Assessment of Urban Rooftop Photovoltaic Potential Based on Deep Learning: A Case Study of the Central Urban Area of Wuhan
Abstract
1. Introduction
2. Methodology and Model
2.1. Overall Research Framework
2.2. Study Area
2.3. Model Construction
2.4. Model Training
2.5. Model Comparison
3. Results and Discussion
3.1. Roof Extraction Result
3.2. Land Use Classification of Rooftops
3.3. Photovoltaic Potential in the Central Urban Area of Wuhan
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, X.; Dong, Z.; Ge, S.; Zhou, D.; Wang, Q.; Sang, X. Resource scheduling and performance analysis of hybrid renewable energy systems with carbon neutrality consideration: A scenario-based multi-agent approach. Sustain. Cities Soc. 2023, 96, 104688. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Q.; Chen, Z.; Yan, C.; Zeng, S.; Dai, M. Physics-informed neural networks for building thermal modeling and demand response control. Build. Environ. 2023, 234, 110149. [Google Scholar] [CrossRef]
- Cao, W.; Yu, J.; Chao, M.; Wang, J.; Yang, S.; Zhou, M.; Wang, M. Short-term energy consumption prediction method for educational buildings based on model integration. Energy 2023, 283, 128580. [Google Scholar] [CrossRef]
- Liu, W.; Mao, H.; Tian, Z.; Luo, Y.; Ma, L.; Chen, X.; Hu, M.; Li, J.; Fan, J. Challenges of large-scale facade PV systems in dense urban environments in China. Innov. Energy 2025, 2, 100091. [Google Scholar] [CrossRef]
- Gutschner, M.; Nowak, S.; Ruoss, D.; Toggweiler, P. Potential for Building Integrated Photovoltaics n.d. Available online: https://iea-pvps.org/wp-content/uploads/2020/01/rep7_04.pdf (accessed on 20 January 2025).
- Peng, J.; Lu, L. Investigation on the development potential of rooftop PV system in Hong Kong and its environmental benefits. Renew. Sustain. Energy Rev. 2013, 27, 149–162. [Google Scholar] [CrossRef]
- Wiginton, L.K.; Nguyen, H.T.; Pearce, J.M. Quantifying rooftop solar photovoltaic potential for regional renewable energy policy. Comput. Environ. Urban Syst. 2010, 34, 345–357. [Google Scholar] [CrossRef]
- Ko, L.; Wang, J.-C.; Chen, C.-Y.; Tsai, H.-Y. Evaluation of the development potential of rooftop solar photovoltaic in Taiwan. Renew. Energy 2015, 76, 582–595. [Google Scholar] [CrossRef]
- Bhatta, G.; Lohani, S.P.; Kc, M.; Bhandari, R.; Palit, D.; Anderson, T. Harnessing solar PV potential for decarbonization in Nepal: A GIS based assessment of ground-mounted, rooftop, and agrivoltaic solar systems for Nepal. Energy Sustain. Dev. 2025, 85, 101618. [Google Scholar] [CrossRef]
- Zhong, T.; Zhang, Z.; Chen, M.; Zhang, K.; Zhou, Z.; Zhu, R.; Wang, Y.; Lü, G.; Yan, J. A city-scale estimation of rooftop solar photovoltaic potential based on deep learning. Appl. Energy 2021, 298, 117132. [Google Scholar] [CrossRef]
- Li, G.; Wang, Z.; Xu, C.; Li, T.; Gao, J.; Mao, Q.; Chen, S. A district-scale spatial distribution evaluation method of rooftop solar energy potential based on deep learning. Sol. Energy 2024, 268, 112282. [Google Scholar] [CrossRef]
- Xu, J.; Guo, Z.; Yu, Q.; Dong, K.; Tan, H.; Zhang, H.; Yan, J. Spatiotemporal feature encoded deep learning method for rooftop PV potential assessment. Appl. Energy 2025, 394, 126171. [Google Scholar] [CrossRef]
- Lodhi, M.K.; Tan, Y.; Wang, X.; Masum, S.M.; Nouman, K.M.; Ullah, N. Harnessing rooftop solar photovoltaic potential in Islamabad, Pakistan: A remote sensing and deep learning approach. Energy 2024, 304, 132256. [Google Scholar] [CrossRef]
- Lodhi, M.K.; Tan, Y.; Wang, X.; Suprijanto, A.; Imran, M. Advancing urban solar assessment: A deep learning and atmospheric modelling framework for quantifying PV yield and carbon reduction. Energy Build. 2025, 338, 115717. [Google Scholar] [CrossRef]
- Zech, M.; Tetens, H.-P.; Ranalli, J. Toward global rooftop PV detection with Deep Active Learning. Adv. Appl. Energy 2024, 16, 100191. [Google Scholar] [CrossRef]
- Ding, L.; Tang, H.; Liu, Y.; Shi, Y.; Zhu, X.X.; Bruzzone, L. Adversarial Shape Learning for Building Extraction in VHR Remote Sensing Images. IEEE Trans. Image Process 2022, 31, 678–690. [Google Scholar] [CrossRef]
- He, X.; Zhou, Y.; Zhao, J.; Zhang, D.; Yao, R.; Xue, Y. Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.; Chen, J.; Lu, X.; Song, F. The territory effect: How awe reduces territoriality and enhances sharing intention. J. Bus. Res. 2022, 148, 1–11. [Google Scholar] [CrossRef]
- Jung, H.; Choi, H.-S.; Kang, M. Boundary Enhancement Semantic Segmentation for Building Extraction from Remote Sensed Image. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5215512. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhong, Y.; Wang, J.; Ma, A.; Zhang, L. FarSeg++: Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 13715–13729. [Google Scholar] [CrossRef]
- Hertel, D.; Schlink, U. Decomposition of urban temperatures for targeted climate change adaptation. Environ. Model. Softw. 2019, 113, 20–28. [Google Scholar] [CrossRef]
- Schlünzen, K.H.; Hinneburg, D.; Knoth, O.; Lambrecht, M.; Leitl, B.; López, S.; Lüpkes, C.; Panskus, H.; Renner, E.; Schatzmann, M.; et al. Flow and Transport in the Obstacle Layer: First Results of the Micro-Scale Model MITRAS. J. Atmos. Chem. 2003, 44, 113–130. [Google Scholar] [CrossRef]
- Bokwa, A.; Geletič, J.; Lehnert, M.; Žuvela-Aloise, M.; Hollósi, B.; Gál, T.; Skarbit, N.; Dobrovolný, P.; Hajto, M.J.; Kielar, R.; et al. Heat load assessment in Central European cities using an urban climate model and observational monitoring data. Energy Build. 2019, 201, 53–69. [Google Scholar] [CrossRef]
- Žuvela-Aloise, M.; Hahn, C.; Hollósi, B. Evaluation of city-scale PALM model simulations and intra-urban thermal variability in Vienna, Austria using operational and crowdsourced data. Urban Clim. 2025, 59, 102245. [Google Scholar] [CrossRef]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: New York, NY, USA; pp. 4510–4520. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: New York, NY, USA; pp. 1800–1807. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015, Munich, Germany, 5–9 October 2015. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: New York, NY, USA; pp. 770–778. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Z.; Jiang, H.; Luo, Y.; Xu, S. Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China. Appl. Energy 2021, 283, 116329. [Google Scholar] [CrossRef]
- Pan, D.; Bai, Y.; Chang, M.; Wang, X.; Wang, W. The technical and economic potential of urban rooftop photovoltaic systems for power generation in Guangzhou, China. Energy Build. 2022, 277, 112591. [Google Scholar] [CrossRef]
- Wuhan Municipal Bureau of Natural Resources and Urban Rural Development. Wuhan’s Main Functional Area Planning Now Seeks Public Comments! A New Framework for Implementing the Master Plan, with Clear Functional Positioning for Each District and Subarea in Wuhan n.d. Available online: https://zrzyhgh.wuhan.gov.cn/zwdt/gzdt/202110/t20211028_1821816.shtml (accessed on 20 January 2025).
Administrative District | Number of Segmented Images | Number of Images Selected as Samples | Geographic Location |
---|---|---|---|
Jianghan District | 682 | 243 | Along the Yangtze River |
Qiaokou District | 981 | 324 | West bank of the Han River |
Qingshan District | 1108 | 100 | North bank of the Yangtze River |
Wuchang District | 2028 | 100 | East bank of the Yangtze River |
Jiang’an District | 1795 | 100 | Northeast section of Yangtze’s north bank |
Hanyang District | 2515 | 96 | West bank at Yangtze–Han confluence |
Hongshan District | 12,389 | 202 | Southeast of Wuchang |
Total | 21,498 | 1165 | / |
Model | mIoU | mPA | Accuracy |
---|---|---|---|
DeepLabv3+_Mobilenet V2 | 78.89 | 87.67 | 92.58 |
DeepLabv3+_Xception | 77.36 | 88.38 | 91.60 |
U-net_ VGG16 | 82.57 | 89.84 | 94.08 |
U-net_ Resnet50 | 83.44 | 90.56 | 94.39 |
Administrative District | Residential/m2 | Available Area/W | Commercial/m2 | Available Area/W | Industrial/m2 | Available Area/W | Educational/m2 | Available Area/W | Public Facility/m2 | Available Area/W | Medical/m2 | Available Area/W | Historical and Cultural/m2 | Available Area/W |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jianghan District | 4,466,552.48 | 3,573,241.99 | 2,248,221.37 | 1,416,379.46 | 0.00 | 0.00 | 650,915.65 | 377,531.08 | 591,300.68 | 354,780.41 | 255,754.07 | 132,992.12 | 0.00 | 0.00 |
Qiaokou District | 5,735,469.56 | 4,588,375.65 | 2,340,714.44 | 1,474,650.10 | 0.00 | 0.00 | 1,460,604.03 | 847,150.34 | 316,761.27 | 190,056.76 | 434,007.88 | 225,684.10 | 66,121.07 | 0.00 |
Qingshan District | 475,808.24 | 380,646.59 | 1,433,860.51 | 903,332.12 | 5,226,068.20 | 4,807,982.74 | 660,775.56 | 383,249.83 | 2,202,162.68 | 1,321,297.61 | 0.00 | 0.00 | 548,017.56 | 0.00 |
Wuchang District | 6,755,023.95 | 5,404,019.16 | 4,719,065.03 | 2,973,010.97 | 0.00 | 0.00 | 2,606,654.83 | 1,511,859.80 | 537,872.26 | 322,723.36 | 1841.18 | 957.42 | 391,961.74 | 0.00 |
Jiang’an District | 9,387,981.12 | 7,510,384.90 | 2,987,289.42 | 1,881,992.34 | 0.00 | 0.00 | 1,339,108.46 | 776,682.91 | 600,089.87 | 360,053.92 | 140,037.48 | 72,819.49 | 223,138.89 | 0.00 |
Hanyang District | 7,365,718.99 | 5,892,575.19 | 2,800,428.91 | 1,764,270.21 | 2,721,292.16 | 2,503,588.78 | 701,056.75 | 406,612.91 | 2,820,345.80 | 1,692,207.48 | 0.00 | 0.00 | 226,296.15 | 0.00 |
Hongshan District | 25,261,038.27 | 20,208,830.61 | 3,158,001.68 | 1,989,541.06 | 2,740,926.68 | 2,521,652.54 | 18,260,835.29 | 10,591,284.47 | 2,547,997.62 | 1,528,798.57 | 0.00 | 0.00 | 2,881,679.73 | 0.00 |
Administrative District | Roof Area/m2 | Geographical Potential (PV Installation Capacity/kW) |
---|---|---|
Jianghan District | 8,212,744.25 | 1,170,985.01 |
Qiaokou District | 10,353,678.25 | 1,465,183.39 |
Qingshan District | 10,546,692.75 | 1,559,301.78 |
Wuchang District | 15,012,419.00 | 2,042,514.14 |
Jiang’an District | 14,677,645.25 | 2,120,386.71 |
Hanyang District | 16,635,138.75 | 2,451,850.92 |
Hongshan District | 54,850,479.25 | 7,368,021.45 |
Total | 130,288,797.50 | 18,178,243.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; He, W.; Hu, J.; Zhou, C.; Ren, B.; Luo, H.; Tian, Z.; Liu, W. Assessment of Urban Rooftop Photovoltaic Potential Based on Deep Learning: A Case Study of the Central Urban Area of Wuhan. Buildings 2025, 15, 2607. https://doi.org/10.3390/buildings15152607
Zhang Y, He W, Hu J, Zhou C, Ren B, Luo H, Tian Z, Liu W. Assessment of Urban Rooftop Photovoltaic Potential Based on Deep Learning: A Case Study of the Central Urban Area of Wuhan. Buildings. 2025; 15(15):2607. https://doi.org/10.3390/buildings15152607
Chicago/Turabian StyleZhang, Yu, Wei He, Jinyan Hu, Chaohui Zhou, Bo Ren, Huiheng Luo, Zhiyong Tian, and Weili Liu. 2025. "Assessment of Urban Rooftop Photovoltaic Potential Based on Deep Learning: A Case Study of the Central Urban Area of Wuhan" Buildings 15, no. 15: 2607. https://doi.org/10.3390/buildings15152607
APA StyleZhang, Y., He, W., Hu, J., Zhou, C., Ren, B., Luo, H., Tian, Z., & Liu, W. (2025). Assessment of Urban Rooftop Photovoltaic Potential Based on Deep Learning: A Case Study of the Central Urban Area of Wuhan. Buildings, 15(15), 2607. https://doi.org/10.3390/buildings15152607