Exp. Therm. Fluid Sci. 2020, 112, 109991. [Google Scholar] [CrossRef]
- Wagner, J.; Gohm, A.; Rotach, M. The impact of valley geometry on daytime thermally driven flows and vertical transport processes. Q. J. R. Meteorol. Soc. 2015, 141, 1780–1794. [Google Scholar] [CrossRef]
- Cenedese, A.; Monti, P. Interaction between an inland urban heat island and a sea-breeze flow: A laboratory study. J. Appl. Meteorol. 2003, 42, 1569–1583. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, C.; Ren, C.; Hang, J.; Li, Y. Urban heat island circulations over the Beijing-Tianjin region under calm and fair conditions. Build. Environ. 2020, 180, 107063. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, F.; Liu, R.; Yang, G. Research on multiple circulations co-driven by lake breeze and urban heat islands in inner cities. China Environ. Sci. 2019, 39, 1890–1898. [Google Scholar]
- Wang, Y.; Yu, Z.; Wu, S.; Wang, J.; Cao, Z.; Cao, Y. Effects of urban heat flux and incoming flow stability on ventilation characteristics of Loess Tableland valley town under stable wind. Urban Clim. 2025, 61, 102492. [Google Scholar] [CrossRef]
- Fallmann, J.; Emeis, S. How to bring urban and global climate studies together with urban planning and architecture? Dev. Built Environ. 2020, 4, 100023. [Google Scholar] [CrossRef]
- Mei, S.; Hang, J.; Fan, Y.; Yuan, C.; Xue, Y. CFD simulations on the wind and thermal environment in urban areas with complex terrain under calm conditions. Sustain. Cities Soc. 2025, 118, 106022. [Google Scholar] [CrossRef]
- Tian, D.; Wei, Y.; Bai, Y.; Xi, J. Development Path of Integrated Unit of Primary and Secondary Valleys for the Towns in Loess Plateau Valleys. Planners 2024, 40, 104–111. [Google Scholar]
- Henao, J.J.; Rendón, A.M.; Salazar, J.F. Trade-off between urban heat island mitigation and air quality in urban valleys. Urban Clim. 2020, 31, 100542. [Google Scholar] [CrossRef]
- Reuten, C.; Steyn, D.; Allen, S. Upslope flows in atmosphere and water tank, part I: Scaling. Open Atmos. Sci. J. 2010, 4, 178–187. [Google Scholar] [CrossRef]
- Wu, L.; Bo, J.; Niu, J. Statistical analysis on the distribution characteristics of topographical parameters in loess area. Sci. Technol. Eng. 2021, 21, 8797–8806. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Yu, Z.; Wu, S.; Wang, J.; Wang, X. Evolution of urban heat island circulation for the flat city. Energy Built Environ. 2025. [Google Scholar] [CrossRef]
- Bhautmage, U.P.; Fung, J.C.H.; Pleim, J.; Wong, M.M.F. Development and evaluation of a new urban parameterization in the Weather Research and Forecasting (WRF) Model. J. Geophys. Res. Atmos. 2022, 127, e2021JD036338. [Google Scholar] [CrossRef]
- Xi, C.; Ren, C.; Haghighat, F.; Cao, S. Improving the urban wind flow prediction efficiency of target area by considering its surrounding buildings impact. Energy Build. 2024, 303, 113815. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Fan, Y.; Zhao, Y.; Carmeliet, J.; Ge, J. Urban heat dome flow deflected by the Coriolis force. Urban Clim. 2023, 49, 101449. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y. Predicting urban heat island circulation using CFD. Build. Environ. 2016, 99, 82–97. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, S.; Ye, T.; Miao, Y. Optimizing Urban Ventilation in Heritage Settings: A Computational Fluid Dynamics and Field Study in Zhao’an Old Town, Fujian. Buildings 2025, 15, 483. [Google Scholar] [CrossRef]
- Meng, M.; Xi, C.; Feng, Z.; Cao, S. Environmental co-benefits of urban design to mitigate urban heat island and PM2. 5 pollution: Considering prevailing wind’s effects. Indoor Built Environ. 2022, 31, 1787–1805. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, Y.; Yu, Z.; Lu, C.; Wu, S.; Yang, Y.; Meng, X. Spatio-temporal distribution of gaseous pollutants from multiple sources in industrial buildings with different flow patterns. Build. Simul. 2022, 15, 1629–1644. [Google Scholar] [CrossRef]
- Wang, Y.; Hang, J.; Mo, Z. Indoor and outdoor airflow modeling in built and urban environments by water tank and channel experiments: A review. Build. Simul. 2025, 18, 721–746. [Google Scholar] [CrossRef]
- Fan, Y.; Hunt, J.; Wang, Q.; Yin, S.; Li, Y. Water tank modelling of variations in inversion breakup over a circular city. Build. Environ. 2019, 164, 106342. [Google Scholar] [CrossRef]
- Fan, Y.; Li, Y.; Yin, S. Interaction of multiple urban heat island circulations under idealised settings. Build. Environ. 2018, 134, 10–20. [Google Scholar] [CrossRef]
- Kondrashov, A.; Sboev, I.; Dunaev, P. Heater shape effects on thermal plume formation. Int. J. Therm. Sci. 2017, 122, 85–91. [Google Scholar] [CrossRef]
- Nguyen, T.-A.; Kakuta, N. Experimental study on the initial thermal plumes produced by small heating plates in water. Exp. Therm. Fluid Sci. 2023, 142, 110803. [Google Scholar] [CrossRef]
- Wu, S.; Chen, C.; Song, H.; Yu, Z.; Wang, J.; Wang, Y. Reduced-scale numerical simulation method and its application to urban-scale buoyancy-driven flows. Build. Environ. 2023, 249, 111117. [Google Scholar] [CrossRef]
- Chang, C.; Schmidt, J.; Dörenkämper, M.; Stoevesandt, B. A consistent steady state CFD simulation method for stratified atmospheric boundary layer flows. J. Wind Eng. Ind. Aerodyn. 2018, 172, 55–67. [Google Scholar] [CrossRef]
- López-Guerrero, R.E.; Verichev, K.; Cárdenas-Ramírez, J.P.; Carpio, M. Urban heat islands’ effects on the thermo-energy performance of buildings according to their socio-economic factors. Dev. Built Environ. 2024, 20, 100566. [Google Scholar] [CrossRef]
- Zou, Y.; Wu, Z.; Li, B.; Jia, Y. Cooling Energy Challenges in Residential Buildings During Heat Waves: Urban Heat Island Impacts in a Hot-Humid City. Buildings 2024, 14, 4030. [Google Scholar] [CrossRef]
- Karimi, A.; Mohammad, P.; Garcia-Martinez, A.; Moreno-Rangel, D.; Gachkar, D.; Gachkar, S. New developments and future challenges in reducing and controlling heat island effect in urban areas. Environ. Dev. Sustain. 2023, 25, 10485–10531. [Google Scholar] [CrossRef]
- Degirmenci, K.; Desouza, K.C.; Fieuw, W.; Watson, R.T.; Yigitcanlar, T. Understanding policy and technology responses in mitigating urban heat islands: A literature review and directions for future research. Sustain. Cities Soc. 2021, 70, 102873. [Google Scholar] [CrossRef]
- Mei, S.; Yuan, C. Three-dimensional simulation of building thermal plumes merging in calm conditions: Turbulence model evaluation and turbulence structure analysis. Build. Environ. 2021, 203, 108097. [Google Scholar] [CrossRef]
- Saitoh, T.S.; Yamada, N. Experimental and numerical investigation of thermal plume in urban surface layer. Exp. Therm. Fluid Sci. 2004, 28, 585–595. [Google Scholar] [CrossRef]
- Abbassi, Y.; Ahmadikia, H.; Baniasadi, E. Prediction of pollution dispersion under urban heat island circulation for different atmospheric stratification. Build. Environ. 2020, 168, 106374. [Google Scholar] [CrossRef]
Number | Name | Symbol | Units | Dimensionless |
---|---|---|---|---|
1 | Slope height | H | m | 1 |
2 | Instantaneous heat flux | Qi | K·m·s−1 | 1 |
3 | Buoyant frequency | N | s−1 | 1 |
4 | Urban length | D | m | Π1 = D/H |
5 | Suburban length | L | m | Π2 = L/H |
6 | Horizontal slope length | W | m | Π3 = W/H |
7 | Heating time | t | s | Π4 = tN |
8 | Buoyancy parameter | gβ | m·s−2·K−1 | Π5 = gβQi/H2N3 |
9 | Roughness height | zr | m | Π6 = zr/H |
10 | Kinematic viscosity | ν | m2·s−1 | Π7 = ν/H2N |
11 | Thermal diffusivity | κ | m2·s−1 | Π8 = κ/H2N |
Case No. | Urban Length | Urban Heat Flux | Potential Temperature Lapse Rate | Suburban Length | Slope Height | Slope Angle |
---|---|---|---|---|---|---|
D (m) | Qu (W/m2) | ∂Tp/∂z (K/m) | L (m) | H (m) | θ (°) | |
1 | 700 | 50 | 0.003 | 250 | 200 | 28 |
2 | 1000 | 100 | 0.003 | 150 | 250 | 38 |
3 | 900 | 150 | 0.003 | 300 | 50 | 33 |
4 | 600 | 200 | 0.003 | 200 | 150 | 18 |
5 | 800 | 250 | 0.003 | 100 | 100 | 23 |
6 | 800 | 50 | 0.006 | 150 | 150 | 33 |
7 | 700 | 100 | 0.006 | 300 | 100 | 18 |
8 | 1000 | 150 | 0.006 | 200 | 200 | 23 |
9 | 900 | 200 | 0.006 | 100 | 250 | 28 |
10 | 600 | 250 | 0.006 | 250 | 50 | 38 |
11 | 600 | 50 | 0.009 | 300 | 250 | 23 |
12 | 800 | 100 | 0.009 | 200 | 50 | 28 |
13 | 700 | 150 | 0.009 | 100 | 150 | 38 |
14 | 1000 | 200 | 0.009 | 250 | 100 | 33 |
15 | 900 | 250 | 0.009 | 150 | 200 | 18 |
16 | 900 | 50 | 0.012 | 200 | 100 | 38 |
17 | 600 | 100 | 0.012 | 100 | 200 | 33 |
18 | 800 | 150 | 0.012 | 250 | 250 | 18 |
19 | 700 | 200 | 0.012 | 150 | 50 | 23 |
20 | 1000 | 250 | 0.012 | 300 | 150 | 28 |
21 | 1000 | 50 | 0.015 | 100 | 50 | 18 |
22 | 900 | 100 | 0.015 | 250 | 150 | 23 |
23 | 600 | 150 | 0.015 | 150 | 100 | 28 |
24 | 800 | 200 | 0.015 | 300 | 200 | 38 |
25 | 700 | 250 | 0.015 | 200 | 250 | 33 |
Predictive Model | RSS | RMSE | R2 | VIF |
---|---|---|---|---|
Equation (12) | 1294.44 | 7.19 | 0.85 | 6.67 |
Equation (13) | 7.79 | 0.56 | 0.97 | 33.33 |
Index | Range (Rs) | In Order of Priority | |||||
---|---|---|---|---|---|---|---|
D | Qu | ∂Tp/∂z | L | H | θ | ||
tcs | 432.00 | 828.00 | 204.00 | 132.00 | 156.00 | 84.00 | Qu > D > ∂Tp/∂z > H > L > θ |
tos | 4038.60 | 5500.40 | 3238.40 | 3678.00 | 6970.20 | 3548.60 | H > Qu > D > L > θ > ∂Tp/∂z |
zic | 42.75 | 146.95 | 215.33 | 21.02 | 221.26 | 22.96 | H > ∂Tp/∂z > Qu > D > θ > L |
∆Tqs | 0.47 | 1.86 | 2.16 | 0.53 | 2.02 | 0.52 | ∂Tp/∂z > H > Qu > L > θ > D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Wang, Y.; Wang, J.; Wang, X.; Wu, S. Evolution Characteristics of Urban Heat Island Circulation for Loess Tableland Valley Towns. Buildings 2025, 15, 2649. https://doi.org/10.3390/buildings15152649
Yu Z, Wang Y, Wang J, Wang X, Wu S. Evolution Characteristics of Urban Heat Island Circulation for Loess Tableland Valley Towns. Buildings. 2025; 15(15):2649. https://doi.org/10.3390/buildings15152649
Chicago/Turabian StyleYu, Zhuolei, Yi Wang, Jukun Wang, Xiaoxue Wang, and Songheng Wu. 2025. "Evolution Characteristics of Urban Heat Island Circulation for Loess Tableland Valley Towns" Buildings 15, no. 15: 2649. https://doi.org/10.3390/buildings15152649
APA StyleYu, Z., Wang, Y., Wang, J., Wang, X., & Wu, S. (2025). Evolution Characteristics of Urban Heat Island Circulation for Loess Tableland Valley Towns. Buildings, 15(15), 2649. https://doi.org/10.3390/buildings15152649