Experimental Raw Earth Building for Passive Cooling: A Case Study for Agricultural Application in a Mediterranean Climate
Abstract
1. Introduction
2. Raw Earth Building Fabrication
2.1. Raw Earth Preparation
- One volume of clay-rich raw soil mixed with water. This soil was excavated from the Montpellier region at a depth of 40–50 cm. It allows a very low environmental footprint. The proportion of water represents 35% of the raw soil volume.
- One volume of sand, traditionally used as masonry sand intended to produce concrete, mortar, and coatings with a particle size of 0–5 mm. This sand increases the volumetric mass of the mixture.
- One volume of hemp straw (approx. 2 cm length) for mechanical and thermal consideration.
2.2. Earth Brick Preparation
2.3. Building Design
3. Raw Earth Brick Composition and Thermal Properties
3.1. Earth Brick Composition
3.1.1. Mineralogical Composition Analysis
3.1.2. Chemical Composition Analysis
3.1.3. Thermogravimetric Analysis
3.2. Earth Brick Thermal Properties
4. Results and Discussion
4.1. Temperature and Relative Humidity Evolution
4.2. Temperature Attenuation and Phase Shifting
4.3. Relative Humidity Stabilization and Phase Shifting
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministères Aménagement du Territoire Transition Écologique. 2030 National Strategy for Protected Areas; Ministères Aménagement du Territoire Transition Écologique: Paris, France, 2021.
- Popescu, A.; Dinu, T.A. Stoian Efficiency of the Agricultural Land Use in the European Union, Scientific Papers Series Management. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2019, 19, 475–486. [Google Scholar]
- Fosse, J. Objective “Zero Net Artificialization”: Which Levers Should Be Used to Protect Soils? France Stratégie: Paris, France, 2019.
- Prévost, A.; Molines, N.; Dehan, P.; Bandet, J. The Urban Planning of French Cities and the Challenge of Sustainable Town Planning: Improvement and Limits. In Proceedings of the AESOP 26th Annual Congress, Ankara, Turkey, 11–15 July 2012; Available online: https://hal.science/hal-01179362 (accessed on 22 July 2024).
- Ministère de l’agriculture. Qualité Architecturale Des Bâtiments Agricoles; Ministère de l’agriculture: Paris, France, 2003.
- Nessi, H.; Le Néchet, F.; Terral, L. Changement de Regard Sur le Périurbain, Quelles Marges de Manoeuvre en Matière de Durabilité? Géograph. Économie Société 2016, 18, 15–33. [Google Scholar] [CrossRef]
- Deverre, C.; Lamine, C. Les systèmes agroalimentaires alternatifs. Une revue de travaux anglophones en sciences sociales. Economierurale 2010, 317, 57–73. [Google Scholar] [CrossRef]
- Natarajan, B.; Chellachi Kathiresan, A.; Subramanium, S.K. Development and Performance Evaluation of a Hybrid Portable Solar Cold Storage System for the Preservation of Vegetables and Fruits in Remote Areas. J. Energy Storage 2023, 72, 108292. [Google Scholar] [CrossRef]
- Xiang, B.; Zhang, X. Advancements in the Development of Field Precooling of Fruits and Vegetables with/without Phase Change Materials. J. Energy Storage 2023, 73, 109007. [Google Scholar] [CrossRef]
- Sousa, H.; Sousa, F.; Sousa, R.; Silva, L.; Sousa, G. Thermal Performance of Light Blocks in a Mediterranean Climate. Rev. Int. Métodos Numér. Cálc. Diseño Ing. 2020, 36, 13. [Google Scholar] [CrossRef]
- Dabaieh, M.; Fernandes, J.; Mateus, R.; Bragança, L. The Influence of the Mediterranean Climate on Vernacular Architecture: A Comparative Analysis between the Vernacular Responsive Architecture of Southern Portugal and North of Egypt. In Proceedings of the World SB14 Barcelona, Barcelona, Spain, 28–30 October 2014. [Google Scholar]
- Serrano, S.; Rincón, L.; González, B.; Navarro, A.; Bosch, M.; Cabeza, L.F. Rammed Earth Walls in Mediterranean Climate: Material Characterization and Thermal Behaviour. Int. J. Low-Carbon Technol. 2017, 12, 281–288. [Google Scholar] [CrossRef]
- Mellado Mascaraque, M.Á.; Castilla Pacual, F.J.; Oteiza, I.; Aparicio Secanellas, S. Hygrothermal Assessment of a Traditional Earthen Wall in a Dry Mediterranean Climate. Build. Res. Inf. 2020, 48, 632–644. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Jalali, S. Earth Construction: Lessons from the Past for Future Eco-Efficient Construction. Constr. Build. Mater. 2012, 29, 512–519. [Google Scholar] [CrossRef]
- Touati, K.; Le Guern, M.; El Mendili, Y.; Azil, A.; Streiff, F.; Carfrae, J.; Fox, M.; Goodhew, S.; Boutouil, M. Earthen-Based Building: In-Situ Drying Kinetics and Shrinkage. Constr. Build. Mater. 2023, 369, 130544. [Google Scholar] [CrossRef]
- CTIFL—Centre Technique Interprofessionnel des Fruits et Légumes. Conservation Des Fruits et Légumes en Restauration Hors Domicile; CTIFL: Paris, France, 2021. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Publisher Correction: Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2020, 7, 274. [Google Scholar] [CrossRef] [PubMed]
- Crawley, D.B.; Lawrie, L.K. Should We Be Using Just ‘Typica. In Proceedings of the 16th IBPSA Conference, Rome, Italy, 2–4 September 2019; pp. 4801–4808. [Google Scholar] [CrossRef]
- Nougarèdes, B. BâtiAlim, un projet de recherche-action pour gérer durablement le bâti alimentaire territorial. Pour 2023, 245, 25–34. [Google Scholar] [CrossRef]
- INRAE Act, Tutorials Series on Youtube. Available online: https://youtu.be/5bXbHjQicaI?si=8c21XkDWzyfuI2Ts (accessed on 12 July 2025).
- Barton, C.D.; Karathanasis, A.D. Clay Minerals. In Encyclopedia of Soil Science; Marcel Dekker: New York, NY, USA, 2002; pp. 187–192. Available online: https://www.srs.fs.usda.gov/pubs/ja/uncaptured/ja_barton002.pdf (accessed on 12 July 2025).
- Mookherjee, M.; Mainprice, D.; Maheshwari, K.; Heinonen, O.; Patel, D.; Hariharan, A. Pressure Induced Elastic Softening in Framework Aluminosilicate- Albite (NaAlSi3O8). Sci. Rep. 2016, 6, 34815. [Google Scholar] [CrossRef] [PubMed]
- Elkhalifah, A.E.I.; Maitra, S.; Azmi Bustam, M.; Murugesan, T. Thermogravimetric Analysis of Different Molar Mass Ammonium Cations Intercalated Different Cationic Forms of Montmorillonite. J. Therm. Anal. Calorim. 2012, 110, 765–771. [Google Scholar] [CrossRef]
- Laskou, M.; Margomenou-Leonidopoulou, G.; Balek, V. Thermal Characterization of Bauxite Samples. J. Therm. Anal. Calorim. 2006, 84, 141–146. [Google Scholar] [CrossRef]
- Dollimore, D.; Tong, P.; Alexander, K.S. The Kinetic Interpretation of the Decomposition of Calcium Carbonate by Use of Relationships Other than the Arrhenius Equation. Thermochim. Acta 1996, 282–283, 13–27. [Google Scholar] [CrossRef]
- Barba, A.; Beltrán, V.; Feliu, C.; García, J.; Ginés, F.; Sánchez, E.; Sanz, V. Raw Materials for Fabrication of Supports to Clay Ceramics; AICE/ITC: Castellón, Spain, 1997. [Google Scholar]
- ASTM C518; Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. U.S. Department of Defense: Washington, DC, USA, 2021.
- Giada, G.; Caponetto, R.; Nocera, F. Hygrothermal Properties of Raw Earth Materials: A Literature Review. Sustainability 2019, 11, 5342. [Google Scholar] [CrossRef]
- Zhang, L.; Sang, G.; Han, W. Effect of Hygrothermal Behaviour of Earth Brick on Indoor Environment in a Desert Climate. Sustain. Cities Soc. 2020, 55, 102070. [Google Scholar] [CrossRef]
- El Fgaier, F.; Lafhaj, Z.; Brachelet, F.; Antczak, E.; Chapiseau, C. Thermal Performance of Unfired Clay Bricks Used in Construction in the North of France: Case Study. Case Stud. Constr. Mater. 2015, 3, 102–111. [Google Scholar] [CrossRef]
- El Fgaier, F. Conception, Production et Qualification Des Briques en Terre Cuite et en Terre Crue. Ph.D. Thesis, Ecole Centrale de Lille, Villeneuve-d’Ascq, France, 2013. [Google Scholar]
- Liuzzi, S.; Hall, M.R.; Stefanizzi, P.; Casey, S.P. Hygrothermal Behaviour and Relative Humidity Buffering of Unfired and Hydrated Lime-Stabilised Clay Composites in a Mediterranean Climate. Build. Environ. 2013, 61, 82–92. [Google Scholar] [CrossRef]
- Niang, I.; Maalouf, C.; Moussa, T.; Bliard, C.; Samin, E.; Thomachot-Schneider, C.; Lachi, M.; Pron, H.; Mai, T.H.; Gaye, S. Hygrothermal Performance of Various Typha–Clay Composite. J. Build. Phys. 2018, 42, 316–335. [Google Scholar] [CrossRef]
- Touati, K.; Benzaama, M.-H.; El Mendili, Y.; Le Guern, M.; Streiff, F.; Goodhew, S. Hygrothermal and Economic Analysis of an Earth-Based Building Using In Situ Investigations and Artificial Neural Network Modeling for Normandy’s Climate Conditions. Sustainability 2023, 15, 13985. [Google Scholar] [CrossRef]
- McGregor, F.; Heath, A.; Shea, A.; Lawrence, M. The Moisture Buffering Capacity of Unfired Clay Masonry. Build. Environ. 2014, 82, 599–607. [Google Scholar] [CrossRef]
- Lima, J.; Faria, P.; Santos Silva, A. Earth Plasters: The Influence of Clay Mineralogy in the Plasters’ Properties. Int. J. Archit. Herit. 2020, 14, 948–963. [Google Scholar] [CrossRef]
- Andrade, F.A.; Al-Qureshi, H.A.; Hotza, D. Measuring the Plasticity of Clays: A Review. Appl. Clay Sci. 2011, 51, 1–7. [Google Scholar] [CrossRef]
- Miranda-Trevino, J.C.; Coles, C.A. Kaolinite Properties, Structure and Influence of Metal Retention on pH. Appl. Clay Sci. 2003, 23, 133–139. [Google Scholar] [CrossRef]
Vegetables or Fruits | Recommended Temperature for Storage Less than 7 Days | Optimum Relative Hygrometry (RH) |
---|---|---|
Tomatoes | 13–18 °C | >80% |
Zucchinis | 8–12 °C | >80% |
Eggplant | 8–12 °C | >80% |
Peppers | 8–12 °C | >80% |
Cucumbers | 8–12 °C | >80% |
Green beans | 8–12 °C | >80% |
Canary melon | 13–18 °C | >80% |
Watermelon | 8–12 °C | >80% |
Squash, pumpkin | 13–18 °C | >60–75% |
Strawberries | 2–7 °C | >80% |
Element | wt.% |
---|---|
CaO | 43.26 |
SiO2 | 36.08 |
Al2O3 | 9.48 |
Fe2O3 | 4.61 |
K2O | 1.68 |
SO3 | 0.90 |
TiO2 | 0.84 |
MnO | 0.11 |
BaO | 0.06 |
La2O3 | 0.06 |
SrO | 0.05 |
Loss on ignition | 0.23 |
Material | Thermal Conductivity [W.m−1.K−1] | Specific Heat Capacity [J.kg−1.K−1] | Thermal Diffusivity [m2. s−1] |
---|---|---|---|
Earth brick | 0.54 ± 0.01 | 1199 ± 36 | 0.29 × 10−6 |
OSB Wood | 0.129 [17] | 1552 [18] | 0.17 × 10−6 |
Criteria | Temperature [°C] | Relative Humidity [%] | ||||
---|---|---|---|---|---|---|
Outdoors | Wooden Room | Earthen Room | Outdoors | Wooden Room | Earthen Room | |
mean | 26.9 | 29.0 | 26.4 | 54.0 | 46.0 | 57.5 |
std | 5.4 | 3.6 | 2.4 | 14.0 | 5.4 | 3.3 |
min | 15.4 | 21.1 | 20.2 | 20.0 | 31.3 | 48.5 |
max | 39.0 | 38.3 | 31.8 | 81.6 | 58.1 | 67.0 |
max − min | 23.6 | 17.2 | 11.6 | 61.6 | 26.8 | 18.5 |
Criteria | Earthen Room | Wooden Room | ||||
---|---|---|---|---|---|---|
Shift Between Peak [h] | Temperature [°C] | Shift Between Peak [h] | Shift Between Peak [h] | Temperature [°C] | Thermal Buffering [°C] | |
mean | 6.62 | 27.8 | 5.9 | 4.00 | 33.3 | 0.49 |
std | 1.00 | 2.0 | 1.4 | 0.86 | 2.5 | 1.12 |
min | 5.33 | 22.7 | 3.2 | 2.57 | 26.6 | 0.00 |
max | 9.17 | 31.8 | 8.8 | 5.67 | 38.3 | 2.94 |
Criteria | Earthen Room | Wooden Room | ||
---|---|---|---|---|
Shift Between Peak [h] | Relative Humidity (Peak) [%] | Shift Between Peak [h] | Relative Humidity (Peak) [%] | |
mean | 8.8 | 60.7 | 3.7 | 51.5 |
std | 3.7 | 2.62 | 2.1 | 4.21 |
min | 2.5 | 57.6 | 0.6 | 40.9 |
max | 16.4 | 70.0 | 8.6 | 58.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grosjean, A.; Touati, K.; Alonzo, G.; Ravat, H.C.; Houot, T.; El Mendili, Y.; Nougarèdes, B.; Camara, N. Experimental Raw Earth Building for Passive Cooling: A Case Study for Agricultural Application in a Mediterranean Climate. Buildings 2025, 15, 2603. https://doi.org/10.3390/buildings15152603
Grosjean A, Touati K, Alonzo G, Ravat HC, Houot T, El Mendili Y, Nougarèdes B, Camara N. Experimental Raw Earth Building for Passive Cooling: A Case Study for Agricultural Application in a Mediterranean Climate. Buildings. 2025; 15(15):2603. https://doi.org/10.3390/buildings15152603
Chicago/Turabian StyleGrosjean, Antoine, Karim Touati, Gaël Alonzo, Homan Cheikh Ravat, Thomas Houot, Yassine El Mendili, Brigitte Nougarèdes, and Nicolas Camara. 2025. "Experimental Raw Earth Building for Passive Cooling: A Case Study for Agricultural Application in a Mediterranean Climate" Buildings 15, no. 15: 2603. https://doi.org/10.3390/buildings15152603
APA StyleGrosjean, A., Touati, K., Alonzo, G., Ravat, H. C., Houot, T., El Mendili, Y., Nougarèdes, B., & Camara, N. (2025). Experimental Raw Earth Building for Passive Cooling: A Case Study for Agricultural Application in a Mediterranean Climate. Buildings, 15(15), 2603. https://doi.org/10.3390/buildings15152603