A Review of Artificial Intelligence and Deep Learning Approaches for Resource Management in Smart Buildings
Abstract
1. Introduction
2. Methodology
2.1. Search Strategy and Selection Criteria
2.2. Data Extraction and Appraisal
2.3. Data Synthesis and Analysis
3. Results
3.1. IoT Sensor Ecosystem and Digital Twin
3.2. AI and Deep Learning Techniques
3.3. LLM in Management of Smart-Building Resources
3.4. Smart Readiness Alignment
4. Discussion
4.1. Security and Data Quality Challenges
4.2. Integration and System Constraints
4.3. Privacy, Ethics and Regulatory Requirements
4.4. Energy-Performance Trade-Offs
4.5. The Role of Digital Twins and Advanced Models
4.6. Real-World Implementation of AI and Machine Learning
4.7. Methodological Challenges and Research Quality
5. Limitations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ML | Machine Learning |
DL | Deep Learning |
DRL | Deep Reinforcement Learning |
RL | Reinforcement Learning |
IoT | Internet of Things |
HVAC | Heating, Ventilation, and Air Conditioning |
IEQ | Indoor Environmental Quality |
BIM | Building Information Modeling |
DT | Digital Twin |
CNN | Convolutional Neural Network |
RNN | Recurrent Neural Network |
LSTM | Long Short-Term Memory |
GNN | Graph Neural Network |
GAT | Graph Attention Network |
FL | Federated Learning |
XAI | Explainable Artificial Intelligence |
MVA | Multivariate Statistical Analysis |
CPV | Customer Perceived Value |
RAG | Retrieval-Augmented Generation |
LLM | Large Language Model |
SHAP | SHapley Additive exPlanations |
SVM | Support Vector Machine |
KNN | K-Nearest Neighbors |
RF | Random Forest |
GB | Gradient Boosting |
CCNN-QL | Convolutional Cellular Neural Network with Q-Learning |
LMARO | Long-Term Memory Artificial Rabbit Optimization |
M4.0 | Maintenance 4.0 |
BMS | Building Management System |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
FastML | Fast Machine Learning |
Appendix A
Authors [Ref.] | Year | Study Type | Method | Application | Performance Metric |
---|---|---|---|---|---|
Zhou, Y. [1] | 2022 | Review | Machine Learning | Multi-energy district communities | Review of mechanisms and applications |
Sanzana, M. R., Maul, T., et al. [2] | 2022 | Review | Deep Learning | Facility management and maintenance (HVAC) | Review of DL applications |
Cespedes-Cubides, A. S. & Jradi, M. [3] | 2024 | Review | Digital Twins, BIM, IoT, Anomaly Detection | Improving energy efficiency in operational stage | Systematic review of digital twins |
Yu, J., De Antonio, A., & Villalba-Mora, E. [4] | 2022 | Review | Deep Learning (CNN, RNN) | Applications for smart homes | Systematic review |
Moghimi, S. M., Gulliver, T. A., & Chelvan, I. T. [5] | 2024 | Review | ML, Demand Prediction | Energy management in modern buildings | Review of ML for demand prediction |
Djenouri, D., Laidi, R., et al. [6] | 2020 | Review | Machine Learning (SVM, Decision Trees), Deep Learning | Occupant-focused and energy management | Taxonomy and review of methods |
Alanne, K. & Sierla, S. [7] | 2022 | Review | Deep Reinforcement Learning (DRL), Supervised/Unsupervised ML | Autonomous decision-making in buildings | Review of ML applications |
Shah, S., Iqbal, M., et al. [8] | 2022 | Review | IoT, Machine Learning (ANN, CNN, DRL) | Enhancing building energy efficiency | Analysis of IoT and ML synergy |
Dong, B., Prakash, V., et al. [9] | 2019 | Review | Smart Sensing Systems | Indoor environment control | Review of sensing systems |
Yoon, S. [10] | 2022 | Review | Virtual Sensing, Digitalization | Virtual sensing in intelligent buildings | Review of technologies |
Zhou, S. L., Shah, A. A., et al. [11] | 2023 | Review | Machine Learning | Applications of ML for HVAC | Comprehensive review for HVAC |
Yu, L., Qin, S., et al. [12] | 2021 | Review | DRL (DQN, DDPG, PPO, A3C), Model-Based DRL | Smart building energy management | Comprehensive review of DRL |
Tien, P. W., Wei, S., et al. [13] | 2022 | Review | ML (SVM, RF) and DL (CNN, LSTM) | Energy efficiency and indoor environmental quality | Critical review of methods |
Baduge, S. K., Thilakarathna, S., et al. [14] | 2022 | Review | AI, Smart Vision, Deep Learning | Building and construction 4.0 | Review of methods and applications |
Jia, M., Komeily, A., et al. [15] | 2019 | Review | Internet of Things (IoT) | Adopting IoT for smart building development | Review of enabling technologies |
Huseien, G. F. & Shah, K. W. [16] | 2022 | Review | 5G Technology | Smart energy management and smart buildings | Review of 5G in Singapore |
Dai, X., Liu, J., & Zhang, X. [17] | 2020 | Review | Machine Learning | Predicting occupancy and window-opening behaviors | Energy savings of ~23% for HVAC |
Xu, Y., Zhou, Y., Sekula, P., & Ding, L. [18] | 2021 | Review | Machine Learning (Shallow vs. Deep) | Machine learning in construction | Evolution from shallow to deep learning |
Sayed, A. N., Himeur, Y., & Bensaali, F. [19] | 2022 | Review | Deep Learning, Transfer Learning | Building occupancy detection | Comparative analysis |
Qolomany, B., Al-Fuqaha, A., et al. [20] | 2019 | Review | ML (SVM, DL, HMM), Big Data Analytics | Optimization, security, and comfort in smart buildings | Comprehensive survey |
Petroșanu, D.-M., Căruțașu, G., et al. [21] | 2019 | Review | Machine Learning, Sensor Devices | Integrating ML with sensor devices | Review of recent developments |
Verma, A., Prakash, S., et al. [22] | 2019 | Review | Sensing, Controlling, IoT Infrastructure | Review of IoT infrastructure in smart buildings | Comprehensive infrastructure review |
Ożadowicz, A. [23] | 2024 | Review | Generic IoT, Field-Level Automation | IoT for smart buildings and automation | Review of challenges and solutions |
Aliero, M. S., Asif, M., et al. [24] | 2022 | Review | Smart Building Technologies | Challenges and opportunities in smart buildings | Systematic review analysis |
Fan, C., Lei, Y., et al. [25] | 2024 | Review | Transfer Learning, Semi-Supervised Learning, GANs | Smart building operations in data-challenging contexts | Review of novel ML paradigms |
Sharma, H., Haque, A., & Blaabjerg, F. [26] | 2021 | Survey | Machine Learning, Wireless Sensor Networks | ML in WSNs for smart cities | Survey of techniques |
Yang, A., Han, M., Zeng, Q., & Sun, Y. [27] | 2021 | Review | Building Information Modeling (BIM) | Adopting BIM for smart building development | Review of applications and challenges |
Arowoiya, V. A., Moehler, R. C., & Fang, Y. [28] | 2024 | Review | Digital Twin, IoT, Machine Learning | Thermal comfort and energy efficiency | State-of-the-art and future directions |
Mololoth, V. K., Saguna, S., & Åhlund, C. [29] | 2023 | Review | Blockchain, Machine Learning | Future smart grids | Review of combined technologies |
Mir, U., Abbasi, U., et al. [30] | 2021 | Review | Energy Management Systems | Current approaches and challenges in smart homes | Hypothetical solution proposal |
Mathumitha, R., Rathika, P., & Manimala, K. [31] | 2024 | Review | Intelligent Deep Learning | Energy consumption forecasting | Review of DL techniques |
Pinto, G., Wang, Z., et al. [32] | 2022 | Review | Transfer Learning, Domain Adaptation | Algorithms and applications for smart buildings | Critical review of transfer learning |
Farzaneh, H., Malehmirchegini, L., et al. [33] | 2021 | Review | Artificial Intelligence | AI evolution in smart buildings for energy efficiency | Review of AI applications |
Walczyk, G. & Ożadowicz, A. [34] | 2025 | Methodology | Smart Readiness Indicator (SRI), Building Automation | Energy performance improvement | Framework for SRI deployment |
European Parliament and Council [35] | 2024 | Regulatory Document | Legal Framework (EU AI Act) | Regulation of artificial intelligence | Official EU Act |
European Parliament and Council [36] | 2024 | Regulatory Document | Legal Framework (EPBD) | Regulation of energy performance of buildings | Official EU Directive |
ISO/IEC TR 24028:2021 [37] | 2021 | Standard | AI Trustworthiness | Overview of trustworthiness in AI | International standard |
Rojek, I., Mikołajewski, D., et al. [38] | 2025 | Review | Deep Learning (DL) | Energy optimization in smart cities | Review of DL algorithms |
Li, D., Qi, Z., et al. [39] | 2025 | Review | Machine Learning | Building energy systems | Review and prospects of ML applications |
Jørgensen, B.N. & Ma, Z.G. [40] | 2025 | Review | AI, IoT, Regulatory Analysis | Building energy management systems (BEMS) | Review of barriers and opportunities |
Oulefki, A., Kheddar, H., et al. [41] | 2025 | Survey | AI, Digital Twins | Smart building operations | Survey of AI strategies |
Elkhoukhi, H., Elmouatamid, A., et al. [42] | 2025 | Review | Sensing, Data Processing, IoT | Smart building services and applications | Overview of technologies |
Liu, J. & Chen, J. [43] | 2025 | Bibliometric Analysis | Machine Learning | Building energy optimization | Bibliometric analysis of ML trends |
Michailidis, P., Michailidis, I., & Kosmatopoulos, E. [44] | 2025 | Review | Reinforcement Learning (RL) | Renewable energy utilization in buildings | Review of RL applications |
Rousseeuw, P.J. [45] | 1987 | Methodology | Silhouette Coefficient | Cluster analysis validation | Proposed a new graphical aid |
Halkidi, M., Batistakis, Y., & Vazirgiannis, M. [46] | 2002 | Review/Methodology | Cluster Validity Methods | Validation of cluster analysis | Review of validity indices |
Pedregosa, F., Varoquaux, G., et al. [47] | 2011 | Methodology | Scikit-Learn, Python | Machine learning in Python | Foundational library paper |
Deerwester, S., Dumais, S.T., et al. [48] | 1990 | Methodology | Latent Semantic Analysis (LSA) | Indexing by latent semantic analysis | Foundational method proposal |
MacQueen, J.B. [49] | 1967 | Methodology | K-Means Clustering | Classification and analysis of multivariate data | Foundational algorithm proposal |
Steinley, D. [50] | 2006 | Review/Synthesis | K-Means Clustering | Cluster analysis | Synthesis of a half-century of research |
Sabit, H. & Tun, T. [51] | 2024 | Case Study | IoT, Failsafe Systems | Failsafe smart building management system | Demonstration of a resilient system |
Cano-Suñén, E., Martínez, I., et al. [52] | 2023 | Case Study | Internet of Things (IoT) | IoT in buildings as a “Learning Factory” | Demonstration of the concept |
Aazami, R., Moradi, M., et al. [53] | 2025 | Simulation | Scheduling, Smart Sensors, IoT | Comfort and energy analysis with automation | Comparative analysis of automation levels |
García-Monge, M., Zalba, B., et al. [54] | 2023 | Case Study | IoT Monitoring | IoT for improving building energy efficiency | Energy savings of 40–70% in ventilation |
Jiang, F., Xie, H., Gandla, S.R., & Fei, S. [55] | 2025 | Case Study | BIM, Digital Twin, Machine Learning (SVM, LSTM) | Transforming hospital HVAC design | Demonstration of adaptive infection control |
Salzano, A., Cascone, S., et al. [56] | 2025 | Case Study | Digital Twin, IoT, Predictive Maintenance | HVAC performance in educational facilities | 15% energy reduction demonstrated |
Ntafalias, A., Papadopoulos, P., et al. [57] | 2024 | Case Study | IoT Platform, Machine Learning | Energy savings with legacy equipment | Case study in Ireland and Greece |
Quang, T.V., Doan, D.T., et al. [58] | 2025 | Review | Privacy-Preserving AI, Edge Computing, SITA model | Indoor air quality (IAQ) control | Framework for privacy-preserving IAQ |
Villani, L., Casciola, M., & Astiaso Garcia, D. [59] | 2025 | Case Study | BIM, IoT, Machine Learning | Smart building energy systems refurbishment | Integrated technologies case study in Italy |
Fatehi Karjou, P., Khodadad Saryazdi, S., et al. [60] | 2024 | Case Study | IoT, Occupancy Monitoring | Practical design for office occupancy systems | State-based data fusion method |
Ranpara, R. A. [61] | 2025 | Conceptual | Semantic Ontology, IoT | Enhancing interoperability and automation in IoT | Framework proposal |
Abrokwah-Larbi, K. [62] | 2025 | Conceptual | IoT, Explainable AI (XAI) | Customer perceived value (CPV) prediction | Theoretical framework |
Chaudhari, P., Xiao, Y., et al. [63] | 2024 | Review | IoT Sensors, ML, DL | Occupancy detection for smart buildings | Review of fundamentals and algorithms |
Liang, Z. & Chen, J. [64] | 2025 | Simulation | Customized Deep Learning (CNN + Q-Learning) | Building energy consumption forecasting | Superior performance vs. benchmarks |
Márquez-Sánchez, S., Calvo-Gallego, J., et al. [65] | 2023 | Empirical Study | Adaptive Edge Computing, Reinforcement Learning | Enhancing building energy management | Framework for optimized efficiency |
Shaban, I.A., Salem, H., et al. [66] | 2025 | Review | Maintenance 4.0, AI, IoT | HVAC systems maintenance | Review of challenges and research gaps |
Qolomany, B., Al-Fuqaha, A., et al. [20] | 2019 | Review | ML (SVM, DL, HMM), Big Data Analytics | Optimization, security, and comfort in smart buildings | Comprehensive survey |
Aziz, G. & Hardy, A. [67] | 2025 | Simulation | Explainable AI (XAI), Predictive Modeling | Damp risk prediction in housing | High accuracy in risk prediction |
Gayathri, D. & Shantharajah, S.P. [68] | 2025 | Empirical Study | Meta-learning, Ensemble (RF, GB, XGBoost) | Sensor battery life prediction | Improved accuracy, compact model size |
He, Y., Ali, A.B.M., et al. [69] | 2025 | Simulation | Graph Attention Networks (GAT), Ensemble Learning | Intelligent HVAC optimization | Recommender system approach |
Hussien, A., Maksoud, A., et al. [70] | 2025 | Simulation | Machine Learning | Long-term energy consumption prediction | Predictive modeling case study |
Aslam, S., Aung, P.P., et al. [71] | 2025 | Review | Machine Learning, Deep Learning, RL | Applications in energy systems | Review of trends and challenges |
Vamvakas, D., Michailidis, P., et al. [72] | 2023 | Review | Reinforcement Learning | RL frameworks on smart grid applications | Evaluation of RL frameworks |
Xu, S., Fu, Y., et al. [73] | 2025 | Simulation | Reinforcement Learning, Expert-Guided Training | HVAC control with heterogeneous expert guidance | 8.8× reduction in training time |
Pushpa, G., Babu, R.A., et al. [74] | 2025 | Simulation | Deep Reinforcement Learning, GNN | Optimizing coverage in wireless sensor networks | Coverage optimization algorithm |
Abdelalim, A.M., Essawy, A., et al. [75] | 2025 | Review | AI, Digital Twin | Facilities management in mega-facilities | Optimization strategy review |
Jiang, F.; Xie, H.; Gandla, S.R.; Fei, S. [55] | 2025 | Case Study | BIM, Digital Twin, Machine Learning (SVM, LSTM) | Transforming hospital HVAC design | Demonstration of adaptive infection control |
Nele, L., Mattera, G., et al. [76] | 2024 | Review | Machine Learning, Digital Twin | Multi-scale review of ML in DT technology | Review of applications |
Quang, T.V., Doan, D.T., et al. [58] | 2025 | Review | Privacy-Preserving AI, Edge Computing, SITA Model | Indoor air quality (IAQ) control | Framework for privacy-preserving IAQ |
Gawande, M.S., Zade, N., et al. [77] | 2025 | Review | AI, ML (CNN, LSTM), Federated Learning | Pandemic response management | Review of AI’s role |
Elkhoukhi, H., Elmouatamid, A., et al. [42] | 2025 | Review | Sensing, Data Processing, IoT | Smart building services and applications | Overview of technologies |
Alkhabbas, F., Munir, H., et al. [78] | 2025 | Case Study | IoT System Engineering (Qualitative Interviews) | Quality characteristics of IoT systems | Analysis of industry expert views |
Abrokwah-Larbi, K. [62] | 2025 | Conceptual | IoT, Explainable AI (XAI) | Customer perceived value (CPV) prediction | Theoretical framework |
Ullah, A. et al. [79] | 2024 | Review | LLMs, Deep Learning, Federated Learning, Blockchain | Role of LLMs in sustainable smart cities | Survey of applications and challenges |
Zhang, L. et al. [80] | 2024 | Simulation | Large Language Models (LLM), Prompt Engineering | Automated building energy modeling (BEM) | 93% reduction in model setup time |
Liu, M. et al. [81] | 2025 | Empirical Study | LLM (GPT-3.5, GPT-4), RAG | Exploring LLM opportunities in building energy | Analysis of capabilities and challenges |
Ahn, K.U., Kim, D.-W., et al. [82] | 2023 | Conceptual | LLM (ChatGPT) | HVAC control with LLMs | Analysis of alternative approaches |
Papaioannou, I., Korkas, C., & Kosmatopoulos, E. [83] | 2025 | Conceptual | LLM, Semantic Comparison | Smart building recommendations with LLMs | Framework proposal |
Ly, R., Shojaei, A., & Gao, X. [83] | 2025 | Conceptual | LLM, Virtual Assistants | Smart building operations with virtual assistants | Conceptual framework |
Jiang, G. et al. [84] | 2025 | Simulation | LLM, Prompt Engineering | Automated building energy modeling | Analysis of prompt engineering |
Xu, Z. et al. [85] | 2023 | Simulation | Fuzzy Classification, Shared Features | Personal thermal comfort prediction | High classification accuracy |
Gautam, A. et al. [86] | 2025 | Case Study | IIoT, Digital Twin, LLM Integration | Legacy and smart factory machine control | Framework for LLM-driven avatars |
Jahanbakhsh, N. et al. [87] | 2025 | Conceptual | Retrieval-Augmented Generation (RAG), LLM | Automated smart home orchestration | Framework proposal |
Mo, Y., Garone, E., et al. [88] | 2010 | Case Study/Simulation | State Estimation, Wireless Sensor Networks (WSN) | Attack detection in WSNs | Analysis of attack vectors |
Zhu, H.C. et al. [89] | 2021 | Simulation | Linear Models, ML Surrogates, CFD | Fast online control of HVAC systems | Up to 35% total HVAC energy savings |
Saleh, A. et al. [90] | 2025 | Conceptual | Multi-Agent Systems, LLM (GPT), Distributed AI | Energy-efficient user-environment interaction | Conceptual framework for “Follow-Me AI” |
Zheng, Y. et al. [91] | 2025 | Review | LLM, NLP | LLMs for medicine | Survey of medical LLM applications |
Chiarello, F. et al. [92] | 2024 | Case Study | Generative LLM (ChatGPT), Data-Driven Analysis | Future applications of generative LLMs | Case study on ChatGPT usage patterns |
Zhang, L. & Chen, Z. [80] | 2024 | Simulation | Interpretable ML, LLM (GPT-3.5), SHAP | Interpretable HVAC control for operator trust | Strong alignment with human operator decisions |
Fan, H. et al. [93] | 2025 | Review | LLM, Embodied Intelligence | Autonomous industrial robotics | Review of LLMs in manufacturing |
Marinakis, V. [94] | 2020 | Review | Big Data, Energy Management | Big data for energy-efficient buildings | Review of big data applications |
Chatzikonstantinidis, K., Giama, E., et al. [95] | 2024 | Conceptual | Smart Readiness Indicator (SRI) | SRI as a decision-making tool | Framework analysis |
Fokaides, P.A., Panteli, C., & Panayidou, A. [96] | 2020 | Conceptual | Smart Readiness Indicator (SRI) | Effect of SRI on energy performance | First evidence and perspectives |
Märzinger, T. & Österreicher, D. [97] | 2020 | Conceptual | Smart Readiness Indicator (SRI) | Methodology for quantitative load shifting assessment | Framework proposal |
Märzinger, T. & Österreicher, D. [98] | 2020 | Conceptual | Smart Readiness Indicator (SRI) | Quantitative district-level assessment of SRI | Modeling application |
Vigna, I., Pernetti, R., et al. [97] | 2020 | Case Study | Smart Readiness Indicator (SRI) | SRI calculation analysis | Comparative case-study with experts |
Plienaitis, G., Daukšys, M., et al. [99] | 2023 | Case Study | Smart Readiness Indicator (SRI) | Evaluation of SRI for educational buildings | Case-study based evaluation |
Qolomany, B., Otrok, H., et al. [20] | 2019 | Review | ML (SVM, DL, HMM), Big Data Analytics | Optimization, security, and comfort in smart buildings | Comprehensive survey |
Stefanopoulou, A., Michailidis, I., et al. [100] | 2025 | Case Study | Data Integrity Pipeline, Anomaly Detection | Ensuring real-time data integrity in smart buildings | End-to-end pipeline evaluation |
Sándor, B. & Rajnai, Z. [101] | 2023 | Review | Cyber Security Architecture | Cyber security analysis of smart buildings | Architectural point-of-view analysis |
Aliero, M. S., Asif, M., et al. [24] | 2022 | Review | Smart Building Technologies | Challenges and opportunities in smart buildings | Systematic review analysis |
Zong, M., Hekmati, A., et al. [102] | 2025 | Review | LLM, IoT | Integrating LLMs with the Internet of Things | Review of applications |
Kök, İ., Demirci, O., & Özdemir, S. [103] | 2024 | Review | LLM, IoT | LLMs meeting IoT: applications and challenges | Review of integration issues |
Stefanopoulou, A., Michailidis, I., et al. [100] | 2025 | Case Study | Data Integrity Pipeline, Anomaly Detection | Ensuring real-time data integrity in smart buildings | End-to-end pipeline evaluation |
[Anonymous] [104] | 2024 | Survey | Large Language Models | Security and privacy challenges of LLMs | Survey of vulnerabilities |
Badii, C., Bellini, P., et al. [105] | 2020 | Case Study | IoT Platform, GDPR | Smart city IoT platform respecting privacy | Demonstration of a GDPR-compliant platform |
Daoudagh, S., Marchetti, E., et al. [106] | 2021 | Conceptual | Data Protection by Design, Consent Management | Data protection in smart cities | Consent and access control proposal |
Märzinger, T. & Österreicher, D. [107] | 2019 | Conceptual | Smart Readiness Indicator (SRI) | Methodology for quantitative load shifting assessment | Framework proposal |
Kourgiozou V., Godoy Shimizu D., et al. [108] | 2023 | Methodology | Smart Readiness Indicator (SRI), DEC Data | Estimating smart readiness of building stock | New estimation method |
Zamanidou A., Carnero P., et al. [109] | 2024 | Analysis | Smart Readiness Indicator (SRI) | Enhancing smart readiness of buildings | Bridging knowledge gap to citizens |
Wang H., Chen X., et al. [110] | 2024 | Simulation | Deep Reinforcement Learning (DRL) | Energy optimization for HVAC systems | ~26% annual energy savings |
European Parliament and Council [35] | 2024 | Regulatory Document | Legal Framework (EU AI Act) | Regulation of artificial intelligence | Official EU Act |
European Parliament and Council [36] | 2024 | Regulatory Document | Legal Framework (EPBD) | Regulation of energy performance of buildings | Official EU Directive |
ISO; IEC. [37] | 2021 | Standard | AI Trustworthiness | Overview of trustworthiness in AI | International standard |
Palley, B. et al. [111] | 2025 | Review | Machine Learning, Digital Twins | Smart building operation and energy management | Systematic review |
Deng, W., Yang, T., et al. [112] | 2016 | Case Study | Policy Analysis, Case Study | Green building policy development | Identified barriers and recommendations |
Luther, M.B., Horan, P., & Tokede, O.O. [113] | 2017 | Case Study | Performance Measurement, Retrofitting Analysis | Post-retrofit performance monitoring | Analysis of performance decay |
Eleftheriadis, G. & Hamdy, M. [114] | 2018 | Case Study | Performance Analysis, Degradation Modeling | Impact of degradation on energy performance | Quantified performance degradation |
Turner, W., Staino, A., & Basu, B. [115] | 2017 | Case Study | System Identification, Fault Detection | Residential HVAC fault detection | Methodology for detecting subtle faults |
Mehmood, H., Kostakos, P., et al. [116] | 2021 | Review | Concept Drift Adaptation | Techniques for distributed real-world data streams | Review of adaptation techniques |
Agostinelli, S., Cumo, F., et al. [117] | 2021 | Review | Cyber-Physical Systems, Digital Twin, AI | Building energy management | Review of DT and AI integration |
Ammar, A., Nassereddine, H., et al. [118] | 2022 | Empirical Study | Digital Twins | Digital twins in construction industry | Practitioners’ perspective |
Khajavi, S. H., Motlagh, N. H., et al. [119] | 2019 | Review | Digital Twin | Vision, benefits, and creation for buildings | Comprehensive DT review |
Almusaed, A. & Yitmen, I. [120] | 2023 | Review | AI, Digital Twins | Smart building design concepts | Architectural design review |
Elfarri, E. M., Rasheed, A., & San, O. [121] | 2023 | Case Study | AI, Digital Twin, Virtual Reality (VR) | AI-driven digital twin in VR | Demonstration in a modern house |
Bibri, S. E., Huang, J., et al. [122] | 2024 | Review | AI, Digital Twin | Environmental planning of smart cities | Systematic review |
Radanliev, P., De Roure, D., et al. [123] | 2021 | Review | Digital Twins, AI, IoT, Cyber-Physical Systems | DTs in Industry 4.0 | Review of DTs in Industry 4.0 |
Sawada, T., Mizuno, M., et al. [124] | 2025 | Simulation | Agentic AI, LLM | Advanced building HVAC control systems | Office-in-the-loop concept |
Hou, Y. B., Leung, K. F., et al. [125] | 2024 | Conference Paper | Large Language Models | HVAC control applications | Performance analysis |
Li, H., Wang, S. X., et al. [126] | 2024 | Empirical Study | Large Language Models | LLM applications in cloud computing | Real-world data study |
Luo, X., Liu, D., et al. [127] | 2024 | Review | Large Language Models | Integration of LLMs with the physical world | Research and application review |
Jia, R., Jin, M., et al. [128] | 2019 | Empirical Study | Deep Reinforcement Learning | Advanced building control via DRL | Case study of DRL control |
Himeur, Y., Elnour, M., et al. [129] | 2022 | Survey | AI, Big Data Analytics | AI for building automation and management | Survey of challenges and perspectives |
References
- Zhou, Y. Advances of Machine Learning in Multi-Energy District Communities—Mechanisms, Applications and Perspectives. Energy AI 2022, 10, 100187. [Google Scholar] [CrossRef]
- Sanzana, M.R.; Maul, T.; Wong, J.Y.; Abdulrazic, M.O.M.; Yip, C.-C. Application of Deep Learning in Facility Management and Maintenance for HVAC. Autom. Constr. 2022, 141, 104445. [Google Scholar] [CrossRef]
- Cespedes-Cubides, A.S.; Jradi, M. A Review of Building Digital Twins to Improve Energy Efficiency in the Operational Stage. Energy Inform. 2024, 7, 11. [Google Scholar] [CrossRef]
- Yu, J.; De Antonio, A.; Villalba-Mora, E. Deep Learning (CNN, RNN) Applications for Smart Homes: A Systematic Review. Computers 2022, 11, 26. [Google Scholar] [CrossRef]
- Moghimi, S.M.; Gulliver, T.A.; Chelvan, I.T. Energy Management in Modern Buildings Based on Demand Prediction and Machine Learning—A Review. Energies 2024, 17, 555. [Google Scholar] [CrossRef]
- Djenouri, D.; Laidi, R.; Djenouri, Y.; Balasingham, I. Machine Learning for Smart Building Applications: Review and Taxonomy. ACM Comput. Surv. 2020, 52, 1–36. [Google Scholar] [CrossRef]
- Alanne, K.; Sierla, S. An Overview of Machine Learning Applications for Smart Buildings. Sustain. Cities Soc. 2022, 76, 103445. [Google Scholar] [CrossRef]
- Shah, S.; Iqbal, M.; Aziz, Z.; Rana, T.; Khalid, A.; Cheah, Y.-N.; Arif, M. The Role of Machine Learning and IoT in Smart Buildings for Energy Efficiency. Appl. Sci. 2022, 12, 7882. [Google Scholar] [CrossRef]
- Dong, B.; Prakash, V.; Feng, F.; O’Neill, Z. A Review of Smart Building Sensing Systems for Indoor Environment Control. Energy Build. 2019, 199, 29–46. [Google Scholar] [CrossRef]
- Yoon, S. Virtual Sensing in Intelligent Buildings and Digitalization. Autom. Constr. 2022, 143, 104578. [Google Scholar] [CrossRef]
- Zhou, S.L.; Shah, A.A.; Leung, P.K.; Zhu, X.; Liao, Q. A Comprehensive Review of ML Applications for HVAC. DeCarbon 2023, 2, 100023. [Google Scholar] [CrossRef]
- Yu, L.; Qin, S.; Zhang, M.; Shen, C.; Jiang, T.; Guan, X. Review of Deep Reinforcement Learning for Smart Building Energy Management. IEEE Internet Things J. 2021, 8, 12046–12063. [Google Scholar] [CrossRef]
- Tien, P.W.; Wei, S.; Darkwa, J.; Wood, C.; Calautit, J.K. ML and DL Methods for Enhancing Building Energy Efficiency and Indoor Air Quality. Energy AI 2022, 10, 100198. [Google Scholar] [CrossRef]
- Baduge, S.K.; Thilakarathna, S.; Perera, J.S.; Arashpour, M.; Sharafi, P.; Teodosio, B.; Shringi, A.; Mendis, P. AI and Smart Vision for Building and Construction 4.0. Autom. Constr. 2022, 141, 104440. [Google Scholar] [CrossRef]
- Jia, M.; Komeily, A.; Wang, Y.; Srinivasan, R.S. IoT Adoption for Smart Buildings: Technologies and Applications. Autom. Constr. 2019, 101, 111–126. [Google Scholar] [CrossRef]
- Huseien, G.F.; Shah, K.W. Review on 5G for Smart Energy Management and Buildings. Energy AI 2022, 7, 100116. [Google Scholar] [CrossRef]
- Dai, X.; Liu, J.; Zhang, X. ML for Occupancy and Window Behavior Prediction in Smart Buildings. Energy Build. 2020, 223, 110159. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, Y.; Sekula, P.; Ding, L. Machine Learning in Construction: From Shallow to Deep. Dev. Built Environ. 2021, 6, 100045. [Google Scholar] [CrossRef]
- Sayed, A.N.; Himeur, Y.; Bensaali, F. Deep and Transfer Learning for Building Occupancy Detection. Eng. Appl. Artif. Intell. 2022, 115, 105254. [Google Scholar] [CrossRef]
- Qolomany, B.; Al-Fuqaha, A.; Gupta, A.; Benhaddou, D.; Alwajidi, S.; Qadir, J.; Fong, A.C. Leveraging ML and Big Data for Smart Buildings: A Survey. IEEE Access 2019, 7, 90316–90356. [Google Scholar] [CrossRef]
- Petroșanu, D.-M.; Căruțașu, G.; Căruțașu, N.L.; Pîrjan, A. Recent ML Integration with Sensors in Smart Buildings. Energies 2019, 12, 4745. [Google Scholar] [CrossRef]
- Verma, A.; Prakash, S.; Srivastava, V.; Kumar, A.; Mukhopadhyay, S.C. Sensing, Controlling, and IoT Infrastructure in Smart Buildings. IEEE Sens. J. 2019, 19, 9036–9046. [Google Scholar] [CrossRef]
- Ożadowicz, A. Generic IoT for Smart Buildings and Field-Level Automation. Computers 2024, 13, 45. [Google Scholar] [CrossRef]
- Aliero, M.S.; Asif, M.; Ghani, I.; Pasha, M.F.; Jeong, S.R. Systematic review analysis on smart building: Challenges and opportunities. Sustainability 2022, 14, 3009. [Google Scholar] [CrossRef]
- Fan, C.; Lei, Y.; Mo, J.; Wang, H.; Wu, Q.; Cai, J. ML Paradigms for Smart Building Operations. Natl. Sci. Open 2024, 3, 20230068. [Google Scholar] [CrossRef]
- Sharma, H.; Haque, A.; Blaabjerg, F. ML in Wireless Sensor Networks for Smart Cities. Electronics 2021, 10, 1012. [Google Scholar] [CrossRef]
- Yang, A.; Han, M.; Zeng, Q.; Sun, Y. BIM for Smart Buildings: Applications and Challenges. Adv. Civ. Eng. 2021, 2021, 8811476. [Google Scholar] [CrossRef]
- Arowoiya, V.A.; Moehler, R.C.; Fang, Y. Digital Twin for Thermal Comfort and Energy Efficiency. Energy Built Environ. 2024, 5, 641–656. [Google Scholar] [CrossRef]
- Mololoth, V.K.; Saguna, S.; Åhlund, C. Blockchain and ML for Future Smart Grids. Energies 2023, 16, 528. [Google Scholar] [CrossRef]
- Mir, U.; Abbasi, U.; Mir, T.; Kanwal, S.; Alamri, S. Energy Management in Smart Buildings and Homes. IEEE Access 2021, 9, 94132–94148. [Google Scholar] [CrossRef]
- Mathumitha, R.; Rathika, P.; Manimala, K. Deep Learning for Energy Forecasting in Smart Buildings. Artif. Intell. Rev. 2024, 57, 35. [Google Scholar] [CrossRef]
- Pinto, G.; Wang, Z.; Roy, A.; Hong, T.; Capozzoli, A. Transfer Learning for Smart Buildings: Review and Outlook. Adv. Appl. Energy 2022, 5, 100084. [Google Scholar] [CrossRef]
- Farzaneh, H.; Malehmirchegini, L.; Bejan, A.; Afolabi, T.; Mulumba, A.; Daka, P.P. AI Evolution in Smart Buildings for Energy Efficiency. Appl. Sci. 2021, 11, 763. [Google Scholar] [CrossRef]
- Walczyk, G.; Ożadowicz, A. Deploying Smart Readiness Indicator and ISO 52120. Energies 2025, 18, 1241. [Google Scholar] [CrossRef]
- European Parliament and Council. AI Act 2024. Off. J. Eur. Union 2024, L168, 1–154. [Google Scholar]
- European Parliament and Council. Energy Performance of Buildings Directive (Recast) 2024. Off. J. Eur. Union 2024, L125, 1–87. [Google Scholar]
- ISO/IEC TR 24028:2021; Information Technology—Artificial Intelligence—Trustworthiness Overview. ISO: Geneva, Switzerland, 2021.
- Rojek, I.; Mikołajewski, D.; Galas, K.; Piszcz, A. Advanced Deep Learning for Smart City Energy Optimization. Energies 2025, 18, 407. [Google Scholar] [CrossRef]
- Li, D.; Qi, Z.; Zhou, Y.; Elchalakani, M. ML Applications in Building Energy Systems. Buildings 2025, 15, 648. [Google Scholar] [CrossRef]
- Jørgensen, B.N.; Ma, Z.G. EU Laws’ Impact on AI and IoT Adoption in Building Management. Buildings 2025, 15, 2160. [Google Scholar] [CrossRef]
- Oulefki, A.; Kheddar, H.; Amira, A.; Kurugollu, F.; Himeur, Y. AI for Smart Building Operations via Digital Twins. Energy Build. 2025, 335, 115567. [Google Scholar] [CrossRef]
- Elkhoukhi, H.; Elmouatamid, A.; Haibi, A.; Bakhouya, M.; El Ouadghiri, D. Sensing and Data Processing for Smart Buildings. Sustainability 2025, 17, 4029. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J. ML in Building Energy Optimization: Bibliometric Trends. Buildings 2025, 15, 994. [Google Scholar] [CrossRef]
- Michailidis, P.; Michailidis, I.; Kosmatopoulos, E. Reinforcement Learning in Building Energy Use. Energies 2025, 18, 1724. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A Graphical Aid to Cluster Validation. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Halkidi, M.; Batistakis, Y.; Vazirgiannis, M. Cluster Validity Methods: Part I. ACM SIGMOD Rec. 2002, 31, 40–45. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Deerwester, S.; Dumais, S.T.; Furnas, G.W.; Landauer, T.K.; Harshman, R. Indexing by Latent Semantic Analysis. J. Am. Soc. Inf. Sci. 1990, 41, 391–407. [Google Scholar] [CrossRef]
- MacQueen, J.B. Methods for Classification and Multivariate Analysis. Proc. Fifth Berkeley Symp. Math. Stat. Probab. 1967, 1, 281–297. [Google Scholar]
- Steinley, D. K-Means Clustering: A Half-Century Synthesis. Br. J. Math. Stat. Psychol. 2006, 59, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Sabit, H.; Tun, T. IoT Integration of Failsafe Smart Building Management System. IoT 2024, 5, 801–815. [Google Scholar] [CrossRef]
- Cano-Suñén, E.; Martínez, I.; Fernández, Á.; Zalba, B.; Casas, R. Internet of Things (IoT) in Buildings: A Learning Factory. Sustainability 2023, 15, 12219. [Google Scholar] [CrossRef]
- Aazami, R.; Moradi, M.; Shirkhani, M.; Harrison, A.; Al-Gahtani, S.F.; El-Barbary, Z. Technical Analysis of Comfort and Energy Consumption in Smart Buildings with Three Levels of Automation. IEEE Access 2025, 13, 8310–8326. [Google Scholar] [CrossRef]
- García-Monge, M.; Zalba, B.; Casas, R.; Cano, E.; Guillen-Lambea, S.; Lopez-Mesa, B.; Martinez, I. Is IoT Monitoring Key to Improve Building Energy Efficiency? Energy Build. 2023, 285, 112882. [Google Scholar] [CrossRef]
- Jiang, F.; Xie, H.; Gandla, S.R.; Fei, S. Transforming Hospital HVAC Design with BIM and Digital Twins. Sustainability 2025, 17, 3312. [Google Scholar] [CrossRef]
- Salzano, A.; Cascone, S.; Zitiello, E.P.; Nicolella, M. HVAC System Performance in Educational Facilities: A Digital Twin and IoT Predictive Maintenance Case Study. J. Archit. Eng. 2025, 31, 04025004. [Google Scholar] [CrossRef]
- Ntafalias, A.; Papadopoulos, P.; Ramallo-González, A.P.; Skarmeta-Gómez, A.F.; Sánchez-Valverde, J.; Vlachou, M.C.; Marín-Pérez, R.; Quesada-Sánchez, A.; Purcell, F.; Wright, S. Smart Buildings with Legacy Equipment: Energy Savings through IoT in Ireland and Greece. Results Eng. 2024, 22, 102095. [Google Scholar] [CrossRef]
- Quang, T.V.; Doan, D.T.; Ngarambe, J.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Zhang, T. AI Platform for Privacy-Preserving Indoor Air Quality Control. J. Build. Eng. 2025, 100, 111712. [Google Scholar] [CrossRef]
- Villani, L.; Casciola, M.; Astiaso Garcia, D. Integrated Technologies for Smart Building Energy Refurbishment. Buildings 2025, 15, 1041. [Google Scholar] [CrossRef]
- Fatehi Karjou, P.; Khodadad Saryazdi, S.; Stoffel, P.; Müller, D. IoT-Based Occupancy Monitoring in Office Buildings: A Case Study. Energy Build. 2024, 323, 114852. [Google Scholar] [CrossRef]
- Ranpara, R. Semantic and Ontology-Based Framework for IoT Interoperability. Discov. Internet Things 2025, 5, 22. [Google Scholar] [CrossRef]
- Abrokwah-Larbi, K. IoT and XAI Convergence for Customer Perceived Value in SMEs. Discov. Internet Things 2025, 5, 4. [Google Scholar] [CrossRef]
- Chaudhari, P.; Xiao, Y.; Cheng, M.M.-C.; Li, T. Occupancy Detection in Smart Buildings Using IoT Sensors. Sensors 2024, 24, 2123. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Chen, J. Building Energy Prediction via Customized Deep Learning. Energy Inform. 2025, 8, 25. [Google Scholar] [CrossRef]
- Márquez-Sánchez, S.; Calvo-Gallego, J.; Erbad, A.; Ibrar, M.; Hernandez Fernandez, J.; Houchati, M.; Corchado, J.M. Adaptive Edge Computing for Smart Buildings. Electronics 2023, 12, 4179. [Google Scholar] [CrossRef]
- Shaban, I.A.; Salem, H.; Abdullah, A.Y.; Ameri, H.M.A.Q.A.; Alnahdi, M.M. Maintenance 4.0 for HVAC Systems: Research Gaps and Challenges. Smart Cities 2025, 8, 66. [Google Scholar] [CrossRef]
- Aziz, G.; Hardy, A. Predictive Model for Damp Risk in English Housing with Explainable AI. Sci. Rep. 2025, 15, 12658. [Google Scholar] [CrossRef] [PubMed]
- Gayathri, D.; Shantharajah, S.P. MetaStackD: Meta Learning Model for Sensor Battery Life Prediction. Sci. Rep. 2025, 15, 14967. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Ali, A.B.M.; Aminian, S.A.; Sharma, K.; Dixit, S.; Sobti, S.; Ali, R.; Ahemedei, M.; Rajab, H.; Mazinan, M.A.Z. HVAC Optimization with GAT and Ensemble Learning. Sci. Rep. 2025, 15, 5119. [Google Scholar] [CrossRef]
- Hussien, A.; Maksoud, A.; Al-Dahhan, A.; Abdeen, A.; Baker, T. Predicting Long-Term Energy Consumption in Buildings Using ML. Discov. Internet Things 2025, 5, 18. [Google Scholar] [CrossRef]
- Aslam, S.; Aung, P.P.; Rafsanjani, A.S.; Majeed, A.P.P.A. ML Applications in Energy Systems: Trends and Directions. Energy Inform. 2025, 8, 62. [Google Scholar] [CrossRef]
- Vamvakas, D.; Michailidis, P.; Korkas, C.; Kosmatopoulos, E. Evaluation of Reinforcement Learning Frameworks for Smart Grids. Energies 2023, 16, 5326. [Google Scholar] [CrossRef]
- Xu, S.; Fu, Y.; Wang, Y.; Yang, Z.; Huang, C.; O’Neill, Z.; Wang, Z.; Zhu, Q. Expert-Guided Reinforcement Learning for HVAC Control. Sci. Rep. 2025, 15, 7677. [Google Scholar] [CrossRef]
- Pushpa, G.; Babu, R.A.; Subashree, S.; Senthilkumar, S. Deep RL and GNN for Wireless Sensor Network Coverage. Sci. Rep. 2025, 15, 16681. [Google Scholar] [CrossRef]
- Abdelalim, A.M.; Essawy, A.; Sherif, A.; Salem, M.; Al-Adwani, M.; Abdullah, M.S. AI and Digital Twins for Facilities Management. Sustainability 2025, 17, 1826. [Google Scholar] [CrossRef]
- Nele, L.; Mattera, G.; Yap, E.W.; Vozza, M.; Vespoli, S. ML in Digital Twin Technology: A Multi-Scale Review. Discov. Appl. Sci. 2024, 6, 502. [Google Scholar] [CrossRef]
- Gawande, M.S.; Zade, N.; Kumar, P.; Gundewar, S.; Weerarathna, I.N.; Verma, P. AI in Pandemic Response: From Models to Vaccines. Mol. Biomed. 2025, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Alkhabbas, F.; Munir, H.; Spalazzese, R.; Davidsson, P. Quality Characteristics in IoT Systems: Industry Case Insights. Discov. Internet Things 2025, 5, 13. [Google Scholar] [CrossRef]
- Ullah, A.; Qi, G.; Hussain, S.; Ullah, I.; Ali, Z. Role of LLMs in Sustainable Smart Cities. arXiv 2024, arXiv:2402.14596. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z. LLMs for Interpretable Building Energy Control. Energy Build. 2024, 313, 114278. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, L.; Chen, J.; Chen, W.A.; Yang, Z.; James Lo, L.; Wen, J.; O’Neill, Z. LLMs for Building Energy Applications: Opportunities and Challenges. Build. Simul. 2025, 18, 225–234. [Google Scholar] [CrossRef]
- Ahn, K.U.; Kim, D.-W.; Cho, H.M.; Chae, C.-U. HVAC Control with ChatGPT for Autonomous Building Operations. Buildings 2023, 13, 2680. [Google Scholar] [CrossRef]
- Papaioannou, I.; Korkas, C.; Kosmatopoulos, E. Smart Building Recommendations with LLMs: A Semantic Comparison Approach. Buildings 2025, 15, 2303. [Google Scholar] [CrossRef]
- Jiang, G.; Ma, Z.; Zhang, L.; Chen, J. Prompt Engineering for LLM in Automated Energy Modeling. Energy 2025, 316, 134548. [Google Scholar] [CrossRef]
- Xu, Z.; Lu, W.; Hu, Z.; Yan, W.; Xue, W.; Zhou, T.; Jiang, F. Fuzzy Classification for Thermal Comfort Using Shared Features. Appl. Sci. 2023, 13, 6332. [Google Scholar] [CrossRef]
- Gautam, A.; Raj Aryal, M.; Deshpande, S.; Padalkar, S.; Nikolaenko, M.; Tang, M.; Anand, S. IIoT-Enabled Digital Twin with LLM Integration. J. Manuf. Syst. 2025, 80, 511–523. [Google Scholar] [CrossRef]
- Jahanbakhsh, N.; Vega-Barbas, M.; Pau, I.; Elvira-Martin, L.; Moosavi, H.; Garcia-Vazquez, C. Retrieval-Augmented Generation for Smart Home Orchestration. Future Internet 2025, 17, 198. [Google Scholar] [CrossRef]
- Mo, Y.; Garone, E.; Casavola, A.; Sinopoli, B. False Data Injection Attacks in Wireless Sensor Networks. In Proceedings of the 49th IEEE CDC, Atlanta, GA, USA, 15–17 December 2010; pp. 5967–5972. [Google Scholar] [CrossRef]
- Zhu, H.-C.; Ren, C.; Cao, S.-J. Fast Multi-Parameter Prediction for HVAC Control. Build. Simul. 2021, 14, 649–665. [Google Scholar] [CrossRef]
- Saleh, A.; Donta, K.P.; Morabito, R.; Motlagh, N.H.; Tarkoma, S.; Loven, L. Follow-Me AI: User-Centric Energy Interaction in Smart Environments. IEEE Pervasive Comput. 2025, 99, 1–11. [Google Scholar] [CrossRef]
- Zheng, Y.; Gan, W.; Chen, Z.; Qi, Z.; Liang, Q.; Yu, P.S. Large Language Models for Medicine: A Survey. Int. J. Mach. Learn. Cybern. 2025, 16, 1015–1040. [Google Scholar] [CrossRef]
- Chiarello, F.; Giordano, V.; Spada, I.; Barandoni, S.; Fantoni, G. Future Applications of Generative LLMs: A Case Study on ChatGPT. Technovation 2024, 133, 103002. [Google Scholar] [CrossRef]
- Fan, H.; Liu, X.; Hsi Fuh, J.Y.; Lu, W.F.; Li, B. Embodied Intelligence in Manufacturing: LLMs for Robotics. J. Intell. Manuf. 2025, 36, 1141–1157. [Google Scholar] [CrossRef]
- Marinakis, V. Big Data for Energy Management and Energy-Efficient Buildings. Energies 2020, 13, 1555. [Google Scholar] [CrossRef]
- Chatzikonstantinidis, K.; Giama, E.; Fokaides, P.A.; Papadopoulos, A.M. SRI as a Tool for Low Carbon Buildings. Energies 2024, 17, 1406. [Google Scholar] [CrossRef]
- Fokaides, P.A.; Panteli, C.; Panayidou, A. Smart Readiness Indicators and Energy Performance. Sustainability 2020, 12, 9496. [Google Scholar] [CrossRef]
- Märzinger, T.; Österreicher, D. Smart Readiness Indicator–A Methodology for the Quantitative Assessment of the Load Shifting Potential of Smart Districts. Energies 2020, 13, 3507. [Google Scholar] [CrossRef]
- Vigna, I.; Pernetti, R.; Pernigotto, G.; Gasparella, A. Expert Analysis of SRI Calculation. Energies 2020, 13, 2796. [Google Scholar] [CrossRef]
- Plienaitis, G.; Daukšys, M.; Demetriou, E.; Ioannou, B.; Fokaides, P.A.; Seduikyte, L. Evaluation of SRI for Educational Buildings. Buildings 2023, 13, 888. [Google Scholar] [CrossRef]
- Stefanopoulou, A.; Michailidis, I.; Karatzinis, G.; Lepidas, G.; Boutalis, Y.; Kosmatopoulos, E.B. Ensuring Real-Time Data Integrity in Smart Building Applications. Energy Build. 2025, 336, 115586. [Google Scholar] [CrossRef]
- Sándor, B.; Rajnai, Z. Cyber Security Analysis of Smart Buildings from an Architecture Perspective. Interdiscip. Descr. Complex Syst. 2023, 21, 141–147. [Google Scholar] [CrossRef]
- Zong, M.; Hekmati, A.; Guastalla, M.; Li, Y.; Krishnamacahri, B. Integrating Large Language Models with IoT: Applications. Discov. Internet Things 2025, 5, 2. [Google Scholar] [CrossRef]
- Kök, İ.; Demirci, O.; Özdemir, S. When IoT Meets LLMs: Applications and Challenges. In Proceedings of the IEEE International Conference on Big Data, Washington, DC, USA, 15–18 December 2024; pp. 7075–7084. [Google Scholar] [CrossRef]
- Das, B.C.; Amini, M.H.; Wu, Y. Security and Privacy Challenges of Large Language Models: A Survey. arXiv 2024. [Google Scholar] [CrossRef]
- Badii, C.; Bellini, P.; Difino, A.; Nesi, P. Smart City IoT Platform Respecting GDPR Privacy and Security. IEEE Access 2020, 8, 23601–23623. [Google Scholar] [CrossRef]
- Daoudagh, S.; Marchetti, E.; Savarino, V.; Bernabe, J.B.; García-Rodríguez, J.; Moreno, R.T.; Martinez, J.A.; Skarmeta, A.F. Data Protection by Design in Smart Cities: A Consent and Access Control Proposal. Sensors 2021, 21, 7154. [Google Scholar] [CrossRef] [PubMed]
- Märzinger, T.; Österreicher, D. Supporting SRI: Methodology to Quantify Load Shifting Potential in Smart Buildings. Energies 2019, 12, 1955. [Google Scholar] [CrossRef]
- Kourgiozou, V.; Godoy Shimizu, D.; Dowson, M.; Commin, A.; Tang, R.; Rovas, D.; Mumovic, D. Estimating Smart Readiness Using Energy Certificate Data. Energy Build. 2023, 301, 113673. [Google Scholar] [CrossRef]
- Zamanidou, A.; Carnero, P.; Martínez, L.; Novakova, A.; Litiu, A.V.; Olschewski, D.; Tzanex, D.; Fokaides, P.A. Bridging the Knowledge Gap to Citizens on Smart Readiness. Int. J. Sustain. Energy 2024, 43, 1. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X.; Vital, N.; Duffy, E.; Razi, A. Deep Reinforcement Learning for HVAC Optimization in Multi-VAV Offices. Appl. Energy 2024, 356, 122354. [Google Scholar] [CrossRef]
- Palley, B.; Martins, J.P.; Bernardo, H.; Rossetti, R. Integrating ML and Digital Twins for Enhanced Building Energy Management. Urban Sci. 2025, 9, 202. [Google Scholar] [CrossRef]
- Deng, W.; Yang, T.; Tang, L.; Tang, Y. Green Building Barriers and Policy from Local Governments: Ningbo Case. Intell. Build. Int. 2016, 10, 61–77. [Google Scholar] [CrossRef]
- Luther, M.B.; Horan, P.; Tokede, O.O. Performance Metrics for Retrofitting a Library. Energy Build. 2017, 169, 473–483. [Google Scholar] [CrossRef]
- Eleftheriadis, G.; Hamdy, M. Insulation and HVAC Degradation Impact on Building Energy. Buildings 2018, 8, 23. [Google Scholar] [CrossRef]
- Turner, W.; Staino, A.; Basu, B. Residential HVAC Fault Detection Using System Identification. Energy Build. 2017, 151, 1–17. [Google Scholar] [CrossRef]
- Mehmood, H.; Kostakos, P.; Cortes, M.; Anagnostopoulos, T.; Pirttikangas, S.; Gilman, E. Concept Drift Adaptation in Distributed Real-World Data Streams. Smart Cities 2021, 4, 349–371. [Google Scholar] [CrossRef]
- Agostinelli, S.; Cumo, F.; Guidi, G.; Tomazzoli, C. Cyber-Physical Systems and AI in Energy Management. Energies 2021, 14, 2338. [Google Scholar] [CrossRef]
- Ammar, A.; Nassereddine, H.; AbdulBaky, N.; AbouKansour, A.; Tannoury, J.; Urban, H.; Schranz, C. Digital Twins in Construction: Practitioner and Authority Perspective. Front. Built Environ. 2022, 8, 834671. [Google Scholar] [CrossRef]
- Khajavi, S.H.; Motlagh, N.H.; Jaribion, A.; Werner, L.C.; Holmstrom, J. Digital Twin for Buildings: Vision, Benefits, Boundaries. IEEE Access 2019, 7, 147406–147419. [Google Scholar] [CrossRef]
- Almusaed, A.; Yitmen, I. Smart Building Design via AI Simulation and Digital Twins. Sustainability 2023, 15, 4955. [Google Scholar] [CrossRef]
- Elfarri, E.M.; Rasheed, A.; San, O. AI-Driven Digital Twin of a Modern House in VR. IEEE Access 2023, 11, 35035–35058. [Google Scholar] [CrossRef]
- Bibri, S.E.; Huang, J.; Jagatheesaperumal, S.K.; Krogstie, J. AI and Digital Twin Synergy for Sustainable Smart Cities. Environ. Sci. Ecotechnol. 2024, 20, 100433. [Google Scholar] [CrossRef] [PubMed]
- Radanliev, P.; De Roure, D.; Nicolescu, R.; Huth, M.; Santos, O. Digital Twins and AI in IoT Cyber-Physical Systems. Int. J. Intell. Robot. Appl. 2021, 6, 171–185. [Google Scholar] [CrossRef]
- Sawada, T.; Mizuno, M.; Hasegawa, T.; Yokoyama, K.; Kono, M. Office-in-the-Loop: Agentic AI for Advanced HVAC Control. Data Centric Eng. 2025, 6, 10010. [Google Scholar] [CrossRef]
- Michailidis, P.; Michailidis, I.; Vamvakas, D.; Kosmatopoulos, E. Model-Free HVAC Control in Buildings: A Review. Energies 2023, 16, 7124. [Google Scholar] [CrossRef]
- Li, H.; Wang, S.X.; Shang, F.; Niu, K.; Song, R. LLMs in Cloud Computing: Real-World Empirical Study. Int. J. Innov. Res. Comput. Sci. Technol. 2024, 12, 59–69. [Google Scholar] [CrossRef]
- Luo, X.; Liu, D.; Dang, F.; Luo, H. LLM Integration with the Physical World: Research and Application. In Proceedings of the ACM Turing Award Celebration Conference, Changsha, China, 5–7 July 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Jia, R.; Jin, M.; Sun, K.; Hong, T.; Spanos, C. Deep Reinforcement Learning for Advanced Building Control. Energy Procedia 2019, 158, 6158–6163. [Google Scholar] [CrossRef]
- Himeur, Y.; Elnour, M.; Fadli, F.; Meskin, N.; Petri, I.; Rezgui, Y.; Bensaali, F.; Amira, A. AI-Big Data Analytics for Building Automation: Survey and Challenges. Artif. Intell. Rev. 2022, 56, 4929–5021. [Google Scholar] [CrossRef] [PubMed]
Phase/Area | Key Tasks | Main Challenges | Expected Outcomes and Impacts |
---|---|---|---|
Data Collection and Standardization | Creating and standardizing high-quality datasets from various sensors and IoT devices | Continuous monitoring and feedback Ongoing model and interface improvements Functional expansion | Accessible, unified datasets Data readiness for model training |
AI/DL Model Development and Training | Training specialized deep learning models (CNN, RNN, LSTM, DRL, GNN) | Lack of labeled data High computational demands Data scarcity | Accurate energy consumption and occupancy forecasting Adaptive HVAC and lighting control |
Integration with IoT and Digital Technologies | Processing complex temporal and spatial data | Compatibility across heterogeneous systems Cybersecurity and communication reliability | Robust, secure, and scalable platform Real-time data processing |
Testing and Pilot Deployment | Implementing digital twins and BIM | Variability in building architectures and climates Integration with legacy systems | Matured solutions ready for commercial scaling |
Scaling and Optimization | Utilizing 5G and blockchain to enhance security and performance | Maintaining stable operation across numerous sites Managing updates and system adaptation | Scalable, efficient, and resilient system Enhanced energy savings and user comfort |
Algorithm Family | Median Energy Saving % | IQR % | k (Studies) | Typical Controlled Load |
---|---|---|---|---|
Rule-based (baseline) | 7 | 5–10 | 8 | HVAC, lighting |
Classical ML (SVM, RF, GB) | 12 | 7–18 | 18 | HVAC, lighting |
Supervised DL (CNN/RNN/LSTM) | 17 | 10–24 | 20 | HVAC, lighting, plug loads |
Hybrid DL + physics | 22 | 15–28 | 6 | HVAC, domestic hot water |
Deep RL (DQN, PPO, SAC) | 26 | 19–34 | 17 | HVAC set-points, demand response |
LLM-enabled (surrogate + LLM, multi-agent) | 31 | 25–37 | 10 | HVAC orchestration, simulation tasks |
Technology | Monitored Parameters | Application Area | Sample Size/Scale | Performance Metrics | Degree of Personalization | References |
---|---|---|---|---|---|---|
Wireless IoT Environmental Sensors | Temperature, Humidity, CO2, VOCs, Particulate Matter, Pressure | Real-time indoor air quality monitoring and HVAC optimization in smart buildings | 3 office buildings (real + simulated) | Avg. 36.8 kW saved/h; up to 6.18 MWh/week | Low | [51] |
LoRaWAN Multi-Sensor Networks | CO2, Temperature, Humidity, Occupancy, Motion, Door Status | Occupancy detection and adaptive HVAC control in office buildings for energy savings | 10 rooms, RWTH Aachen University | TPR 95%, 0 FNs; LightGBM best F1-score | Medium | [54] |
IoT Sensors with Edge Computing | Air Quality Parameters, Temperature, Occupancy | Privacy-preserving AI management of indoor air quality | Synthesis of 34 studies; 8–10 buildings reviewed | IAQ prediction accuracy 90–99% via federated learning | High | [58] |
IoT-Enabled BIM Integration Sensors | Environmental Parameters, Energy Consumption | Energy management and refurbishment via combined BIM and IoT data for HVAC systems | 2 annexes in Roccaruja Hotel (Italy) | PV: 13.5 kW; 1395 kWh/m2/yr; ML HVAC design | High | [59] |
IoT Gateways and Actuators | Environmental Parameters, Equipment Status | Failsafe smart building management with continuous monitoring and backup control | Simulated failures over 24 h; real data from 3 buildings | 883.2 kWh/day saved during sensor failure | High | [56] |
IoT Devices with Machine Learning Algorithms | Energy Usage, Temperature, Occupancy Patterns | Predictive maintenance, anomaly detection, and adaptive HVAC system control | 3 university buildings, 200+ sensors, >100 rooms | R2 = 0.996; CO2 MSE = 535; 10–15% energy saved | Low | [52] |
Sensor Networks Integrated with Digital Twins | Temperature, Airflow, Pressure, Energy Data | Dynamic real-time HVAC system simulation and control for hospitals and educational facilities | 4 hospital buildings; 7-room office layout simulated | HVAC design time ↓90%; evacuation <180 s; energy ↓31–35% | Medium | [60] |
Technology | Monitored Parameters | Application Area | Sample Size/Scale | Dataset Description (Age ± SD, %) | Provenance and Accessibility | Real-Time Applicability | Explainability/Transparency | References |
---|---|---|---|---|---|---|---|---|
GPT-4, GPT-4-0613 | HVAC inputs, temperature | Automates HVAC simulation input generation | 10 workflow tests + 3 case studies | EnergyPlus simulations; iUnit building, DOE office | Proprietary or API-accessible LLMs | Medium (simulation focused) | Limited (focus on automation) | [80] |
GPT-3.5, GPT-4, open-source LLMs | HVAC states, temperature, energy consumption | Automated HVAC fault detection and optimization | Simulation + semi-real building logs | Technical logs, operational data, and descriptive textual inputs | Open access + proprietary models | Medium-high with system integration | Moderate with multimodal data integration | [81] |
GPT-3.5 | Outdoor air temp, zone temp, occupancy | Interpretable ML-based HVAC control | DOE small office (511 m2); 31-day simulation | Simulation only; 744 hourly steps + 1-month training | Published datasets + simulation | Medium, with interactive Q&A potential | Strong explainability using SHAP + LLM narratives | [80] |
ML surrogate + fuzzy logic | Indoor CO2, temperature, humidity | Stepwise fuzzy-guided HVAC setpoint optimization | CFD simulation of 3.5 × 3.4 × 2.5 m3 room + past real validation | Indoor CFD simulations validated by chamber experiments | Published test chamber data + CFD | High-designed for fast online HVAC control | Moderate; fuzzy logic offers interpretability | [89] |
GPT variants (unspecified) | Temperature, humidity, CO2, occupancy, lighting | Personalized, occupant-adaptive HVAC and environment control | Smart campus at Univ. of Oulu; dynamic real-time data | Live user location, device sensors, building sensors | Multi-agent system deployed on real buildings | High-multi-agent edge/cloud AI for low latency control | Moderate; AI agents provide adaptive control, limited explicit explanation | [90] |
References | Platform/Algorithm | Study-Level Evidence Grade | TRL | Median Energy Saving % | Carbon Cost per kWh | Estimated Pay-Back |
---|---|---|---|---|---|---|
[42,58,62,76,77,78,79,80] | GPT-4, GPT-4-0613 | B (1–2 studies, demonstration pilots) | TRL 6–7 | Up to 35% | 0.08 USD/kWh | 1–2 years |
[62,78,79,80,81] | GPT-3.5, GPT-4, open-source LLMs | B | TRL 6 | 25–30% | 0.07 USD/kWh | 2–3 years |
[62,79,80,81,82,83,84,85,86,87,88,89,90,91,92] | GPT-3.5 | Outdoor air temp, zone temp, occupancy | TRL 5 | ~20% | 0.09 USD/kWh | 3–5 years |
[42,62,78,79,80,81,82,83,84,85,86,87,88,89] | ML surrogate + fuzzy logic | C (single pilot) | TRL 5–6 | ~35% | 0.05 USD/kWh | 2 years |
[42,55,58,62,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90] | GPT variants (unspecified) | B | TRL 6–7 | Up to 40% | 0.06 USD/kWh | 1–2 years |
SRI Domain and Effect | AI/DL Technology | Potential KPI | SRI Method |
---|---|---|---|
Heating, Cooling, Flexibility | DRL | Peak reduction (kW), energy savings (kWh) | C |
Monitoring and Control | GNN, XAI | Fault prediction accuracy, explainability | B/C |
Grid Interaction | DRL, Forecasting | Demand response participation (%) | B/C |
Occupant Comfort and Engagement | NLP, XAI | Occupant satisfaction index | B |
Urban-Level Integration (Smart City) | GNN | Load shifting optimization | C/District SRI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amangeldy, B.; Imankulov, T.; Tasmurzayev, N.; Dikhanbayeva, G.; Nurakhov, Y. A Review of Artificial Intelligence and Deep Learning Approaches for Resource Management in Smart Buildings. Buildings 2025, 15, 2631. https://doi.org/10.3390/buildings15152631
Amangeldy B, Imankulov T, Tasmurzayev N, Dikhanbayeva G, Nurakhov Y. A Review of Artificial Intelligence and Deep Learning Approaches for Resource Management in Smart Buildings. Buildings. 2025; 15(15):2631. https://doi.org/10.3390/buildings15152631
Chicago/Turabian StyleAmangeldy, Bibars, Timur Imankulov, Nurdaulet Tasmurzayev, Gulmira Dikhanbayeva, and Yedil Nurakhov. 2025. "A Review of Artificial Intelligence and Deep Learning Approaches for Resource Management in Smart Buildings" Buildings 15, no. 15: 2631. https://doi.org/10.3390/buildings15152631
APA StyleAmangeldy, B., Imankulov, T., Tasmurzayev, N., Dikhanbayeva, G., & Nurakhov, Y. (2025). A Review of Artificial Intelligence and Deep Learning Approaches for Resource Management in Smart Buildings. Buildings, 15(15), 2631. https://doi.org/10.3390/buildings15152631